JP2869721B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2869721B2
JP2869721B2 JP13782597A JP13782597A JP2869721B2 JP 2869721 B2 JP2869721 B2 JP 2869721B2 JP 13782597 A JP13782597 A JP 13782597A JP 13782597 A JP13782597 A JP 13782597A JP 2869721 B2 JP2869721 B2 JP 2869721B2
Authority
JP
Japan
Prior art keywords
forming
liquid crystal
silicon
display
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13782597A
Other languages
Japanese (ja)
Other versions
JPH1056182A (en
Inventor
舜平 山崎
晃 間瀬
正明 ▼ひろ▲木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP13782597A priority Critical patent/JP2869721B2/en
Publication of JPH1056182A publication Critical patent/JPH1056182A/en
Application granted granted Critical
Publication of JP2869721B2 publication Critical patent/JP2869721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、アクティブ型電気
光学装置、特にアクティブ型液晶電気光学装置に関する
もので、明確な階調のレベルを設定できるようにしたも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active-type electro-optical device, and more particularly to an active-type liquid-crystal electro-optical device, in which a clear gradation level can be set.

【0002】[0002]

【従来の技術】液晶組成物はその物質特性から、分子軸
に対して水平方向と垂直方向の誘電率が異なるため、外
部の電界に対して水平方向に配列したり、垂直方向に配
列したりさせることが容易にできる。液晶電気光学装置
はこの誘電率の異方性を利用して、光の透過光量または
分散量を制御することで、ON/OFFの表示を行って
いる。
2. Description of the Related Art Liquid crystal compositions have different dielectric constants in a horizontal direction and a vertical direction with respect to a molecular axis due to their material properties. Therefore, liquid crystal compositions may be horizontally or vertically aligned with an external electric field. Can be easily done. The liquid crystal electro-optical device displays ON / OFF by controlling the amount of transmitted light or the amount of dispersion by utilizing the anisotropy of the dielectric constant.

【0003】図2にネマチック液晶の電気光学特性を示
す。印加電圧が小さいVa(A点)のときには、透過光
量がほぼ0%、Vb(B点)の場合には20%ほど、V
c(C点)の場合には70%ほど、Vd(D点)の場合
には100%ほどになる。つまり、A、D点のみを利用
すれば、白黒の2階調表示が、B、C点のように電気光
学特性の立ち上がりの部分を利用すれば、中間階調表示
が可能となる。
FIG. 2 shows the electro-optical characteristics of a nematic liquid crystal. When the applied voltage is small at Va (point A), the transmitted light amount is almost 0%, and when Vb (point B), the transmitted light amount is about 20%.
In the case of c (point C), it is about 70%, and in the case of Vd (point D), it is about 100%. In other words, if only the points A and D are used, black and white two-gradation display is possible, and if the rising portion of the electro-optical characteristic is used like points B and C, intermediate gradation display is possible.

【0004】従来、TFTを利用した液晶電気光学装置
の階調表示の場合、TFTのゲート印加電圧もしくはソ
ース・ドレイン間の印加電圧を変化させてアナログ的に
電圧を調整し、階調表示をおこなっていた。
Conventionally, in the case of a gray scale display of a liquid crystal electro-optical device using a TFT, the gray scale display is performed by changing the voltage applied to the gate of the TFT or the voltage applied between the source and drain to adjust the voltage in an analog manner. I was

【0005】[0005]

【発明が解決しようとする課題】TFTを利用した液晶
電気光学装置の諧調表示の方法に関して、説明をくわえ
る。従来液晶電気光学装置にもちいられる、Nチャネル
型薄膜トランジスタは、図3に示すような電圧電流特性
をもっている。図3に示した電圧電流特性はアモルファ
スシリコンを用いたNチャネル型薄膜トランジスタの特
性と、ポリシリコンを用いたNチャネル型薄膜トランジ
スタの特性である。
The method of displaying a gradation of a liquid crystal electro-optical device using a TFT will be further described. An N-channel thin film transistor conventionally used for a liquid crystal electro-optical device has a voltage-current characteristic as shown in FIG. The voltage-current characteristics shown in FIG. 3 are the characteristics of an N-channel thin film transistor using amorphous silicon and the characteristics of an N-channel thin film transistor using polysilicon.

【0006】ゲート電極に加える電圧をアナログ的に制
御することで、ドレイン電流を制御することが出来、液
晶に加わる電界の大きさを変化させることができる。こ
れによって、階調表示が可能になっている。
By controlling the voltage applied to the gate electrode in an analog manner, the drain current can be controlled, and the magnitude of the electric field applied to the liquid crystal can be changed. Thereby, gradation display is possible.

【0007】しかしながら、例えば640×400ドッ
トの画素数を有する液晶電気光学装置を想定したばあ
い、合計256,000個のTFTすべての特性をばら
つき無く作製することは、非常に困難を有し、現実的に
は量産性、歩留りを考慮すると、16階調表示が限界と
考えられている。
However, assuming a liquid crystal electro-optical device having a pixel number of 640 × 400 dots, for example, it is very difficult to manufacture the characteristics of all 256,000 TFTs without variation. In reality, considering the mass productivity and the yield, 16 gradation display is considered to be the limit.

【0008】また、ゲート電圧を一定の値に設定し、O
N/OFFのみを制御し、ソースドレイン電圧を制御す
ることで、階調表示を行う方法も考えられているが、や
はり特性の不安定性から16階調程度が限度と考えられ
ている。アナログ的な階調表示制御は、TFTの特性に
大きく左右され、明快な表示は困難を要する。
Further, the gate voltage is set to a constant value,
A method of performing gray scale display by controlling only N / OFF and controlling the source / drain voltage has been considered, but it is also considered that the limit is about 16 gray scales due to the instability of characteristics. Analog gradation display control largely depends on the characteristics of the TFT, and clear display requires difficulty.

【0009】また別の方法として、複数フレームを使っ
た階調表示の方法が提案されている。これは、図12に
示す様に、例えば10フレームを用いて階調表示を行う
場合、画素Aは10フレーム中2フレームを透過、残り
8フレームを非透過にすることで平均的には20%の透
過と表示できる。また画素Bでは同様に70%、画素C
では同様に50%の透過と表示できる。
As another method, a method of gradation display using a plurality of frames has been proposed. For example, as shown in FIG. 12, when gradation display is performed using, for example, 10 frames, the pixel A transmits 20 frames out of 10 frames and does not transmit the remaining 8 frames, so that the average is 20%. And can be displayed. Similarly, in pixel B, 70%
Can be displayed as 50% transmission.

【0010】しかしながら、この様な表示を行った場
合、実質上フレーム数の低下に繋がるために、フリッカ
ーの発生等と表示傷害が起きていた。これを解決するた
めに、フレーム周波数の増加等が考案されているが、駆
動周波数の増加に伴う消費電力の増加、またはICの高
速化が困難であるので限界がある技術であった。
However, when such a display is performed, the number of frames is substantially reduced, so that flicker is generated and display damage occurs. In order to solve this, an increase in frame frequency and the like have been devised, but this is a technology that has a limit because it is difficult to increase power consumption due to an increase in drive frequency or to increase the speed of an IC.

【0011】[0011]

【課題を解決するための手段】そこで、印加電圧レベル
を明確にするために、アナログ値では無く、一定の周期
で繰り返される基準電圧値を信号としてコントローラー
側から入力し、その基準信号をTFTに接続するタイミ
ングをデジタル値で制御することによって、TFTに印
加される電圧を制御することで、TFTの特性ばらつき
をカバーする方法を本発明ではとっている事を特徴とし
ている。
Therefore, in order to clarify the applied voltage level, a reference voltage value which is not an analog value but is repeated at a constant cycle is input from the controller as a signal, and the reference signal is input to the TFT. The present invention is characterized in that a method of controlling the voltage applied to the TFT by controlling the connection timing by a digital value to cover the characteristic variation of the TFT is adopted in the present invention.

【0012】つまり、1画面を書き込む時間Fと1画素
に書き込む時間tで関係される表示タイミングを有する
表示駆動方式を用いた電気光学装置の階調表示を、任意
の画素駆動選択に用いられる信号線の一方に前記時間t
を周期とする電圧変化を有する基準信号と他の信号線に
前記時間t内の任意のタイミングで選択信号を印加し、
液晶に加わる電圧を決定し、実際に画素に対し電圧を印
加することにより前記時間Fを変化させることなしに階
調を表示可能にした事を特徴としている。またさらに加
えれば、このタイミングをデーターの転送に頼るもので
は無く、液晶電気光学装置に搭載するドライバーIC自
体に高速のクロックを加え、信号加工部分で処理するた
めに、従来のCMOSのデーター転送速度の限界であっ
た数十MHzに制限されない高速の制御が可能になる事
を特徴としている。
That is, a signal used for selecting an arbitrary pixel drive for gradation display of an electro-optical device using a display drive method having a display timing related to a time F for writing one screen and a time t for writing one pixel. The time t on one of the lines
Applying a selection signal to the reference signal having a voltage change having a period of and a signal line at an arbitrary timing within the time t;
It is characterized in that a voltage applied to the liquid crystal is determined and a gray scale can be displayed without changing the time F by actually applying a voltage to the pixel. In addition, this timing does not depend on data transfer, but a high-speed clock is applied to the driver IC itself mounted on the liquid crystal electro-optical device, and processing is performed in a signal processing portion. It is characterized in that high-speed control not limited to several tens of MHz, which was the limit of the above, can be performed.

【0013】図1に本発明による電気光学装置の駆動波
形を具体的に示す。図4に示した2×2のマトリクスに
本駆動波形を入れた例として示す。前記基準信号波形と
してここでは、正弦波の半波を用いている。走査線方向
にあたるVDD1 303、VDD2 304に正弦波309、
310を印加し、情報線方向にあたるVGG1 301、V
GG2 302に2極性(以下『バイポーラ』とする)信号
を加える。デジタル値で制御する部分は、このバイポー
ラ信号を加えるタイミングを行なう。つまり、309、
310に示すような電圧変化している信号を選ぶタイミ
ングを変化させることで、A点に蓄積される電荷量およ
び電位が決定され、さらに対向電極の電位313を任意
にとることで画素および液晶にかかる電界の大きさが決
定されるものである。
FIG. 1 specifically shows a driving waveform of the electro-optical device according to the present invention. This is shown as an example in which the main drive waveform is put in the 2 × 2 matrix shown in FIG. Here, a half sine wave is used as the reference signal waveform. A sine wave 309 is applied to V DD1 303 and V DD2 304 corresponding to the scanning line direction.
310, and V GG1 301, V
GG2 302 is supplied with a bipolar (hereinafter, referred to as "bipolar") signal. The part controlled by the digital value performs the timing of applying the bipolar signal. That is, 309,
The amount of charge and the potential accumulated at point A are determined by changing the timing of selecting a signal having a voltage change as shown at 310, and the potential 313 of the opposing electrode is arbitrarily determined so that the pixel and the liquid crystal can be charged. The magnitude of such an electric field is determined.

