JPH0639517B2 - Epoxy resin composition - Google Patents
Epoxy resin compositionInfo
- Publication number
- JPH0639517B2 JPH0639517B2 JP1154880A JP15488089A JPH0639517B2 JP H0639517 B2 JPH0639517 B2 JP H0639517B2 JP 1154880 A JP1154880 A JP 1154880A JP 15488089 A JP15488089 A JP 15488089A JP H0639517 B2 JPH0639517 B2 JP H0639517B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- weight
- bisphenol
- viscosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子や電子部品2封止に用いられる液
状エポキシ樹脂封止材料に関するものである。TECHNICAL FIELD The present invention relates to a liquid epoxy resin encapsulating material used for encapsulating a semiconductor element or an electronic component 2.
有機プリント配線板やセラミック配線板に半導体素子や
電子部品などを実装し、これらを物理的、化学的に保護
し、かつ固定、固着するために液状樹脂組成物をドリッ
プ、ポッティング、コーティングなどすることが行われ
ている。近年、半導体素子の高機能化、高集積化により
一つのチップが大きくなり樹脂封止成形品となった半導
体装置においてチップと樹脂封止成形品との寸法変化の
差が著しくなりクラックが発生し易くなってきている。
また、一層厳しい使用条件下でも半導体装置にクラック
が発生しない性能が要求されるようになって来ている。
かかる状況から液状樹脂組成物の線膨張率の低減が強く
要求されてきている。これまでの2.1×10−5以上
の線膨張率(α1)のものを2.0×10−5以下の、
低線膨張率にするには無機充填材の液状エポキシ樹脂組
成物に占める割合を60〜80重量%まで高充填するの
が一方法である。しかし、無溶剤で1液性の液状エポキ
シ樹脂組成物においては、無機充填材の液状エポキシ樹
脂組成物に占める割合は多くても60重量%でこれ以上
配合すると液状エポキシ樹脂組成物の粘度が高くなり使
用できなくなる。このために溶媒を使う手段があるが、
得られたエポキシ樹脂組成物が無溶剤では無くなるため
に経時での粘度変化が大きくなり、かつ硬化物の表面に
溶媒の抜けた跡がピンホール状に残る問題があった。Mounting a semiconductor element or electronic component on an organic printed wiring board or ceramic wiring board, and physically or chemically protecting them, and drip, potting or coating the liquid resin composition to fix or fix them. Is being done. In recent years, due to the higher functionality and higher integration of semiconductor elements, one chip has become larger and has become a resin-encapsulated molded product.In semiconductor devices, the difference in dimensional change between the chip and the resin-encapsulated molded product has become noticeable, causing cracks. It's getting easier.
Further, there is a demand for performance that does not cause cracks in a semiconductor device even under severer usage conditions.
Under such circumstances, there is a strong demand for reduction of the linear expansion coefficient of the liquid resin composition. The conventional linear expansion coefficient (α 1 ) of 2.1 × 10 −5 or more is 2.0 × 10 −5 or less,
In order to obtain a low linear expansion coefficient, one method is to increase the proportion of the inorganic filler in the liquid epoxy resin composition to 60 to 80% by weight. However, in a solvent-free, one-liquid epoxy resin composition, the proportion of the inorganic filler in the liquid epoxy resin composition is at most 60% by weight, and if it is further blended, the viscosity of the liquid epoxy resin composition will be high. It becomes impossible to use. There is a way to use a solvent for this,
Since the obtained epoxy resin composition disappears without a solvent, there is a problem that the change in viscosity with time becomes large, and traces of solvent escaped in the form of pinholes on the surface of the cured product.
本発明は、以上の事情に鑑み無溶剤、一液性そして低粘
度で低線膨張率の特性と、ヒートサイクル性に優れたエ
ポキシ樹脂組成物を提供することにある。In view of the above circumstances, the present invention provides an epoxy resin composition that is solvent-free, one-component, has a low viscosity, a low linear expansion coefficient, and excellent heat cycle properties.