【0014】バイポーラ信号を加えるタイミングは、情
報信号の転送速度によって決定されるものでは無く、本
発明による構成では液晶電気光学装置に直接接続される
ドライバーICに入力される基本クロックによって制限
される。つまり、640×400ドットの液晶電気光学
装置を考えた場合、駆動周波数はCMOSの限界から2
0MHz程度であり、この数値を使用して階調表示数を
計算するには、駆動周波数は走査線数とフレーム数とバ
イポーラパルスと階調表示数の積でしめされることよ
り、20MHzを(400×60×2)で割ればよいの
で、従って、階調表示数は416階調まで表示可能とな
る。表示画面の2分割化により832階調まで可能なこ
とは言うまでもない。以下に実施例をしるし、さらに詳
細な説明を加える。
The timing at which the bipolar signal is applied is not determined by the transfer rate of the information signal, but is limited by the basic clock input to the driver IC directly connected to the liquid crystal electro-optical device in the configuration according to the present invention. That is, when a liquid crystal electro-optical device of 640 × 400 dots is considered, the driving frequency is 2
In order to calculate the number of gray scales using this numerical value, the drive frequency is determined by the product of the number of scanning lines, the number of frames, the bipolar pulse, and the number of gray scales. (400 × 60 × 2), so that the number of gray scales can be displayed up to 416 gray scales. It goes without saying that up to 832 gradations can be achieved by dividing the display screen into two. Examples will be described below, and further detailed description will be given.

【0015】[0015]

【実施例】【Example】

『実施例1』 本実施例では図5に示すような回路構成
を用いた液晶表示装置を用いて、壁掛けテレビを作製し
たので、その説明を行う。またその際のTFTは、レー
ザーアニールを用いた多結晶シリコンとした。
Example 1 In this example, a wall-mounted television was manufactured using a liquid crystal display device having a circuit configuration as shown in FIG. The TFT at that time was made of polycrystalline silicon using laser annealing.

【0016】この回路構成に対応する実際の電極等の配
置構成を図6に示している。これらは説明を簡単にする
為2×2(またはそれ以下)に相当する部分のみ記載さ
れている。また、実際の駆動信号波形を図1に示す。こ
れも説明を簡単にする為に2×2のマトリクス構成とし
た場合の信号波形で説明を行う。
FIG. 6 shows an actual arrangement of electrodes and the like corresponding to this circuit configuration. For simplicity, only portions corresponding to 2 × 2 (or less) are described. FIG. 1 shows an actual drive signal waveform. For the sake of simplicity, the description will be made using signal waveforms in the case of a 2 × 2 matrix configuration.

【0017】まず、本実施例で使用する液晶パネルの作
製方法を図7及び図8を使用して説明する。図7(A)
において、石英ガラス等の高価でない700℃以下、例
えば約600℃の熱処理に耐え得るガラス50上にマグ
ネトロンRF(高周波) スパッタ法を用いてブロッキン
グ層51としての酸化珪素膜を1000〜3000Åの
厚さに作製する。プロセス条件は酸素100%雰囲気、
成膜温度15℃、出力400〜800W、圧力0.5P
aとした。タ−ゲットに石英または単結晶シリコンを用
いた成膜速度は30〜100Å/分であった。
First, a method for manufacturing a liquid crystal panel used in this embodiment will be described with reference to FIGS. FIG. 7 (A)
A silicon oxide film as a blocking layer 51 having a thickness of 1000 to 3000 mm is formed on a glass 50, such as quartz glass, which can withstand a heat treatment at an inexpensive temperature of 700 ° C. or less, for example, about 600 ° C. by using a magnetron RF (high frequency) sputtering method. To be manufactured. The process conditions are 100% oxygen atmosphere,
Film formation temperature 15 ° C, output 400-800W, pressure 0.5P
a. The film formation rate using quartz or single crystal silicon as a target was 30 to 100 ° / min.

【0018】この上にシリコン膜をプラズマCVD法に
より珪素膜52を作製した。成膜温度は250℃〜35
0℃で行い本実施例では320℃とし、モノシラン(SiH
4)を用いた。モノシラン(SiH4)に限らず、ジシラン(Si2
H6) またトリシラン(Si3H8)を用いてもよい。これらを
PCVD装置内に3Paの圧力で導入し、13.56M
Hzの高周波電力を加えて成膜した。この際、高周波電
力は0.02〜0.10W/cm2 が適当であり、本実
施例では0.055W/cm2 を用いた。また、モノシ
ラン(SiH4)の流量は20SCCMとし、その時の成膜速
度は約120Å/ 分であった。PTFTとNTFTとの
スレッシュホ−ルド電圧(Vth)に概略同一に制御する
ため、ホウ素をジボランを用いて1×1015〜1×1018cm
-3の濃度として成膜中に添加してもよい。またTFTの
チャネル領域となるシリコン層の成膜にはこのプラズマ
CVDだけでなく、スパッタ法、減圧CVD法を用いて
も良く、以下にその方法を簡単に述べる。
A silicon film 52 was formed thereon by a plasma CVD method. The film formation temperature is from 250 ° C to 35
In this example, the temperature was set to 320 ° C., and monosilane (SiH
4 ) was used. Not only monosilane (SiH 4 ) but also disilane (Si 2
H 6 ) Alternatively, trisilane (Si 3 H 8 ) may be used. These were introduced into the PCVD apparatus at a pressure of 3 Pa, and 13.56 M
The film was formed by applying a high frequency power of Hz. At this time, an appropriate high frequency power is 0.02 to 0.10 W / cm 2 , and in this example, 0.055 W / cm 2 was used. The flow rate of monosilane (SiH 4 ) was set to 20 SCCM, and the deposition rate at that time was about 120 ° / min. In order to control the threshold voltage (Vth) of the PTFT and the NTFT to be substantially the same, boron is used in a concentration of 1 × 10 15 to 1 × 10 18 cm using diborane.
-3 may be added during film formation. In addition, not only the plasma CVD but also a sputtering method and a low pressure CVD method may be used for forming the silicon layer to be a channel region of the TFT, and the method will be briefly described below.

【0019】スパッタ法で行う場合、スパッタ前の背圧
を1×10-5Pa以下とし、単結晶シリコンをタ−ゲット
として、アルゴンに水素を20〜80%混入した雰囲気
で行った。例えばアルゴン20%、水素80%とした。
成膜温度は150℃、周波数は13.56MHz、スパ
ッタ出力は400〜800W、圧力は0.5Paであっ
た。
When the sputtering method is used, the back pressure before the sputtering is set to 1 × 10 −5 Pa or less, and single crystal silicon is used as a target in an atmosphere containing 20 to 80% of hydrogen mixed with argon. For example, argon was 20% and hydrogen was 80%.
The film formation temperature was 150 ° C., the frequency was 13.56 MHz, the sputter output was 400 to 800 W, and the pressure was 0.5 Pa.

【0020】減圧気相法で形成する場合、結晶化温度よ
りも100〜200℃低い450〜550℃、例えば5
30℃でジシラン(Si2H6) またはトリシラン(Si3H8) を
CVD装置に供給して成膜した。反応炉内圧力は30〜
300Paとした。成膜速度は50〜250Å/ 分であ
った。PTFTとNTFTとのスレッシュホ−ルド電圧
(Vth)に概略同一に制御するため、ホウ素をジボラン
を用いて1×1015〜1×1018cm-3の濃度として成膜中に
添加してもよい。
In the case of forming by a reduced pressure gas phase method, 450 to 550 ° C. lower than the crystallization temperature by 100 to 200 ° C.
Disilane (Si 2 H 6 ) or trisilane (Si 3 H 8 ) was supplied to the CVD apparatus at 30 ° C. to form a film. The reactor pressure is 30 ~
It was set to 300 Pa. The deposition rate was 50-250 ° / min. In order to control the threshold voltage (Vth) of the PTFT and NTFT substantially the same, boron may be added during the film formation at a concentration of 1 × 10 15 to 1 × 10 18 cm −3 using diborane. .

【0021】これらの方法によって形成された被膜は、
酸素が5×1021cm-3以下であることが好ましい。結晶化
を助長させるためには、酸素濃度を7×1019cm-3以下、
好ましくは1×1019cm-3以下とすることが望ましいが、
少なすぎると、バックライトによりオフ状態のリ−ク電
流が増加してしまうため、この濃度を選択した。この酸
素濃度が高いと、結晶化させにくく、レーザーアニ−ル
温度を高くまたはレーザーアニ−ル時間を長くしなけれ
ばならない。水素は4×1020cm-3であり、珪素4×1022
cm-3として比較すると1原子%であった。
The coatings formed by these methods are:
It is preferable that oxygen is 5 × 10 21 cm −3 or less. In order to promote crystallization, the oxygen concentration should be 7 × 10 19 cm −3 or less,
Preferably, it is desirable to be 1 × 10 19 cm −3 or less,
If the amount is too small, the leakage current in the off state increases due to the backlight, so this concentration was selected. If the oxygen concentration is high, crystallization is difficult, and the laser annealing temperature must be increased or the laser annealing time must be increased. Hydrogen is 4 × 10 20 cm −3 and silicon 4 × 10 22
When compared with cm -3 , it was 1 atomic%.

【0022】また、ソ−ス、ドレインに対してより結晶
化を助長させるため、酸素濃度を7×1019cm-3以下、好
ましくは1×1019cm-3以下とし、ピクセル構成するTF
Tのチャネル形成領域のみに酸素をイオン注入法により
5×1020〜5×1021cm-3となるように添加してもよい。
In order to further promote crystallization of the source and the drain, the oxygen concentration is set to 7 × 10 19 cm −3 or less, preferably 1 × 10 19 cm −3 or less.
Oxygen may be added only to the T channel formation region by ion implantation so as to have a concentration of 5 × 10 20 to 5 × 10 21 cm −3 .

【0023】上記方法によって、アモルファス状態の珪
素膜を500〜5000Å、本実施例では1000Åの
厚さに成膜した。
By the above method, a silicon film in an amorphous state was formed to a thickness of 500 to 5000 °, in this embodiment, 1000 °.

【0024】その後、図7(B)に示すように、フォト
レジスト53をマスクP1を用いてソース・ドレイン領
域のみ開孔したパターンを形成した。その上に、プラズ
マCVD法によりn型の活性層となる珪素膜54を作製
した。成膜温度は250℃〜350℃で行い本実施例で
は320℃とし、モノシラン(SiH4)とモノシランベース
のフォスフィン(PH3) 3%濃度のものを用いた。これら
をPCVD装置内5Paの圧力でに導入し、13.56
MHzの高周波電力を加えて成膜した。この際、高周波
電力は0.05〜0.20W/cm2 が適当であり、本
実施例では0.120W/cm2 を用いた。
Thereafter, as shown in FIG. 7B, a pattern was formed by opening only the source / drain regions of the photoresist 53 using the mask P1. A silicon film 54 serving as an n-type active layer was formed thereon by a plasma CVD method. The film was formed at a temperature of 250 ° C. to 350 ° C. In this embodiment, the temperature was set to 320 ° C., and monosilane (SiH 4 ) and monosilane-based phosphine (PH 3 ) having a concentration of 3% were used. These are introduced into the PCVD apparatus at a pressure of 5 Pa, and 13.56
The film was formed by applying a high frequency power of MHz. At this time, the high-frequency power is suitably 0.05~0.20W / cm 2, in this embodiment using 0.120W / cm 2.

【0025】この方法によって出来上がったn型シリコ
ン層の比導電率は2×10-1〔Ωcm-1〕程度となっ
た。膜厚は50Åとした。その後リフトオフ法を用い
て、レジスト53を除去し、ソース・ドレイン領域5
5、56を形成した。
The specific conductivity of the n-type silicon layer formed by this method was about 2 × 10 −1 [Ωcm −1 ]. The film thickness was 50 °. Thereafter, the resist 53 is removed by a lift-off method, and the source / drain region 5 is removed.
5, 56 were formed.

【0026】同様のプロセスを用いて、p型の活性層を
形成した。その際の導入ガスは、モノシラン(SiH4)とモ
ノシランベースのジボラン(B2H6)5%濃度のものを用い
た。これらをPCVD装置内に4Paの圧力でに導入
し、13.56MHzの高周波電力を加えて成膜した。
この際、高周波電力は0.05〜0.20W/cm2
適当であり、本実施例では0.120W/cm2 を用い
た。この方法によって出来上がったp型シリコン層の比
導電率は5×10-2〔Ωcm-1〕程度となった。膜厚は
50Åとした。その後N型領域と同様にリフトオフ法を
用いて、ソース・ドレイン領域59、60を形成した。
その後、マスクP3を用いて珪素膜52をエッチング除
去し、Nチャネル型薄膜トランジスタ用アイランド領域
63とPチャネル型薄膜トランジスタ用アイランド領域
64を形成した。
Using the same process, a p-type active layer was formed. The gas introduced at that time used monosilane (SiH 4 ) and monosilane-based diborane (B 2 H 6 ) at a concentration of 5%. These were introduced into a PCVD apparatus at a pressure of 4 Pa, and high-frequency power of 13.56 MHz was applied to form a film.
At this time, the high-frequency power is suitably 0.05~0.20W / cm 2, in this embodiment using 0.120W / cm 2. The specific conductivity of the p-type silicon layer obtained by this method was about 5 × 10 -2 [Ωcm -1 ]. The film thickness was 50 °. Thereafter, source / drain regions 59 and 60 were formed by using a lift-off method as in the case of the N-type region.
Thereafter, the silicon film 52 was removed by etching using the mask P3 to form an N-channel type thin film transistor island region 63 and a P-channel thin film transistor island region 64.

【0027】その後XeClエキシマレーザーを用い
て、ソース・ドレイン・チャネル領域をレーザーアニー
ルすると同時に、活性層にレーザードーピングを行なっ
た。この時のレーザーエネルギーは、閾値エネルギーが
130mJ/cm2 で、膜厚全体が溶融するには220
mJ/cm2 が必要となる。しかし、最初から220m
J/cm2 以上のエネルギーを照射すると、膜中に含ま
れる水素が急激に放出されるために、膜の破壊が起き
る。そのために低エネルギーで最初に水素を追い出した
後に溶融させる必要がある。本実施例では最初150m
J/cm2 で水素の追い出しを行なった後、230mJ
/cm2 で結晶化をおこなった。
Thereafter, the source, drain and channel regions were annealed with a laser using a XeCl excimer laser, and simultaneously the active layer was laser-doped. At this time, the laser energy has a threshold energy of 130 mJ / cm 2.
mJ / cm 2 is required. However, 220m from the beginning
When energy of J / cm 2 or more is irradiated, hydrogen contained in the film is rapidly released, and the film is destroyed. For this purpose, it is necessary to first displace hydrogen and then melt it with low energy. In this embodiment, first 150 m
After purging hydrogen at J / cm 2 , 230mJ
The crystallization was carried out at / cm 2 .

【0028】アニ−ルにより、珪素膜はアモルファス構
造から秩序性の高い状態に移り、一部は結晶状態を呈す
る。特にシリコンの成膜後の状態で比較的秩序性の高い
領域は特に結晶化をして結晶状態となろうとする。しか
しこれらの領域間に存在する珪素により互いの結合がな
されるため、珪素同志は互いにひっぱりあう。レ−ザラ
マン分光により測定すると単結晶の珪素のピ−ク522
cm-1より低周波側にシフトしたピ−クが観察される。そ
れの見掛け上の粒径は半値巾から計算すると、50〜5
00Åとなっているが、実際はこの結晶性の高い領域は
多数あってクラスタ構造を有し、各クラスタ間は互いに
珪素同志で結合(アンカリング) がされた構造の被膜を
形成させることができた。
Due to the annealing, the silicon film shifts from an amorphous structure to a highly ordered state, and a part of the silicon film exhibits a crystalline state. In particular, a region having a relatively high order in a state after the formation of silicon is particularly likely to be crystallized to be in a crystalline state. However, since the silicon existing between these regions is bonded to each other, silicon mutually pulls each other. When measured by laser Raman spectroscopy, a single crystal silicon peak 522 is obtained.
A peak shifted to a lower frequency side than cm −1 is observed. Its apparent particle size is 50 to 5 when calculated from the half width.
Although the area is 00 °, there are actually a large number of regions having high crystallinity and a cluster structure, and a film having a structure in which each cluster is bonded to each other by silicon (anchoring) can be formed. .

【0029】結果として、被膜は実質的にグレインバウ
ンダリ(以下GBという)がないといってもよい状態を
呈する。キャリアは各クラスタ間をアンカリングされた
個所を通じ互いに容易に移動し得るため、いわゆるGBの
明確に存在する多結晶珪素よりも高いキャリア移動度と
なる。即ちホ−ル移動度(μh)=10〜200cm2
VSec、電子移動度(μe )=15〜300cm2 /V
Secが得られる。
As a result, the coating exhibits a state substantially free of grain boundaries (hereinafter referred to as GB). Carriers can easily move from one cluster to another through anchored locations, resulting in higher carrier mobility than so-called GB polycrystalline silicon. That is, hole mobility (μh) = 10 to 200 cm 2 /
VSec, electron mobility (μe) = 15 to 300 cm 2 / V
Sec is obtained.

【0030】この上に酸化珪素膜をゲイト絶縁膜として
500〜2000Å例えば1000Åの厚さに形成し
た。これはブロッキング層としての酸化珪素膜の作製と
同一条件とした。この成膜中に弗素を少量添加し、ナト
リウムイオンの固定化をさせてもよい。
On this, a silicon oxide film was formed as a gate insulating film to a thickness of 500 to 2000 {for example, 1000}. This was made under the same conditions as those for forming the silicon oxide film as the blocking layer. During the film formation, a small amount of fluorine may be added to fix the sodium ions.

【0031】この後、この上側にリンが1〜5×1021cm
-3の濃度に入ったシリコン膜またはこのシリコン膜とそ
の上にモリブデン(Mo)、タングステン(W),MoSi2 または
WSi2との多層膜を形成した。これを第4のフォトマスク
P4にてパタ−ニングして図7(E)を得た。NTFT
用のゲイト電極66、PTFT用のゲイト電極67を形
成した。例えばチャネル長7μm、ゲイト電極としてリ
ンド−プ珪素を0.2μm、その上にモリブデンを0.
3μmの厚さに形成した。
After this, 1-5 × 10 21 cm of phosphorus is placed on the upper side.
-3 silicon film or molybdenum (Mo), tungsten (W), MoSi 2 or
A multilayer film with WSi 2 was formed. This was patterned using a fourth photomask P4 to obtain FIG. NTFT
A gate electrode 66 for PTFT and a gate electrode 67 for PTFT were formed. For example, a channel length is 7 μm, and a gate electrode is 0.2 μm of phosphorus silicon, and 0.1 μm of molybdenum is placed thereon.
It was formed to a thickness of 3 μm.

【0032】また、ゲート電極材料としてアルミニウム
(Al)を用いた場合、これを第4のフォトマスク69に
てパタ−ニング後、その表面を陽極酸化することで、セ
ルファライン工法が適用可能なため、ソース・ドレイン
のコンタクトホールをよりゲートに近い位置に形成する
ことが出来るため、移動度、スレッシュホールド電圧の
低減からさらにTFTの特性を上げることができる。
When aluminum (Al) is used as a gate electrode material, the surface is anodically oxidized after patterning the aluminum with a fourth photomask 69, so that the self-alignment method can be applied. In addition, since the source / drain contact holes can be formed at positions closer to the gate, the characteristics of the TFT can be further improved by reducing the mobility and the threshold voltage.

【0033】かくすると、400℃以上にすべての工程
で温度を加えることがなくC/TFTを作ることができ
る。そのため、基板材料として、石英等の高価な基板を
用いなくてもよく、本発明の大画面の液晶表示装置にき
わめて適したプロセスであるといえる。
Thus, a C / TFT can be manufactured without applying a temperature to 400 ° C. or more in all steps. Therefore, it is not necessary to use an expensive substrate such as quartz as a substrate material, and it can be said that the process is very suitable for the large-screen liquid crystal display device of the present invention.

【0034】図8(A)において、層間絶縁物68を前
記したスパッタ法により酸化珪素膜の形成として行っ
た。この酸化珪素膜の形成はLPCVD法、光CVD
法、常圧CVD法を用いてもよい。例えば0.2〜0.
6μmの厚さに形成し、その後、第5のフォトマスクP
5を用いて電極用の窓79を形成した。その後、さら
に、これら全体にアルミニウムを0.3μmの厚みにス
パッタ法により形成し第6のフォトマスクP6を用いて
リ−ド74およびコンタクト73、75を作製した後、
表面を平坦化用有機樹脂77例えば透光性ポリイミド樹
脂を塗布形成し、再度の電極穴あけを第7のフォトマス
クP7にて行った。さらに、これら全体にITO(イン
ジウム酸化錫)を0.1μmの厚みにスパッタ法により
形成し第8のフォトマスクP8を用いて画素電極71を
形成した。このITOは室温〜150℃で成膜し、20
0〜400℃の酸素または大気中のアニ−ルにより成就
した。
In FIG. 8A, a silicon oxide film was formed on the interlayer insulator 68 by the above-mentioned sputtering method. This silicon oxide film is formed by LPCVD, optical CVD
Or a normal pressure CVD method. For example, 0.2-0.
6 μm thick, and then a fifth photomask P
5 was used to form an electrode window 79. After that, further, aluminum is formed on the entire surface to a thickness of 0.3 μm by a sputtering method, and leads 74 and contacts 73 and 75 are formed using a sixth photomask P6.
The surface was coated with an organic resin 77 for flattening, for example, a translucent polyimide resin, and the electrode drilling was performed again using the seventh photomask P7. Further, ITO (indium tin oxide) was formed on the entire surface by sputtering to a thickness of 0.1 μm, and a pixel electrode 71 was formed using an eighth photomask P8. This ITO is deposited at room temperature to 150 ° C.
Fulfilled by oxygen at 0-400 ° C. or by annealing in air.

【0035】得られたTFTの電気的な特性はPTFT
で移動度は40(cm2/Vs)、Vthは−5.9(V)で、
NTFTで移動度は80(cm2/Vs)、Vthは5.0
(V)であった。
The electrical characteristics of the obtained TFT are PTFT
And the mobility is 40 (cm 2 / Vs), Vth is -5.9 (V),
NTFT has a mobility of 80 (cm 2 / Vs) and a Vth of 5.0
(V).

【0036】上記の様な方法に従って作製された液晶電
気光学装置用の一方の基板を得ることが出来た。
One substrate for a liquid crystal electro-optical device manufactured according to the above method was obtained.