本発明者らは、種々のエポキシ樹脂と充填材の構成を研
究する中から本発明をするに至ったのである。すなわ
ち、本発明のエポキシ樹脂組成物は (イ)エポキシ樹脂として ビスフェノールA型エポキシ樹脂(A) ビスフェノールF型エポキシ樹脂(F) 3官能以上の液状エポキシ樹脂(P) 以上のエポキシ樹脂が重量部で次の2つの式で示される
範囲となる量でそれぞれ配合されたエポキシ樹脂、F/
(A+F+P)≦4/9…式1 P/(A+F+P)≦2/9…式2 (ロ)エポキシ樹脂組成物の60〜80重量%で配合さ
れ、その内30重量%以上が球状物である充填材 (ハ)および、酸無水物の硬化剤などからなることを特
徴とする。The present inventors arrived at the present invention while researching the constitution of various epoxy resins and fillers. That is, the epoxy resin composition of the present invention comprises: (a) as an epoxy resin, bisphenol A type epoxy resin (A) bisphenol F type epoxy resin (F) trifunctional or higher liquid epoxy resin (P) Epoxy resin and F / each blended in the amounts shown in the following two formulas.
(A + F + P) ≦ 4/9 Formula 1 P / (A + F + P) ≦ 2/9 Formula 2 (b) 60 to 80% by weight of the epoxy resin composition, of which 30% by weight or more is spherical. It is characterized by comprising a filler (c) and an acid anhydride curing agent.
以下にこれらの発明を詳説する。These inventions will be described in detail below.
本発明にかかるエポキシ樹脂としては、常用されるビス
フェノールA型エポキシ樹脂(A)と常用されるビスフ
ェノールF型エポキシ樹脂(F)と常用される3官能以
上の液状エポキシ樹脂(P)およびこれらに難燃性を付
与したハロゲン化タイプのそれぞれのエポキシ樹脂など
を組み合わせて用いることができ、それぞれは次のよう
な効能がある。すなわち、ビスフェノールF型エポキシ
樹脂(F)は、粘度やガラス転移点(Tg)を下げる、
3官能以上の液状エポキシ樹脂(P)は粘度やTgを上
げる。したがって、低線膨張率にするのに無機充填材の
液状エポキシ樹脂組成物に占める割合で60〜80重量
%まで高充填したエポキシ樹脂組成物を低粘度化するた
めには、ビスフェノールF型エポキシ樹脂(F)を多く
使用すれば良いのであるが、同時にTgが次第に低下し
て行き特に高温での低線膨張率が確保できなくなるので
ビスフェノールF型エポキシ樹脂(F)は式1の範囲の
使用に限定される。すなわち、式1の条件を満足しない
場合はTgの低下、線膨張率の増加に加えてヒートサイ
クル性も低下するので好ましくないのである。As the epoxy resin according to the present invention, a commonly used bisphenol A type epoxy resin (A), a commonly used bisphenol F type epoxy resin (F), a commonly used trifunctional or higher functional liquid epoxy resin (P), and these are difficult. It is possible to use a combination of halogenated epoxy resins having flame resistance and the like, and each has the following effects. That is, the bisphenol F type epoxy resin (F) lowers the viscosity and the glass transition point (Tg),
The trifunctional or higher functional liquid epoxy resin (P) increases the viscosity and Tg. Therefore, in order to achieve a low linear expansion coefficient, in order to reduce the viscosity of the epoxy resin composition in which the inorganic filler is highly filled up to 60 to 80% by weight in the liquid epoxy resin composition, the bisphenol F type epoxy resin is used. It is sufficient to use a large amount of (F), but at the same time, Tg gradually decreases, and it becomes impossible to secure a low linear expansion coefficient at high temperatures. Therefore, the bisphenol F type epoxy resin (F) can be used in the range of Formula 1. Limited. That is, when the condition of Expression 1 is not satisfied, Tg is lowered, the linear expansion coefficient is increased, and the heat cycle property is also lowered, which is not preferable.
F/(A+F+P)≦4/9…式1 他方、3官能以上の液状エポキシ樹脂(P)の使用は高
いTgを確保するのに有効であるが、同時に粘度も上が
るので3官能以上の液状エポキシ樹脂は式2の範囲の使
用に限定される。すなわち、式2の条件を満足しない場
合は特に粘度の増加により、樹脂組成物を調製するのが
困難になり、得られる樹脂組成物の成形性も著しく悪く
なり実用に供さなくなるのである。F / (A + F + P) ≦ 4/9 Formula 1 On the other hand, the use of a trifunctional or higher functional liquid epoxy resin (P) is effective for securing a high Tg, but at the same time the viscosity also increases, so a trifunctional or higher functional liquid epoxy is used. The resin is limited to use in the range of equation 2. That is, when the condition of the formula 2 is not satisfied, it becomes difficult to prepare a resin composition due to an increase in viscosity, and the moldability of the obtained resin composition is remarkably deteriorated so that it cannot be put to practical use.