【0037】この液晶表示装置の電極等の配置の様子を
図6に示している。Nチャネル型薄膜トランジスタとP
チャネル型薄膜トランジスタとを第1の信号線3と第2
の信号線4のとの交差部に設けられている。このような
C/TFTを用いたマトリクス構成を有せしめた。NT
FT13は、ドレイン10の入力端のコンタクトを介し
第2の信号線4に連結され、ゲイト9は第1の信号線3
に連結されている。ソ−ス12の出力端はコンタクトを
介して画素の電極17に連結している。
FIG. 6 shows the arrangement of the electrodes and the like of the liquid crystal display device. N-channel type thin film transistor and P
The channel type thin film transistor is connected to the first signal line 3 and the second signal line.
At the intersection with the signal line 4. A matrix configuration using such a C / TFT is provided. NT
The FT 13 is connected to the second signal line 4 via a contact at the input end of the drain 10, and the gate 9 is connected to the first signal line 3.
It is connected to. The output terminal of the source 12 is connected to the pixel electrode 17 via a contact.

【0038】他方、PTFT22はドレイン20の入力
端がコンタクトを介して第2の信号線4に連結され、ゲ
イト21は信号線3に、ソ−ス18の出力端はコンタク
トを介してNTFTと同様に画素電極17に連結してい
る。かかる構造を左右、上下に繰り返すことにより、6
40×480、1280×960といった大画素の液晶
表示装置とすることができる。本実施例では1920×
400とした。この様にして第1の基板を得た。
On the other hand, the PTFT 22 has an input terminal of the drain 20 connected to the second signal line 4 via a contact, a gate 21 connected to the signal line 3, and an output terminal of the source 18 connected to the same terminal as the NTFT via a contact. Are connected to the pixel electrode 17. By repeating such a structure left, right, up and down, 6
A liquid crystal display device having a large pixel size of 40 × 480 or 1280 × 960 can be obtained. In this embodiment, 1920 ×
400. Thus, a first substrate was obtained.

【0039】他方の基板の作製方法を図13に示す。ガ
ラス基板上にポリイミドに黒色顔料を混合したポリイミ
ド樹脂をスピンコート法を用いて1μmの厚みに成膜
し、第9のフォトマスクP9を用いてブラックストライ
プ81を作製した。その後、赤色顔料を混合したポリイ
ミド樹脂をスピンコート法を用いて1μmの厚みに成膜
し、第10のフォトマスクP10を用いて赤色フィルタ
ー83を作製した。同様にしてマスクP11、P12を
使用し、緑色フィルター85および青色フィルター86
を作製した。これらの作製中各フィルターは350℃に
て窒素中で60分の焼成を行なった。その後、やはりス
ピンコート法を用いて、レベリング層89を透明ポリイ
ミドを用いて制作した。
FIG. 13 shows a method for manufacturing the other substrate. A 1 μm-thick polyimide film obtained by mixing a black pigment with polyimide was formed on a glass substrate by spin coating, and a black stripe 81 was formed using a ninth photomask P9. Thereafter, a polyimide resin mixed with a red pigment was formed into a film having a thickness of 1 μm by a spin coating method, and a red filter 83 was manufactured using a tenth photomask P10. Similarly, using the masks P11 and P12, the green filter 85 and the blue filter 86
Was prepared. During the production, each filter was fired at 350 ° C. in nitrogen for 60 minutes. After that, the leveling layer 89 was formed using a transparent polyimide, also using the spin coating method.

【0040】その後、これら全体にITO(インジュー
ム酸化錫)を0.1μmの厚みにスパッタ法により形成
し第5のフォトマスク91を用いて共通電極90を形成
した。このITOは室温〜150℃で成膜し、200〜
300℃の酸素または大気中のアニ−ルにより成就し、
第2の基板を得た。
Thereafter, ITO (indium tin oxide) was formed on the entire surface to a thickness of 0.1 μm by sputtering, and a common electrode 90 was formed using a fifth photomask 91. This ITO is deposited at room temperature to 150 ° C.
Fulfilled by oxygen at 300 ° C. or annealing in air,
A second substrate was obtained.

【0041】前記基板上に、オフセット法を用いて、ポ
リイミド前駆体を印刷し、非酸化性雰囲気たとえば窒素
中にて350℃1時間焼成を行った。その後、公知のラ
ビング法を用いて、ポリイミド表面を改質し、少なくと
も初期において、液晶分子を一定方向に配向させる手段
を設けた。
A polyimide precursor was printed on the substrate by using an offset method, and baked at 350 ° C. for 1 hour in a non-oxidizing atmosphere such as nitrogen. Thereafter, a known rubbing method was used to modify the surface of the polyimide, and at least initially, a means for aligning liquid crystal molecules in a certain direction was provided.

【0042】その後、前記第一の基板と第二の基板によ
って、ネマチック液晶組成物を挟持し、周囲をエポキシ
性接着剤にて固定した。基板上のリードにTAB形状の
駆動ICと共通信号、電位配線を有するPCBを接続
し、外側に偏光板を貼り、透過型の液晶電気光学装置を
得た。
Thereafter, the nematic liquid crystal composition was sandwiched between the first substrate and the second substrate, and the periphery was fixed with an epoxy adhesive. A drive IC having a TAB shape and a PCB having a common signal and potential wiring were connected to leads on the substrate, and a polarizing plate was attached on the outside to obtain a transmissive liquid crystal electro-optical device.

【0043】図9および図10に本実施例による電気光
学装置の概略構造図を示す。前記の工程にて得た液晶パ
ネル220を冷陰極管を3本配置した後部照明装置22
1と組み合わせて設置を行った。その後、テレビ電波を
受信するチューナー223を接続し、電気光学装置とし
て完成させた。従来のCRT方式の電気光学装置と比べ
て、平面形状の装置となったために、壁等に設置するこ
とも出来る様になった。
FIGS. 9 and 10 are schematic structural views of the electro-optical device according to the present embodiment. The rear lighting device 22 in which the three liquid crystal panels 220 obtained in the above steps are arranged with three cold cathode tubes
Installation was performed in combination with 1. Thereafter, a tuner 223 for receiving a television wave was connected to complete the electro-optical device. Compared to a conventional CRT-type electro-optical device, the device has a planar shape, so that it can be installed on a wall or the like.

【0044】次に本発明を完結させるための、液晶電気
光学装置の周辺回路の説明を図11を用いて加える。
Next, a peripheral circuit of the liquid crystal electro-optical device for completing the present invention will be described with reference to FIG.

【0045】液晶電気光学装置のマトリクス回路に接続
された情報信号側配線350、351に駆動回路352
を接続した構成を取っている。駆動回路352は駆動周
波数系で分割すると2つの部分よりなっている。1つは
従来の駆動方式と同様のデーターラッチ回路系353、
これはデーター356を順に転送するための基本クロッ
クCLK355が主な構成であり、1ビット〜12ビッ
ト並列処理がおこなわれている。他の1つは本発明によ
る構成部分で、階調表示に必要な分割の割合に応じたク
ロック357とフリップフロップ回路358、カウンタ
ー360よりなっている。データーラッチ系353より
送られた階調表示データーに応じたバイポーラパルス発
生タイミングをカウンター360で作っている。さら
に、ラッチ回路の出口とデーターライン間361にΔt
→sinθ変換のROMテーブルを使用すると階調表示
データーがさらに細かく制御しやすくなることがわかっ
た。
A driving circuit 352 is connected to the information signal side wirings 350 and 351 connected to the matrix circuit of the liquid crystal electro-optical device.
Is connected. The drive circuit 352 has two parts when divided in a drive frequency system. One is a data latch circuit system 353 similar to the conventional driving method,
This is mainly composed of a basic clock CLK 355 for sequentially transferring data 356, and 1-bit to 12-bit parallel processing is performed. The other is a component according to the present invention, which comprises a clock 357, a flip-flop circuit 358, and a counter 360 according to the division ratio required for gradation display. The counter 360 generates a bipolar pulse generation timing corresponding to the gradation display data sent from the data latch system 353. Further, Δt is set at 361 between the exit of the latch circuit and the data line.
→ It has been found that the gradation display data can be more finely controlled by using the ROM table of sin θ conversion.

【0046】本発明で特徴としているところは、まさに
これらの部分であり、駆動周波数を2種類とることによ
って、画面書換えのフレーム数を変化させることなく、
明快なデジタル階調表示が可能になっていることにあ
る。フレーム数の低下に伴うフリッカーの発生等が回避
できるものである。
The features of the present invention are exactly these parts. By adopting two driving frequencies, the number of frames for screen rewriting can be changed without changing the number of frames.
This is to enable clear digital gradation display. It is possible to avoid the occurrence of flicker and the like due to the decrease in the number of frames.

【0047】かたや走査側の信号線363、362に接
続された駆動回路364は、正弦波発振回路365より
伝達した正弦波をクロックCLK367のフリップフロ
ップ回路366で制御し、選択信号を加える。
The driving circuit 364 connected to the signal lines 363 and 362 on the scanning side controls the sine wave transmitted from the sine wave oscillating circuit 365 by the flip-flop circuit 366 of the clock CLK 367 and adds a selection signal.

【0048】このようにして、走査線側の正弦波を情報
線側のバイポーラパルスによって、切り取るタイミング
をデジタル的に電圧制御することで、階調表示を可能に
している。
As described above, grayscale display is made possible by digitally voltage-controlling the timing of cutting the sine wave on the scanning line side by the bipolar pulse on the information line side.

【0049】例えば1920×400ドットの768,
000組のTFTを300mm角に作成した液晶電気光
学装置に対し通常のアナログ的な階調表示を行った場
合、TFTの特性ばらつきが約±10%存在するため
に、16階調表示が限界であった。しかしながら、本発
明によるデジタル階調表示をおこなった場合、TFT素
子の特性ばらつきの影響を受けにくいために、64階調
表示まで可能になりカラー表示では262,144色の
多彩であり微妙な色彩の表示が実現できている。
For example, 768 of 1920 × 400 dots,
When a normal analog gray scale display is performed on a liquid crystal electro-optical device in which 000 sets of TFTs are formed in a 300 mm square, 16 gray scale displays are limited due to a variation in TFT characteristics of about ± 10%. there were. However, when the digital gradation display according to the present invention is performed, since it is hard to be affected by the variation in the characteristics of the TFT elements, it is possible to display up to 64 gradations, and in the color display, a variety of 262,144 colors are provided. The display has been realized.

【0050】『実施例2』本実施例では、対角1インチ
を有する液晶電気光学装置を用いた、ビデオカメラ用ビ
ューファインダーを作製し、本発明を実施したので説明
を加える。
Embodiment 2 In this embodiment, a viewfinder for a video camera using a liquid crystal electro-optical device having a diagonal of 1 inch is manufactured and the present invention is implemented.

【0051】本実施例では、画素数が387×128の
構成にして、低温プロセスによる高移動度TFTを用い
た素子を形成し、ビューファインダーを構成した。本実
施例で使用する液晶表示装置の基板上のアクティブ素子
の配置の様子を図14に示し図14のA−A’断面およ
びB−B’断面を示す作製プロセスを図15に描く。図
15(A)において、安価な、700℃以下、例えば約
600℃の熱処理に耐え得るガラス50上にマグネトロ
ンRF(高周波) スパッタ法を用いてブロッキング層5
1としての酸化珪素膜を1000〜3000Åの厚さに
作製する。プロセス条件は酸素100%雰囲気、成膜温
度15℃、出力400〜800W、圧力0.5Paとし
た。タ−ゲットに石英または単結晶シリコンを用いた成
膜速度は30〜100Å/分であった。
In this embodiment, a viewfinder is formed by forming a device using a high mobility TFT by a low-temperature process with a configuration of 387 × 128 pixels. FIG. 14 shows the arrangement of the active elements on the substrate of the liquid crystal display device used in this embodiment, and FIG. 15 shows the fabrication process showing the AA ′ section and the BB ′ section of FIG. In FIG. 15A, a blocking layer 5 is formed on a glass 50 which is inexpensive and can withstand heat treatment at 700 ° C. or less, for example, about 600 ° C. by using a magnetron RF (high frequency) sputtering method.
A silicon oxide film as No. 1 is formed to a thickness of 1000 to 3000 °. The process conditions were a 100% oxygen atmosphere, a film formation temperature of 15 ° C., an output of 400 to 800 W, and a pressure of 0.5 Pa. The film formation rate using quartz or single crystal silicon as a target was 30 to 100 ° / min.

【0052】この上にシリコン膜をLPCVD(減圧気
相)法、スパッタ法またはプラズマCVD法により形成
した。減圧気相法で形成する場合、結晶化温度よりも1
00〜200℃低い450〜550℃、例えば530℃
でジシラン(Si2H6) またはトリシラン(Si3H8) をCVD
装置に供給して成膜した。反応炉内圧力は30〜300
Paとした。成膜速度は50〜250Å/ 分であった。
PTFTとNTFTとのスレッシュホ−ルド電圧(Vt
h)に概略同一に制御するため、ホウ素をジボランを用
いて1×1015〜1×1018cm-3の濃度として成膜中に添加
してもよい。
A silicon film was formed thereon by LPCVD (low pressure gas phase), sputtering or plasma CVD. When formed by the reduced pressure gas phase method, the temperature is 1
450-550 ° C lower by 00-200 ° C, for example 530 ° C
CVD of disilane (Si 2 H 6 ) or trisilane (Si 3 H 8 )
The film was supplied to the apparatus to form a film. Reactor pressure is 30 ~ 300
Pa. The deposition rate was 50-250 ° / min.
Threshold voltage (Vt) between PTFT and NTFT
In order to control substantially the same as in h), boron may be added at a concentration of 1 × 10 15 to 1 × 10 18 cm −3 during film formation using diborane.

【0053】スパッタ法で行う場合、スパッタ前の背圧
を1×10-5Pa以下とし、単結晶シリコンをタ−ゲット
として、アルゴンに水素を20〜80%混入した雰囲気
で行った。例えばアルゴン20%、水素80%とした。
成膜温度は150℃、周波数は13.56MHz、スパ
ッタ出力は400〜800W、圧力は0.5Paであっ
た。
In the case of the sputtering method, the back pressure before the sputtering was set to 1 × 10 −5 Pa or less, and single crystal silicon was used as a target in an atmosphere in which hydrogen was mixed with 20 to 80% of argon. For example, argon was 20% and hydrogen was 80%.
The film formation temperature was 150 ° C., the frequency was 13.56 MHz, the sputter output was 400 to 800 W, and the pressure was 0.5 Pa.

【0054】プラズマCVD法により珪素膜を作製する
場合、温度は例えば300℃とし、モノシラン(SiH4)ま
たはジシラン(Si2H6) を用いた。これらをPCVD装置
内に導入し、13.56MHzの高周波電力を加えて成
膜した。
When a silicon film is formed by the plasma CVD method, the temperature is set to, for example, 300 ° C., and monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used. These were introduced into a PCVD apparatus, and a high-frequency power of 13.56 MHz was applied to form a film.

【0055】これらの方法によって形成された被膜は、
酸素が5×1021cm-3以下であることが好ましい。この酸
素濃度が高いと、結晶化させにくく、熱アニ−ル温度を
高くまたは熱アニ−ル時間を長くしなければならない。
また少なすぎると、バックライトによりオフ状態のリ−
ク電流が増加してしまう。そのため4×1019〜4×1021
cm-3の範囲とした。水素は4×1020cm-3であり、珪素4
×1022cm-3として比較すると1原子%であった。
The coatings formed by these methods are:
It is preferable that oxygen is 5 × 10 21 cm −3 or less. If the oxygen concentration is high, it is difficult to crystallize, and the heat annealing temperature must be increased or the heat annealing time must be increased.
If the amount is too small, the lamp is turned off by the backlight.
Current increases. Therefore, 4 × 10 19 to 4 × 10 21
The range was cm −3 . Hydrogen is 4 × 10 20 cm -3 and silicon 4
It was 1 atomic% when compared with × 10 22 cm −3 .

【0056】上記方法によって、アモルファス状態の珪
素膜を500〜5000Å、例えば1500Åの厚さに
作製の後、450〜700℃の温度にて12〜70時間
非酸化物雰囲気にて中温の加熱処理、例えば水素雰囲気
下にて600℃の温度で保持した。珪素膜の下の基板表
面にアモルファス構造の酸化珪素膜が形成されているた
め、この熱処理で特定の核が存在せず、全体が均一に加
熱アニ−ルされる。即ち、成膜時はアモルファス構造を
有し、また水素は単に混入しているのみである。
After a silicon film in an amorphous state is formed to a thickness of 500 to 5000 °, for example, 1500 ° by the above method, heat treatment is performed at 450 to 700 ° C. for 12 to 70 hours in a non-oxide atmosphere at a medium temperature. For example, it was kept at a temperature of 600 ° C. in a hydrogen atmosphere. Since a silicon oxide film having an amorphous structure is formed on the surface of the substrate under the silicon film, no specific nucleus is present in this heat treatment, and the whole is annealed uniformly. That is, it has an amorphous structure at the time of film formation, and hydrogen is simply mixed therein.

【0057】アニ−ルにより、珪素膜はアモルファス構
造から秩序性の高い状態に移り、一部は結晶状態を呈す
る。特にシリコンの成膜後の状態で比較的秩序性の高い
領域は特に結晶化をして結晶状態となろうとする。しか
しこれらの領域間に存在する珪素により互いの結合がな
されるため、珪素同志は互いにひっぱりあう。レ−ザラ
マン分光により測定すると単結晶の珪素のピ−ク522
cm-1より低周波側にシフトしたピ−クが観察される。そ
れの見掛け上の粒径は半値巾から計算すると、50〜5
00Åとマイクロクリスタルのようになっているが、実
際はこの結晶性の高い領域は多数あってクラスタ構造を
有し、各クラスタ間は互いに珪素同志で結合(アンカリ
ング) がされたセミアモルファス構造の被膜を形成させ
ることができた。
By the annealing, the silicon film shifts from an amorphous structure to a highly ordered state, and a part of the silicon film exhibits a crystalline state. In particular, a region having a relatively high order in a state after the formation of silicon is particularly likely to be crystallized to be in a crystalline state. However, since the silicon existing between these regions is bonded to each other, silicon mutually pulls each other. When measured by laser Raman spectroscopy, a single crystal silicon peak 522 is obtained.
A peak shifted to a lower frequency side than cm −1 is observed. Its apparent particle size is 50 to 5 when calculated from the half width.
Although it is a microcrystal with a size of 00Å, there are actually a large number of regions with high crystallinity and a cluster structure, and a semi-amorphous structure film in which each cluster is bonded to each other by silicon (anchoring). Could be formed.

【0058】結果として、被膜は実質的にグレインバウ
ンダリ(以下GBという)がないといってもよい状態を
呈する。キャリアは各クラスタ間をアンカリングされた
個所を通じ互いに容易に移動し得るため、いわゆるGBの
明確に存在する多結晶珪素よりも高いキャリア移動度と
なる。即ちホ−ル移動度(μh)=10〜200cm2
VSec、電子移動度(μe )=15〜300cm2 /V
Secが得られる。
As a result, the coating exhibits a state substantially free of grain boundaries (hereinafter referred to as GB). Carriers can easily move from one cluster to another through anchored locations, resulting in higher carrier mobility than so-called GB polycrystalline silicon. That is, hole mobility (μh) = 10 to 200 cm 2 /
VSec, electron mobility (μe) = 15 to 300 cm 2 / V
Sec is obtained.

【0059】他方、上記の如き中温でのアニ−ルではな
く、900〜1200℃の高温アニ−ルにより被膜を多
結晶化すると、核からの固相成長により被膜中の不純物
の偏析がおきて、GBには酸素、炭素、窒素等の不純物
が多くなり、結晶中の移動度は大きいが、GBでのバリ
ア(障壁)を作ってそこでのキャリアの移動を阻害して
しまう。結果として10cm2/Vsec以上の移動度がなかな
か得られないのが実情である。即ち、本実施例ではかく
の如き理由により、セミアモルファスまたはセミクリス
タル構造を有するシリコン半導体を用いている。
On the other hand, when the film is polycrystallized by high-temperature annealing at 900 to 1200 ° C. instead of annealing at the above-mentioned medium temperature, impurities in the film are segregated by solid phase growth from nuclei. , GB contain many impurities such as oxygen, carbon, and nitrogen, and have a high mobility in the crystal. However, a barrier is formed in the GB to hinder the movement of carriers there. As a result, a mobility of 10 cm 2 / Vsec or more cannot be easily obtained. That is, in this embodiment, a silicon semiconductor having a semi-amorphous or semi-crystalline structure is used for such a reason.

【0060】図15(A)において、珪素膜を第1のフ
ォトマスクにてフォトエッチングを施し、NTFT用
の領域13(チャネル巾20μm)を図面のA−A’断面
側に、PTFT用の領域22をB−B’断面側に作製し
た。
In FIG. 15A, a silicon film is subjected to photoetching using a first photomask, and an NTFT region 13 (channel width 20 μm) is placed on the AA ′ cross-sectional side of the drawing to form a PTFT region. No. 22 was formed on the BB 'cross section side.

【0061】この上に酸化珪素膜をゲイト絶縁膜として
500〜2000Å例えば1000Åの厚さに形成し
た。これはブロッキング層としての酸化珪素膜の作製と
同一条件とした。この成膜中に弗素を少量添加し、ナト
リウムイオンの固定化をさせてもよい。
On top of this, a silicon oxide film was formed as a gate insulating film to a thickness of 500 to 2000 {for example, 1000}. This was made under the same conditions as those for forming the silicon oxide film as the blocking layer. During the film formation, a small amount of fluorine may be added to fix the sodium ions.

【0062】この後、この上側にリンが1〜5×1021cm
-3の濃度に入ったシリコン膜またはこのシリコン膜とそ
の上にモリブデン(Mo)、タングステン(W),MoSi2 または
WSi2との多層膜を形成した。これを第2のフォトマスク
にてパタ−ニングして図15(B)を得た。NTFT
用のゲイト電極9、PTFT用のゲイト電極21を形成
した。本実施例にでは、NTFT用チャネル長は10μ
m、PTFT用チャネル長は7μm、ゲイト電極として
リンド−プ珪素を0.2μm、その上にモリブデンを
0.3μmの厚さに形成した。 図15(C)におい
て、PTFT用のソ−ス18ドレイン20に対し、ホウ
素を1〜5×1015cm-2のド−ズ量でイオン注入法によ
り添加した。 次に図15(D)の如く、フォトレジス
ト61をフォトマスクを用いて形成した。NTFT用
のソ−ス10、ドレイン12としてリンを1〜5×10
15cm-2のドーズ量でイオン注入法により添加した。
After this, 1-5 × 10 21 cm of phosphorus is placed on the upper side.
-3 silicon film or molybdenum (Mo), tungsten (W), MoSi 2 or
A multilayer film with WSi 2 was formed. This was patterned using a second photomask to obtain FIG. 15B. NTFT
And a gate electrode 21 for PTFT were formed. In this embodiment, the channel length for NTFT is 10 μm.
m, the channel length for the PTFT was 7 μm, and the gate electrode was formed of 0.2 μm of silicon-doped silicon and 0.3 μm of molybdenum thereon. In FIG. 15C, boron was added to the PTFT source 18 drain 20 by ion implantation at a dose of 1 to 5 × 10 15 cm −2 . Next, as shown in FIG. 15D, a photoresist 61 was formed using a photomask. Phosphorous is used as a source 10 and a drain 12 for NTFT in a range of 1 to 5 × 10
It was added by ion implantation at a dose of 15 cm -2 .