P/(A+F+P)≦2/9…式2 本発明で得ようとする樹脂組成物は、その成形品での特
徴ある物性能を十分引き出す前提として当然に良好な成
形品を得るための成形性も兼ね備えたものであり、この
両特性を発現するために前記の式1と式2のいずれをも
満たす配合割合である必要がある。P / (A + F + P) ≦ 2/9 ... Formula 2 The resin composition to be obtained in the present invention is, of course, a moldability for obtaining a good molded product on the assumption that the characteristic product performance of the molded product is sufficiently brought out. In order to exhibit both of these characteristics, it is necessary that the compounding ratio be such that both of the above formulas 1 and 2 are satisfied.
充填材としては、シリカ、アルミナ、窒化珪素、タル
ク、炭酸カルシュウム、炭酸マグネシュウム、水酸化ア
ルミニウムなどの無機質充填材を使用することができ
る。中でも特に高純度シリカは適当なリストであって低
線膨張率の特性を得ることができるので好ましい。エポ
キシ樹脂組成物の低線膨張率化には、かかる無機質充填
材をできるだけ多く配合するのが好ましいのであるが均
一混合の確保、使用の容易性からエポキシ樹脂組成物の
60〜80重量%が適当で、この充填量の30重量%以
上が球状でなる充填材を用いると1液性の樹脂組成物の
一層の低粘度化をはかることができる。また平均粒径が
15μm以下の無機充填材を用いると、無機充填材の液
状樹脂組成物内での沈降も防止できる。As the filler, inorganic fillers such as silica, alumina, silicon nitride, talc, calcium carbonate, magnesium carbonate and aluminum hydroxide can be used. Of these, high-purity silica is particularly preferable because it is a suitable list and can obtain characteristics of a low linear expansion coefficient. In order to lower the linear expansion coefficient of the epoxy resin composition, it is preferable to mix such an inorganic filler as much as possible, but 60 to 80% by weight of the epoxy resin composition is suitable from the viewpoint of ensuring uniform mixing and ease of use. By using a filler in which 30% by weight or more of the filling amount is spherical, the viscosity of the one-component resin composition can be further reduced. When an inorganic filler having an average particle size of 15 μm or less is used, the inorganic filler can be prevented from settling in the liquid resin composition.
硬化剤としての酸無水物としては、1分子中に1個の酸
無水物基を有する化合物ではメチルヘキサヒドロ無水フ
タル酸(MHHPA、下記構造式1に示す)、1分子中
に2個以上の酸無水物基を有する化合物では5−(2,
5−ジオキソテトラヒドロ−3−フラニル)−3−メチ
ル−3−シクロヘキセン−1、2−ジカルボン酸無水物
(MCDCA、下記構造式2に示す)などが用いられ
る。As the acid anhydride as a curing agent, a compound having one acid anhydride group in one molecule is methylhexahydrophthalic anhydride (MHHPA, shown in the following structural formula 1), and 2 or more in one molecule. In the compound having an acid anhydride group, 5- (2,
5-Dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride (MCDCA, shown in Structural Formula 2 below) and the like are used.
なお、MHHPAなどのように液状の酸無水物の方が液
状エポキシ樹脂と容易に相溶させることができるので好
ましい。これら酸無水物の硬化剤は前記の3つのエポキ
シ樹脂の合計量100重量部に対して50〜100重量
部使用することができる。かかる範囲が好ましいのは、
50重量部未満の使用では、十分に硬化させることがで
きず得られた成形品の吸水率が大きくなり、100重量
部を越して使用すると硬化の進行が早く作業性が悪く、
樹脂組成物のポットライフも短くなるからである。 A liquid acid anhydride such as MHHPA is preferable because it can be easily compatible with the liquid epoxy resin. The acid anhydride curing agent may be used in an amount of 50 to 100 parts by weight based on 100 parts by weight of the total amount of the three epoxy resins. This range is preferable,
If it is used in an amount of less than 50 parts by weight, it cannot be sufficiently cured and the water absorption rate of the obtained molded article becomes large. If it is used in an amount of more than 100 parts by weight, the curing proceeds rapidly and the workability is poor.
This is because the pot life of the resin composition is shortened.