【0063】また、ゲート電極材料としてアルミニウム
(Al)を用いた場合、これを第2のフォトマスクにて
パタ−ニング後、その表面を陽極酸化することで、セル
ファライン工法が適用可能なため、ソース・ドレインの
コンタクトホールをよりゲートに近い位置に形成するこ
とが出来るため、移動度、スレッシュホールド電圧の低
減からさらにTFTの特性を上げることができる。
When aluminum (Al) is used as the gate electrode material, the surface is anodized after patterning with a second photomask, so that the self-alignment method can be applied. Since the source / drain contact hole can be formed at a position closer to the gate, the characteristics of the TFT can be further improved in terms of reduction in mobility and threshold voltage.

【0064】次に、600℃にて10〜50時間再び加
熱アニ−ルを行った。NTFTのソ−ス10、ドレイン
12、PTFTのソ−ス18、ドレイン20を不純物を
活性化してP+ 、N+ として作製した。またゲイト電極
21、9下にはチャネル形成領域19、11がセミアモ
ルファス半導体として形成されている。
Next, annealing was performed again at 600 ° C. for 10 to 50 hours. The source 10 and the drain 12 of the NTFT and the source 18 and the drain 20 of the PTFT were formed as P + and N + by activating impurities. Channel formation regions 19 and 11 are formed below the gate electrodes 21 and 9 as semi-amorphous semiconductors.

【0065】かくすると、セルフアライン方式でありな
がらも、700℃以上にすべての工程で温度を加えるこ
とがなくC/TFTを作ることができる。そのため、基
板材料として、石英等の高価な基板を用いなくてもよ
く、本発明の大画素の液晶表示装置にきわめて適したプ
ロセスである。
In this way, a C / TFT can be manufactured without applying a temperature to 700 ° C. or more in all steps, even though it is a self-aligned system. Therefore, it is not necessary to use an expensive substrate such as quartz as a substrate material, and this is a process very suitable for the large pixel liquid crystal display device of the present invention.

【0066】本実施例では熱アニ−ルは図15(A)、
(D)で2回行った。しかし図15(A)のアニ−ルは
求める特性により省略し、双方を図15(D)のアニ−
ルにより兼ね製造時間の短縮を図ってもよい。図15
(E)において、層間絶縁物65を前記したスパッタ法
により酸化珪素膜の形成として行った。この酸化珪素膜
の形成はLPCVD法、光CVD法、常圧CVD法を用
いてもよい。例えば0.2〜0.6μmの厚さに形成
し、その後、フォトマスクを用いて電極用の窓66を
形成した。さらに、図15(F)に示す如くこれら全体
にアルミニウムをスパッタ法により形成し、リ−ド7
1、およびコンタクト72をフォトマスクを用いて作
製した後、表面を平坦化用有機樹脂69例えば透光性ポ
リイミド樹脂を塗布形成し、再度の電極穴あけをフォト
マスクにて行った。
In this embodiment, the thermal annealing is performed as shown in FIG.
(D) was performed twice. However, the annealing in FIG. 15 (A) is omitted depending on the required characteristics, and both of them are omitted in FIG. 15 (D).
The manufacturing time may also be reduced by using a tool. FIG.
In (E), a silicon oxide film was formed on the interlayer insulator 65 by the above-described sputtering method. This silicon oxide film may be formed by an LPCVD method, a photo CVD method, or a normal pressure CVD method. For example, it was formed to a thickness of 0.2 to 0.6 μm, and then a window 66 for an electrode was formed using a photomask. Further, as shown in FIG. 15 (F), aluminum is formed on the entire surface by sputtering, and leads 7 are formed.
After the contact 1 and the contact 72 were formed using a photomask, the surface was coated with an organic resin 69 for flattening, for example, a translucent polyimide resin, and the electrode drilling was performed again using the photomask.

【0067】2つのTFTを相補型構成とし、かつその
出力端を液晶装置の一方の画素の電極を透明電極として
それに連結するため、スパッタ法によりITO(インジ
ュ−ム・スズ酸化膜)を形成した。それをフォトマスク
によりエッチングし、電極17を構成させた。このI
TOは室温〜150℃で成膜し、200〜400℃の酸
素または大気中のアニ−ルにより成就した。かくの如く
にしてNTFT13とPTFT22と透明導電膜の電極
17とを同一ガラス基板50上に作製した。得られたT
FTの電気的な特性はPTFTで移動度は20(cm2/V
s)、Vthは−5.9(V)で、NTFTで移動度は4
0(cm2/Vs)、Vthは5.0(V)であった。
An ITO (indium tin oxide film) was formed by a sputtering method so that the two TFTs had a complementary structure and their output terminals were connected to an electrode of one pixel of the liquid crystal device as a transparent electrode. . It was etched using a photomask to form the electrode 17. This I
TO was formed at room temperature to 150 ° C. and achieved by oxygen at 200 to 400 ° C. or in air. In this manner, the NTFT 13, the PTFT 22, and the electrode 17 of the transparent conductive film were formed on the same glass substrate 50. The obtained T
The electrical characteristics of FT are PTFT and the mobility is 20 (cm 2 / V
s), Vth is -5.9 (V), and the mobility is 4 for NTFT.
0 (cm 2 / Vs) and Vth were 5.0 (V).

【0068】上記の様な方法に従って液晶装置用の一方
の基板を作製した。この液晶表示装置の電極等の配置の
様子を図14に示している。NTFT13およびPTF
T22を第1の信号線3と第2の信号線4との交差部に
設けた。このようなC/TFTを用いたマトリクス構成
を有せしめた。NTFT13は、ドレイン10の入力端
のコンタクトを介し第2の信号線4に連結され、ゲイト
9は多層配線形成がなされた信号線3に連結されてい
る。ソ−ス12の出力端はコンタクトを介して画素の電
極17に連結している。
According to the method as described above, one substrate for a liquid crystal device was manufactured. FIG. 14 shows the arrangement of the electrodes and the like of the liquid crystal display device. NTFT13 and PTF
T22 is provided at the intersection of the first signal line 3 and the second signal line 4. A matrix configuration using such a C / TFT is provided. The NTFT 13 is connected to the second signal line 4 via a contact at the input end of the drain 10, and the gate 9 is connected to the signal line 3 on which a multilayer wiring is formed. The output terminal of the source 12 is connected to the pixel electrode 17 via a contact.

【0069】他方、PTFT22はドレイン20の入力
端がコンタクトを介して第2の信号線4に連結され、ゲ
イト21は信号線3に、ソ−ス18の出力端はコンタク
トを介してNTFTと同様に画素電極17に連結してい
る。かかる構造を左右、上下に繰り返すことにより、本
実施例は構成されている。
On the other hand, the PTFT 22 has the input terminal of the drain 20 connected to the second signal line 4 via a contact, the gate 21 connected to the signal line 3, and the output terminal of the source 18 connected to the same terminal as the NTFT via a contact. Are connected to the pixel electrode 17. The present embodiment is configured by repeating such a structure left, right, up and down.

【0070】次に第二の基板として、青板ガラス上にス
パッタ法を用いて、酸化珪素膜を2000Å積層した基
板上に、やはり スパッタ法によりITO(インジュ−
ム・スズ酸化膜)を形成した。このITOは室温〜15
0℃で成膜し、200〜400℃の酸素または大気中の
アニ−ルにより成就した。また、この基板上に『実施例
1』と同様の手法を用いたカラーフィルターを形成し
て、第二の基板とした。
Next, as a second substrate, ITO (injection) was formed by sputtering on a substrate in which a silicon oxide film was laminated to a thickness of 2000 mm on a soda lime glass by sputtering.
Tin oxide film). This ITO is between room temperature and 15
Films were formed at 0 ° C. and achieved with oxygen at 200-400 ° C. or in air. A color filter was formed on this substrate using the same method as in "Example 1" to obtain a second substrate.

【0071】前記基板上に、オフセット法を用いて、ポ
リイミド前駆体を印刷し、非酸化性雰囲気たとえば窒素
中にて350℃1時間焼成を行った。その後、公知のラ
ビング法を用いて、ポリイミド表面を改質し、少なくと
も初期において、液晶分子を一定方向に配向させる手段
を設けて第一および第二の基板とした。
A polyimide precursor was printed on the substrate by using an offset method, and baked at 350 ° C. for 1 hour in a non-oxidizing atmosphere such as nitrogen. Thereafter, the surface of the polyimide was modified using a known rubbing method, and at least initially, means for aligning the liquid crystal molecules in a certain direction was provided to obtain first and second substrates.

【0072】その後、前記第一の基板と第二の基板によ
って、ネマチック液晶組成物を挟持し、周囲をエポキシ
性接着剤にて固定した。基板上のリードはそのピッチが
46μmと微細なため、COG法を用いて接続をおこな
った。本実施例ではICチップ上に設けた金バンプをエ
ポキシ系の銀パラジウム樹脂で接続し、ICチップと基
板間を固着と封止を目的としたエポキシ変成アクリル樹
脂にて埋めて固定する方法を用いた。その後、外側に偏
光板を貼り、透過型の液晶表示装置を得た。
Thereafter, the nematic liquid crystal composition was sandwiched between the first substrate and the second substrate, and the periphery was fixed with an epoxy adhesive. Since the pitch of the leads on the substrate was as fine as 46 μm, they were connected using the COG method. In this embodiment, a method is used in which gold bumps provided on an IC chip are connected with an epoxy-based silver-palladium resin, and the IC chip and the substrate are filled and fixed with an epoxy-modified acrylic resin for fixing and sealing. Was. Thereafter, a polarizing plate was attached on the outside to obtain a transmission type liquid crystal display device.

【0073】図16に本実施例で用いた駆動波形を示
す。実施例1に用いた正弦波に代わりランプ波形を用い
た。ランプ波は構成が簡単なうえ、階調データーからΔ
tへの変換が容易な点に長所を有する。
FIG. 16 shows driving waveforms used in this embodiment. A ramp waveform was used instead of the sine wave used in the first embodiment. The ramp wave has a simple structure, and the gradation data
It has an advantage in that conversion to t is easy.

【0074】図17に本実施例によるビューファインダ
ーの構成図を示す。前記方法にて作製した液晶電気光学
装置370と平面発光を有する冷陰極管371を用い
た。
FIG. 17 shows a configuration diagram of the viewfinder according to the present embodiment. The liquid crystal electro-optical device 370 manufactured by the above method and the cold cathode tube 371 having planar light emission were used.

【0075】例えば384×128ドットの49,15
2組のTFTを50mm角(300mm角基板から36
枚の多面取り)に作成した液晶電気光学装置に対し通常
のアナログ的な階調表示を行った場合、TFTの特性ば
らつきが約±10%存在するために、16階調表示が限
界であった。しかしながら、本発明によるデジタル階調
表示をおこなった場合、TFT素子の特性ばらつきの影
響を受けにくいために、128階調表示まで可能になり
カラー表示では2,097,152色の多彩であり微妙
な色彩の表示が実現できている。
For example, 384 × 128 dots 49, 15
Two sets of TFTs are placed in a 50 mm square (36 mm from a 300 mm square substrate).
When a normal analog gray scale display is performed on a liquid crystal electro-optical device prepared in a multi-panel display, 16 gray scale display is the limit because there is about ± 10% variation in TFT characteristics. . However, when the digital gradation display according to the present invention is performed, since it is hard to be affected by the characteristic variation of the TFT element, it is possible to display up to 128 gradations, and in the color display, 2,097,152 colors are various and delicate. Color display has been realized.

【0076】『実施例3』本実施例では、図18に示す
様なプロジェクション型画像表示装置を作製したので説
明を加える。
Embodiment 3 In this embodiment, a projection type image display device as shown in FIG.

【0077】本実施例では3枚の液晶電気光学装置20
1を使用して、プロジェクション型画像表示装置用造映
部を組み立てている。その一つ一つは640×480ド
ットの構成を有し、対角4インチの中に307,200
画素を作製した。1画素当りの大きさは127μm角と
した。
In this embodiment, three liquid crystal electro-optical devices 20 are used.
1 is used to assemble a projection unit for a projection type image display device. Each of them has a configuration of 640 x 480 dots, and 307,200 in 4 inch diagonal.
A pixel was produced. The size per pixel was 127 μm square.

【0078】プロジェクション型画像表示装置の構成と
して、液晶電気光学装置201を光の3原色である赤・
緑・青色用に分割して設置しており、赤色フィルター2
02、緑色フィルター203、青色フィルター204
と、反射板205、プリズムミラー206、207と1
50Wのメタルハライド系光源208とフォーカス用光
学系209より構成されている。
As a configuration of the projection type image display device, the liquid crystal electro-optical device 201 is composed of three primary colors of light, red and red.
It is installed separately for green and blue, and red filter 2
02, green filter 203, blue filter 204
, Reflector 205, prism mirrors 206, 207 and 1
A 50 W metal halide light source 208 and a focusing optical system 209 are provided.

【0079】本実施例の電気光学装置に用いた液晶電気
光学装置の基板は、『実施例2』にて作製したものと同
様の工程を用い、C/MOS構成のマトリクス回路を有
する基板とした。
The substrate of the liquid crystal electro-optical device used in the electro-optical device of this embodiment was a substrate having a matrix circuit of C / MOS configuration by using the same process as that manufactured in “Embodiment 2”. .

【0080】図19に構造の概略を示す。該基板上21
0に、フマル酸系高分子樹脂とネマチック液晶を65:
35の割合で共通溶媒であるキシレンに溶解させた混合
物をダイキャスト法を用いて10μmの厚さに形成し
た。その後窒素雰囲気中120℃で180分で溶媒を取
り除いて液晶分散層211を形成した。この場合、大気
圧よりも若干減圧にすると、タクトタイムの短縮がはか
れることがわかった。
FIG. 19 schematically shows the structure. On the substrate 21
0, the fumaric acid-based polymer resin and the nematic liquid crystal were added to 65:
A mixture dissolved in xylene as a common solvent at a ratio of 35 was formed to a thickness of 10 μm by die casting. Thereafter, the solvent was removed in a nitrogen atmosphere at 120 ° C. for 180 minutes to form a liquid crystal dispersion layer 211. In this case, it was found that when the pressure was slightly reduced from the atmospheric pressure, the tact time could be reduced.

【0081】その後、スパッタ法によりITO(インジ
ュ−ム・スズ酸化膜)を形成し、対向電極212を得
た。このITOは室温〜150℃で成膜した。その後印
刷法を用いて、透光性のシリコン樹脂を30μmの厚み
で塗布し、100℃で30分焼成し、液晶電気光学装置
を得た。
Thereafter, ITO (indium tin oxide film) was formed by a sputtering method to obtain a counter electrode 212. This ITO was formed at a temperature from room temperature to 150 ° C. Thereafter, using a printing method, a translucent silicone resin was applied to a thickness of 30 μm, and baked at 100 ° C. for 30 minutes to obtain a liquid crystal electro-optical device.

【0082】本実施例に用いた駆動用ICの機能構成を
図20に示す。情報電極側の構成は『実施例1』と同様
である。走査側配線406、407に接続された駆動回
路400は、ランプ波発振回路405より伝達したラン
プ波をクロックCLK408のフリップフロップ回路4
03、404で制御し、選択信号を加える。
FIG. 20 shows the functional configuration of the driving IC used in this embodiment. The configuration on the information electrode side is the same as in "Example 1". The drive circuit 400 connected to the scan-side wirings 406 and 407 outputs the ramp wave transmitted from the ramp wave oscillation circuit 405 to the flip-flop circuit 4 of the clock CLK 408.
03 and 404, and a selection signal is added.

【0083】このようにして、走査線側のランプ波を情
報線側のバイポーラパルスによって、切り取るタイミン
グをデジタル的に電圧制御することで、階調表示を可能
にしている。
In this way, gradation display is enabled by digitally voltage-controlling the timing of cutting out the ramp wave on the scanning line side by the bipolar pulse on the information line side.

【0084】例えば640×480ドットの307,2
00組のTFTを300mm角に作成した液晶電気光学
装置に対し通常のアナログ的な階調表示を行った場合、
TFTの特性ばらつきが約±10%存在するために、1
6階調表示が限界であった。しかしながら、本発明によ
るデジタル階調表示をおこなった場合、TFT素子の特
性ばらつきの影響を受けにくいために、256階調表示
まで可能になりカラー表示ではなんと16,777,2
16色の多彩であり微妙な色彩の表示が実現できてい
る。
For example, 307 × 2 of 640 × 480 dots
When a normal analog gradation display is performed on a liquid crystal electro-optical device in which 00 sets of TFTs are formed in a 300 mm square,
Since there is about ± 10% variation in TFT characteristics,
Six gradation display was the limit. However, when the digital gradation display according to the present invention is performed, the display is hardly affected by the variation in the characteristics of the TFT elements, so that it is possible to display up to 256 gradations.
A variety of 16 colors can be displayed in subtle colors.

【0085】テレビ映像の様なソフトを映す場合、例え
ば同一色からなる『岩』でもその微細な窪み等にあたる
光の加減から微妙に色合いが異なる。自然の色彩に近い
表示を行おうとした場合、16階調では困難を要し、こ
れらの微妙な窪みの表現には向かない。本発明による階
調表示によって、これらの微細な色調の変化を付けるこ
とが可能になった。
When displaying software such as a television image, for example, even a “rock” made of the same color has a slightly different color due to the degree of light corresponding to the minute depressions. When an attempt is made to display a color close to the natural colors, it is difficult to perform the display with 16 gradations, and it is not suitable for expressing these subtle depressions. With the gradation display according to the present invention, it is possible to impart these minute color changes.

【0086】この液晶電気光学は、図18に示したフロ
ント型のプロジェクションテレビだけでなく、リヤ型の
プロジェクションテレビにも使用が出来る。
This liquid crystal electro-optic can be used not only for the front projection television shown in FIG. 18, but also for the rear projection television.

【0087】『実施例4』本実施例では、図21に示す
ような反射型の液晶分散型表示装置を用いて、携帯用コ
ンピューター用電気光学装置を作製したので説明を加え
る。
[Embodiment 4] In this embodiment, an electro-optical device for a portable computer was manufactured using a reflective liquid crystal display device as shown in FIG.

【0088】本実施例に使用した第一の基板は、『実施
例1』と同一工程で作成した物を用いた。該基板上21
0に、フマル酸系高分子樹脂と黒色色素を15%混合さ
せたネマチック液晶を65:35の割合で共通溶媒であ
るキシレンに溶解させた混合物をダイキャスト法を用い
て10μmの厚さに形成し、その後窒素雰囲気中120
℃で180分溶媒を取り除いて液晶分散層211を形成
した。
The first substrate used in this example was manufactured in the same process as in Example 1. On the substrate 21
A mixture formed by dissolving a nematic liquid crystal obtained by mixing 15% of a fumaric acid-based polymer resin and a black pigment in xylene, which is a common solvent, in a ratio of 65:35 to a thickness of 10 μm using a die casting method. And then in a nitrogen atmosphere for 120
The solvent was removed at 180 ° C. for 180 minutes to form a liquid crystal dispersion layer 211.

【0089】ここで、黒色色素を用いたため、分散型液
晶表示では困難であった平面ディスプレイも、光の散乱
時(無電界時)に黒色がでて、透過時(電界印加時)に
白色を表示出来、紙上に書いた文字のような表示が可能
になっている。
Here, a flat display, which has been difficult to display using a dispersion type liquid crystal display because of the use of a black dye, shows a black color when light is scattered (when no electric field is applied) and a white color when transmitted (when an electric field is applied). It can be displayed and can be displayed like characters written on paper.

【0090】またこの逆の構造として、黒色色素を混入
せず、散乱時に白色を表現し、透過時に黒色を表現する
ことも可能である。ただしこの際には、以下に示す裏面
側を黒色にする必要がある。これもまた紙上に書いた文
字のような表示が可能になっている。
As a reverse structure, it is possible to express white when scattering and black when transmitting without mixing a black pigment. However, in this case, the back side shown below needs to be black. This is also possible to display like characters written on paper.

【0091】その後、スパッタ法によりITO(インジ
ュ−ム・スズ酸化膜)を形成し、対向電極212を得
た。このITOは室温〜150℃で成膜した。その後印
刷法を用いて、白色のシリコン樹脂を55μmの厚みで
塗布し、100℃で90分焼成し、液晶電気光学装置を
得た。
Thereafter, ITO (indium tin oxide film) was formed by a sputtering method to obtain a counter electrode 212. This ITO was formed at a temperature from room temperature to 150 ° C. Thereafter, using a printing method, a white silicon resin was applied to a thickness of 55 μm and baked at 100 ° C. for 90 minutes to obtain a liquid crystal electro-optical device.

【0092】[0092]

【発明の効果】本発明では、従来のアナログ方式の階調
表示に対し、デジタル方式の階調表示を行うことを特徴
としている。その効果として、例えば640×400ド
ットの画素数を有する液晶電気光学装置を想定したばあ
い、合計256,000個のTFTすべての特性をばら
つき無く作製することは、非常に困難を有し、現実的に
は量産性、歩留りを考慮すると、16階調表示が限界と
考えられているのに対し印加電圧レベルを明確にするた
めに、アナログ値では無く、基準電圧値を信号としてコ
ントローラー側から入力し、その基準信号をTFTに接
続するタイミングをデジタル値で制御することによっ
て、TFTに印加される電圧を制御することで、TFT
の特性ばらつきをカバーする方法を本発明ではとってい
る事を特徴としていることから、明快なデジタル階調表
示が可能になっていることにある。
The present invention is characterized in that digital gray scale display is performed in contrast to the conventional analog gray scale display. As an effect, assuming, for example, a liquid crystal electro-optical device having a pixel number of 640 × 400 dots, it is very difficult to manufacture all the 256,000 TFTs without variation in characteristics. In consideration of mass productivity and yield, 16 gray scale display is considered to be the limit. However, in order to clarify the applied voltage level, a reference voltage value is input from the controller as a signal instead of an analog value in order to clarify the applied voltage level. By controlling the timing at which the reference signal is connected to the TFT by a digital value, the voltage applied to the TFT is controlled, thereby controlling the TFT.
The present invention is characterized in that a method for covering the characteristic variation of the present invention is adopted, and therefore, it is possible to display clear digital gradation.