なお、エポキシ樹脂組成物のポットライフを長くし、か
つ硬化を早く完結させるために潜在性の硬化促進剤を使
用するのが好ましく、たとえば,2、4−ジアミン−6
{2′メチルイミダゾリル−(1)′}エチル−s−ト
リアジン・イソシアヌール酸付加物(2MA−OK、下
記構造式3に示す)などをあげることができる。In addition, it is preferable to use a latent curing accelerator in order to prolong the pot life of the epoxy resin composition and to complete the curing early, for example, 2,4-diamine-6.
Examples thereof include {2′-methylimidazolyl- (1) ′} ethyl-s-triazine / isocyanuric acid adduct (2MA-OK, shown in the following structural formula 3).
さらにまた、必要に応じて種々の添加剤が用いられる。
たとえば、カップリング剤、界面活性剤、レベリング
剤、消泡剤、イオントラップ剤、難燃性、着色剤、希釈
剤、潤滑剤などである。 Furthermore, various additives are used if necessary.
For example, a coupling agent, a surfactant, a leveling agent, an antifoaming agent, an ion trap agent, a flame retardant, a coloring agent, a diluent, a lubricant, etc.
この発明にかかる液状エポキシ樹脂組成物は、たとえ
ば、前記のような成分を混合した後、ロール、ディスパ
ー、アジホモミキサー、プラネタリーミキサー、ニーダ
ー、らいかい機などで混練して得ることができる。この
際、粘度が高すぎる時は50℃位まで加温してもよい。
なお、混練中および混練後、減圧下で樹脂組成物中に含
まれる気泡を脱気するようにするのが好ましい。The liquid epoxy resin composition according to the present invention can be obtained, for example, by mixing the above-mentioned components and then kneading them with a roll, a disper, an ajihomo mixer, a planetary mixer, a kneader, a raider or the like. At this time, when the viscosity is too high, it may be heated up to about 50 ° C.
In addition, it is preferable to deaerate bubbles contained in the resin composition during and after the kneading under reduced pressure.
〔実施例〕 実施例1〜7 ビスフェノールA型エポキシ樹脂(A)としてビスフェ
ノールAグリシジルエーテル(エポキシ当量175、粘
度4500cps)、ビスフェノールF型エポキシ樹脂
(F)としてビスフェノールFグリシジルエーテル(エ
ポキシ当量170、粘度1500cps)、および、3官
能以上の液状エポキシ樹脂(P)として、フェノールノ
ボラック型エポキシ樹脂(下記の構造式でn=1〜3、
平均分子量810、エポキシ当量180)のこれら3つ
のエポキシ樹脂の全重量部を9としてそれぞれ配合比率
を変えた。[Examples] Examples 1 to 7 Bisphenol A glycidyl ether (epoxy equivalent 175, viscosity 4500 cps) as bisphenol A type epoxy resin (A), bisphenol F glycidyl ether (epoxy equivalent 170, viscosity) as bisphenol F type epoxy resin (F) 1500 cps), and as a trifunctional or higher functional liquid epoxy resin (P), a phenol novolac type epoxy resin (n = 1 to 3 in the following structural formula,
The total weight parts of these three epoxy resins having an average molecular weight of 810 and an epoxy equivalent of 180) were 9 and the compounding ratio was changed.
充填材としては3種類のシリカを用いた。(a)平均粒径
15μmの球状のシリカを80重量%と破砕状のシリカ
を20重量%とからなるシリカ、(b)平均粒径15μm
の球状のシリカを60重量%と破砕状のシリカを40重
量%とからなるシリカ、(c)破砕状のシリカ100重量
%からなるシリカ、これらを単独または組み合わせて使
用しシリカの樹脂組成物中の含有率を変えた。実施例1
〜7ごとに変えたかかる上記の3つのエポキシ樹脂の配
合比率と充填材の配合量を第1表に示した。 Three types of silica were used as the filler. (a) Silica consisting of 80% by weight of spherical silica having an average particle size of 15 μm and 20% by weight of crushed silica, and (b) an average particle size of 15 μm.
Of 60% by weight of spherical silica and 40% by weight of crushed silica, (c) silica of 100% by weight of crushed silica, in a resin composition of silica using these alone or in combination. The content rate of was changed. Example 1
Table 1 shows the compounding ratios of the above-mentioned three epoxy resins and the compounding amounts of the fillers, which are changed every 7 to 7.
硬化剤としては、MHHPAとMCDCAを7と3の重
量部比率で上記3つのエポキシ樹脂量100重量部に対
し75重量部を実施例1〜7、比較例1〜4で共通に使
用。As a curing agent, MHHPA and MCDCA were used in a ratio of 7 and 3 in an amount of 75 parts by weight per 100 parts by weight of the above three epoxy resins in common in Examples 1 to 7 and Comparative Examples 1 to 4.
硬化促進剤も2MA−OKを前記のエポキシ樹脂と酸無
水物の樹脂合計量に対して1重量部を実施例1〜7、比
較例1〜4で共通に使用した。As the curing accelerator, 2 parts of MA-OK was also used in common in Examples 1 to 7 and Comparative Examples 1 to 4 with respect to the total amount of the epoxy resin and the acid anhydride resin.
比較例1 実施例1の充填材の配合量を55重量部に変えた以外は
実施例1と同様に行った。Comparative Example 1 Example 1 was repeated except that the amount of the filler in Example 1 was changed to 55 parts by weight.
比較例2 実施例1の充填材の種類を破砕状100%のシリカに変
え球状シリカの使用を0にした以外は実施例1と同様に
行った。Comparative Example 2 The procedure of Example 1 was repeated except that the type of the filler in Example 1 was changed to 100% crushed silica and the use of spherical silica was set to 0.
比較例3 実施例1の3つのエポキシ樹脂の配合比率を変えビスフ
ェノールF型エポキシ樹脂(F)の配合量を5/9に変
えた以外は実施例1と同様に行った。Comparative Example 3 Example 1 was repeated except that the compounding ratio of the three epoxy resins in Example 1 was changed and the compounding amount of the bisphenol F type epoxy resin (F) was changed to 5/9.
比較例4 実施例1の3つのエポキシ樹脂の配合比率を変え液状3
官能以上のエポキシ樹脂(P)の配合量を3/9に変え
た以外は実施例1と同様に行った。Comparative Example 4 Liquid 3 was changed by changing the compounding ratio of the three epoxy resins of Example 1.
The same procedure as in Example 1 was carried out except that the compounding amount of the functional epoxy resin (P) was changed to 3/9.
以上実施例1〜7、比較例1〜4のエポキシ樹脂組成物
について粘度をB型粘度計で、線膨張率(α1)とTg
をディライトメータで測定評価した。ヒートサイクル性
はアルミナセラミック基板上に径が25μmの金線を1
4本ワイヤーボンディングした2.3×3.2mm角のシリコン
ICチップに前記のエポキシ樹脂組成物をドリップコー
トした後、150℃、3時間硬化させたものを各々10
サンプル作成し、−65℃と150℃に各30分間放置
する処理を1サイクルとして1000サイクルまで処理
し、所定の処理回数ごとに目視でクラックの有無を検査
し評価した。これらの評価結果を第2表に示した。The viscosities of the epoxy resin compositions of Examples 1 to 7 and Comparative Examples 1 to 4 were measured with a B-type viscometer to determine the linear expansion coefficient (α 1 ) and Tg.
Was evaluated with a delight meter. The heat cycle property is as follows: 1 gold wire with a diameter of 25 μm on an alumina ceramic substrate
Four wire-bonded 2.3 × 3.2 mm square silicon IC chips were drip-coated with the above epoxy resin composition and then cured at 150 ° C. for 3 hours to obtain 10 pieces each.
Samples were prepared and left at -65 [deg.] C. and 150 [deg.] C. for 30 minutes each as one cycle. Up to 1000 cycles were performed, and the presence or absence of cracks was visually inspected and evaluated every predetermined number of times of processing. The results of these evaluations are shown in Table 2.
第2表より、実施例1〜7のエポキシ樹脂組成物は比較
例1〜4のものにくらべ、低粘度で、低線膨張率で、高
Tgでなおかつヒートサイクル性に優れていることが確
認できた。 From Table 2, it is confirmed that the epoxy resin compositions of Examples 1 to 7 have lower viscosity, lower linear expansion coefficient, higher Tg, and better heat cycle property than those of Comparative Examples 1 to 4. did it.
本発明のエポキシ樹脂組成物は、無溶剤、一液性そして
低粘度であって、低線膨張率の特性と、ヒートサイクル
性に優れている。INDUSTRIAL APPLICABILITY The epoxy resin composition of the present invention is solvent-free, one-component and has a low viscosity, and has excellent characteristics of low linear expansion coefficient and heat cycle property.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/31 (56)参考文献 特開 昭62−57417(JP,A) 特開 昭63−159426(JP,A) 特開 昭61−250022(JP,A) 特開 昭56−53130(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H01L 23/31 (56) References JP 62-57417 (JP, A) JP 63- 159426 (JP, A) JP 61-250022 (JP, A) JP 56-53130 (JP, A)
Claims (1)
範囲となる量でそれぞれ配合されたエポキシ樹脂、F/
(A+F+P)≦4/9…式1 P/(A+F+P)≦2/9…式2 (ロ)エポキシ樹脂組成物の60〜80重量%で配合さ
れ、その内30重量%以上が球状物である充填材、 (ハ)および、酸無水物の硬化剤を含むことを特徴とす
るエポキシ樹脂組成物(A) As an epoxy resin, a bisphenol A type epoxy resin (A), a bisphenol F type epoxy resin (F), a trifunctional or higher functional liquid epoxy resin (P), and the above epoxy resins in the following two parts by weight. Epoxy resin, F /
(A + F + P) ≦ 4/9 Formula 1 P / (A + F + P) ≦ 2/9 Formula 2 (b) 60 to 80% by weight of the epoxy resin composition, of which 30% by weight or more is spherical. Epoxy resin composition comprising a filler, (c) and an acid anhydride curing agent
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1154880A JPH0639517B2 (en) | 1989-06-16 | 1989-06-16 | Epoxy resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1154880A JPH0639517B2 (en) | 1989-06-16 | 1989-06-16 | Epoxy resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0320350A JPH0320350A (en) | 1991-01-29 |
JPH0639517B2 true JPH0639517B2 (en) | 1994-05-25 |
Family
ID=15593970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1154880A Expired - Lifetime JPH0639517B2 (en) | 1989-06-16 | 1989-06-16 | Epoxy resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0639517B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2643714B2 (en) * | 1992-02-07 | 1997-08-20 | 信越化学工業株式会社 | Liquid epoxy resin composition and cured product |
JP4517182B2 (en) * | 1999-12-21 | 2010-08-04 | 新日鐵化学株式会社 | Epoxy resin composition for casting |
US7026710B2 (en) * | 2000-01-21 | 2006-04-11 | Texas Instruments Incorporated | Molded package for micromechanical devices and method of fabrication |
KR100479860B1 (en) * | 2001-12-28 | 2005-03-30 | 제일모직주식회사 | Liquid Epoxy Resin Composition for Underfilling Semiconductor Device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6257417A (en) * | 1985-09-06 | 1987-03-13 | Toray Ind Inc | Epoxy resin composition for prepreg |
-
1989
- 1989-06-16 JP JP1154880A patent/JPH0639517B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0320350A (en) | 1991-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07278415A (en) | Resin composition for semiconductor sealing and semiconductor device sealed therewith | |
JP3137314B2 (en) | Liquid sealing material | |
JPH07268186A (en) | Epoxy resin composition | |
JPH0639517B2 (en) | Epoxy resin composition | |
JP2843244B2 (en) | Epoxy resin composition | |
KR100429363B1 (en) | Epoxy resin composition for semiconductor device sealing | |
KR100250770B1 (en) | Low humid and good adhesive epoxy resin composition for the encapsulation of semiconductor | |
JPH07118366A (en) | Epoxy resin composition | |
JPH1045872A (en) | Epoxy resin composition | |
JP2843247B2 (en) | Epoxy resin composition | |
JP3365065B2 (en) | Epoxy resin composition for sealing | |
JP3011807B2 (en) | Epoxy resin composition | |
JP3093051B2 (en) | Epoxy resin composition | |
JPH0977850A (en) | Epoxy resin composition and resin-sealed semiconductor device | |
JPH0611783B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JP2864415B2 (en) | Resin composition for semiconductor encapsulation and semiconductor device | |
JP2576726B2 (en) | Epoxy resin composition | |
JP3235799B2 (en) | Epoxy resin composition | |
JP2985706B2 (en) | Epoxy resin composition for sealing and semiconductor device using the same | |
JP3230772B2 (en) | Resin composition for semiconductor encapsulation | |
JPH05175373A (en) | Epoxy resin composition | |
JPH0723425B2 (en) | Resin-sealed semiconductor device | |
JP2793449B2 (en) | Epoxy resin composition | |
JP3568654B2 (en) | Epoxy resin composition | |
JP3093050B2 (en) | Epoxy resin composition |