【0093】また、駆動周波数を2種類とることによっ
て、画面書換えのフレーム数を変化させることなく、明
快なデジタル階調表示が可能になっていることにある。
フレーム数の低下に伴うフリッカーの発生等が回避でき
るものである。
Another advantage is that by using two driving frequencies, clear digital gradation display is possible without changing the number of frames for screen rewriting.
It is possible to avoid the occurrence of flicker and the like due to the decrease in the number of frames.

【0094】例えば640×400ドットの256,0
00組のTFTを300mm角に作成した液晶電気光学
装置に対し通常のアナログ的な階調表示を行った場合、
TFTの特性ばらつきが約±10%存在するために、1
6階調表示が限界であった。しかしながら、本発明によ
るデジタル階調表示をおこなった場合、TFT素子の特
性ばらつきの影響を受けにくいために、256階調表示
まで可能になりカラー表示ではなんと16,777,2
16色の多彩であり微妙な色彩の表示が実現できてい
る。テレビ映像の様なソフトを映す場合、例えば同一色
からなる『岩』でもその微細な窪み等から微妙に色合い
が異なる。自然の色彩に近い表示を行おうとした場合、
16階調では困難を要する。本発明による階調表示によ
って、これらの微細な色調の変化を付けることが可能に
なった。
For example, 256,0 dots of 640 × 400 dots
When a normal analog gradation display is performed on a liquid crystal electro-optical device in which 00 sets of TFTs are formed in a 300 mm square,
Since there is about ± 10% variation in TFT characteristics,
Six gradation display was the limit. However, when the digital gradation display according to the present invention is performed, the display is hardly affected by the variation in the characteristics of the TFT elements, so that it is possible to display up to 256 gradations.
A variety of 16 colors can be displayed in subtle colors. In the case of displaying software such as television images, for example, even a “rock” made of the same color has a slightly different color due to its minute dents and the like. If you try to display something close to the colors of nature,
Difficulty is required for 16 gradations. With the gradation display according to the present invention, it is possible to impart these minute color changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による駆動波形を示す。FIG. 1 shows a driving waveform according to the present invention.

【図2】 ネマチック液晶の電気光学特性を示す。FIG. 2 shows electro-optical characteristics of a nematic liquid crystal.

【図3】 ポリシリコンとアモルファスシリコンによる
TFTの電流電圧特性を示す。
FIG. 3 shows current-voltage characteristics of a TFT made of polysilicon and amorphous silicon.

【図4】 本発明によるマトリクス構成を示す。FIG. 4 shows a matrix configuration according to the invention.

【図5】 実施例によるマトリクス回路を示す。FIG. 5 shows a matrix circuit according to an embodiment.

【図6】 実施例による素子の平面構造を示す。FIG. 6 shows a planar structure of a device according to an example.

【図7】 実施例によるTFTのプロセスを示す。FIG. 7 illustrates a TFT process according to an embodiment.

【図8】 実施例によるTFTのプロセスを示す。FIG. 8 illustrates a TFT process according to an embodiment.

【図9】 実施例による液晶表示装置(テレビ)の構造
を示す。
FIG. 9 shows a structure of a liquid crystal display device (television) according to the embodiment.

【図10】 実施例による液晶表示装置(テレビ)の構
成を示す。
FIG. 10 shows a configuration of a liquid crystal display device (television) according to an embodiment.

【図11】実施例による駆動回路のシステム構成を示
す。
FIG. 11 shows a system configuration of a drive circuit according to an embodiment.

【図12】従来例によるフレーム階調表示を示す。FIG. 12 shows a frame gradation display according to a conventional example.

【図13】実施例によるカラーフィルターの工程を示
す。
FIG. 13 shows a process of a color filter according to an example.

【図14】 実施例による素子の平面構造を示す。FIG. 14 shows a planar structure of a device according to an example.

【図15】実施例によるTFTのプロセスを示す。FIG. 15 illustrates a TFT process according to an embodiment.

【図16】本発明による他の駆動波形を示す。FIG. 16 shows another driving waveform according to the present invention.

【図17】実施例によるビューファインダーの構造を示
す。
FIG. 17 shows the structure of a viewfinder according to an embodiment.

【図18】実施例によるフロント型プロジェクションテ
レビの構造を示す。
FIG. 18 shows a structure of a front projection television according to an embodiment.

【図19】実施例による液晶電気光学装置を示す。FIG. 19 shows a liquid crystal electro-optical device according to an example.

【図20】実施例による駆動回路のシステム構成を示
す。
FIG. 20 shows a system configuration of a drive circuit according to an embodiment.

【図21】実施例による携帯型パソコンの構成を示す。FIG. 21 shows a configuration of a portable personal computer according to an embodiment.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−156725(JP,A) 特開 昭63−200572(JP,A) 特開 昭63−136673(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 29/786 H01L 21/336 G02F 1/136 500 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-156725 (JP, A) JP-A-63-200572 (JP, A) JP-A-63-136673 (JP, A) (58) Survey Field (Int.Cl. 6 , DB name) H01L 29/786 H01L 21/336 G02F 1/136 500

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁表面上に、チャネル領域を含む島状
半導体層を形成する工程と、 前記島状半導体層上のソース・ドレイン領域を形成せん
とする部分にN型もしくはP型の導電型を呈する半導体
被膜を選択的に形成する工程と、 前記半導体被膜にレーザー光を照射してソース・ドレイ
ン領域を形成する工程と、 前記島状半導体層の前記チャネル領域上にアルミニウム
よりなるゲイト電極をゲイト絶縁膜を介して形成する工
程と、陽極酸化によって前記ゲイト電極の表面を酸化する工程
と、 前記ゲイト絶縁膜とその上に形成されたゲイト電極を有
する前記島状半導体層を覆って層間絶縁物を形成する工
程と、 前記島状半導体層に設けられたソース・ドレイン領域の
少なくともいずれか一方の上の層間絶縁物にコンタクト
ホールを形成する工程と、 前記島状半導体層に設けられた少なくともソースとソー
スとドレインのいずれか一方に接続された配線を形成す
る工程とにより、複数の薄膜トランジスタを形成し、 前記薄膜トランジスタを覆って、平坦化用有機樹脂層を
形成する工程と、 前記平坦化用有機樹脂層上に、前記薄膜トランジスタに
接続する画素電極を形成する工程とを有することを特徴
とする半導体装置の作製方法。
A step of forming an island-shaped semiconductor layer including a channel region on an insulating surface; and a step of forming a source / drain region on the island-shaped semiconductor layer in an N-type or P-type conductive type. Forming a source / drain region by irradiating the semiconductor film with a laser beam; and forming a gate electrode made of aluminum on the channel region of the island-shaped semiconductor layer. Forming via a gate insulating film, and oxidizing the surface of the gate electrode by anodic oxidation
If, forming an interlayer insulator to cover the island-shaped semiconductor layer having the gate insulating film and a gate electrode formed thereon, one at least of the source and drain regions provided in the island-shaped semiconductor layer A step of forming a contact hole in the interlayer insulator on one of them, and a step of forming a wiring connected to at least one of the source and the source and the drain provided in the island-shaped semiconductor layer, Forming a thin film transistor, forming a flattening organic resin layer over the thin film transistor, and forming a pixel electrode connected to the thin film transistor on the flattening organic resin layer. Of manufacturing a semiconductor device.
【請求項2】 前記平坦化有機樹脂層は透光性を有する
ポリイミドよりなることを特徴とする請求項1記載の半
導体装置の作製方法。
2. The method according to claim 1, wherein the flattening organic resin layer is made of polyimide having a light transmitting property.
JP13782597A 1997-05-12 1997-05-12 Method for manufacturing semiconductor device Expired - Fee Related JP2869721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13782597A JP2869721B2 (en) 1997-05-12 1997-05-12 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13782597A JP2869721B2 (en) 1997-05-12 1997-05-12 Method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8778091A Division JP2794499B2 (en) 1991-03-26 1991-03-26 Method for manufacturing semiconductor device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP10236909A Division JPH11133464A (en) 1991-03-26 1998-08-24 Semiconductor device and projection image display device
JP10236766A Division JPH11125842A (en) 1991-03-26 1998-08-24 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPH1056182A JPH1056182A (en) 1998-02-24
JP2869721B2 true JP2869721B2 (en) 1999-03-10

Family

ID=15207737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13782597A Expired - Fee Related JP2869721B2 (en) 1997-05-12 1997-05-12 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2869721B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038239B2 (en) 2002-04-09 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
JP3989761B2 (en) 2002-04-09 2007-10-10 株式会社半導体エネルギー研究所 Semiconductor display device
JP3989763B2 (en) 2002-04-15 2007-10-10 株式会社半導体エネルギー研究所 Semiconductor display device
US7242021B2 (en) 2002-04-23 2007-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display element using semiconductor device
TWI272556B (en) 2002-05-13 2007-02-01 Semiconductor Energy Lab Display device
TWI263339B (en) 2002-05-15 2006-10-01 Semiconductor Energy Lab Light emitting device and method for manufacturing the same
US7256421B2 (en) 2002-05-17 2007-08-14 Semiconductor Energy Laboratory, Co., Ltd. Display device having a structure for preventing the deterioration of a light emitting device

Also Published As

Publication number Publication date
JPH1056182A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
JP2794499B2 (en) Method for manufacturing semiconductor device
US20050007329A1 (en) Electro-optical device
JP2869721B2 (en) Method for manufacturing semiconductor device
JP2676092B2 (en) Electro-optical device
JP2740886B2 (en) Electro-optical device
JP2754291B2 (en) Driving method of electro-optical device
JP3919198B2 (en) Television and computer equipped with electro-optical device
JP2754290B2 (en) Electro-optical device and driving method thereof
JP3554563B2 (en) Active display
JP3366613B2 (en) Active matrix display
JP2002277626A (en) Method for manufacturing color filter for electrooptical device, electrooptical device provided with color filter, and television using electrooptical device
JP2754292B2 (en) Electro-optical device image display method
JP3786278B2 (en) Active display device and television, camera and computer using the same
JPH1096961A (en) Projection type display device, portable type computer and view finder
JP2754293B2 (en) Driving method of electro-optical device
JP3054219B2 (en) Liquid crystal display
JP2006243767A (en) Liquid crystal electrooptical apparatus and its manufacturing method
JP2000330139A (en) Production of electro-optic device
JP3645465B2 (en) Display device
JP3672785B2 (en) Method for manufacturing display device
JP2001188257A (en) Electrooptical device, television and wall-hung television
JP3315392B2 (en) Electro-optical device and driving method thereof
JP2000292813A (en) Electro-optic device, television and wall television
JP3222451B1 (en) Active display and camera
JP2004334224A (en) Television

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees