JPH0638574A - Motor controller for induction motor - Google Patents

Motor controller for induction motor

Info

Publication number
JPH0638574A
JPH0638574A JP4194991A JP19499192A JPH0638574A JP H0638574 A JPH0638574 A JP H0638574A JP 4194991 A JP4194991 A JP 4194991A JP 19499192 A JP19499192 A JP 19499192A JP H0638574 A JPH0638574 A JP H0638574A
Authority
JP
Japan
Prior art keywords
component
correction
detected
torque current
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4194991A
Other languages
Japanese (ja)
Inventor
Takashi Kodama
貴志 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4194991A priority Critical patent/JPH0638574A/en
Publication of JPH0638574A publication Critical patent/JPH0638574A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a vector controller which makes compensation for a secondary resistance change possible with simple construction and increases control accuracy. CONSTITUTION:A subtracting part 9 finds an error component DELTAI1q from a detected torque current I1q and a torque current command I1q*. A PI (proportional plus integral) calculating part 10 finds a correction component DELTAtau2 for a secondary time constant from the error component DELTAI1q. A slip calculating part 11 corrects the secondary time constant tau2 with the correction component DELTAtau2. A slip angular frequency omegas is calculated by the use of the secondary time constant tau2 corrected. While, a subtracting part 14 finds an error component DELTAI1d from a detected exciting current I1d and an exciting current command I1qd*. A PI calculating part 15 finds a voltage correction component DELTAV1d* form the error component DELTAI1d. And a subtracting part 16 corrects a voltage command V1d* by use of the error component DELTAV1d*. Correction accuracy of the secondary time constant tau2 is raised by raising the accuracy of the secondary magnetic flux control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、誘導電動機のベクト
ル制御装置に係り、特に誘導電動機の二次抵抗の変動分
を補償する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction motor vector control device, and more particularly to a device for compensating for a variation in secondary resistance of an induction motor.

【0002】[0002]

【従来の技術】誘導電動機のベクトル制御装置は、電動
機の二次磁束と二次電流を常に直交させることで高性能
の可変速制御を得ようとするもので、このために二次磁
束と二次電流を互いに非干渉に制御するベクトル演算を
行っている。
2. Description of the Related Art A vector controller for an induction motor attempts to obtain high-performance variable speed control by always making the secondary magnetic flux of the electric motor and the secondary current orthogonal to each other. A vector operation is performed to control the following currents so that they do not interfere with each other.

【0003】従来の電圧形ベクトル演算では、電動機の
内部定数が既知であると仮定した上で、(1)(2)式
を用いて励磁電流指令I1d*とトルク電流指令I1q
(一次電流のd−q軸成分。ただし、d−q軸は二次磁
束を基準軸とする回転直交座標)から一次電圧2軸成分
1d*,V1q*を求める。
In the conventional voltage-type vector calculation, it is assumed that the internal constant of the motor is known, and then the exciting current command I 1d * and the torque current command I 1q * are calculated by using the equations (1) and (2).
The primary voltage biaxial components V 1d * and V 1q * are obtained from (dq axis components of the primary current. However, the dq axes are rotation orthogonal coordinates with the secondary magnetic flux as the reference axis).

【0004】[0004]

【数1】 V1d*=R11d*−ω1LσI1q* …(1)## EQU1 ## V 1d * = R 1 I 1d * -ω 1 LσI 1q * (1)

【0005】[0005]

【数2】 V1q*=ω111d*+R11q* …(2) ここで、Lσ=(L12−M2)/L2であり、L1は電
動機の一次インダクタンス、L2は二次インダクタン
ス、R1は一次抵抗、ω1は一次(出力)周波数である。
V 1q * = ω 1 L 1 I 1d * + R 1 I 1q * (2) where Lσ = (L 1 L 2 −M 2 ) / L 2 and L 1 is the primary of the motor Inductance, L 2 is a secondary inductance, R 1 is a primary resistance, and ω 1 is a primary (output) frequency.

【0006】また、(3)式により得られる二次時定数
τ2を用いてすべり角周波数ωSを求める。
Further, the slip angular frequency ω S is calculated using the quadratic time constant τ 2 obtained by the equation (3).

【0007】[0007]

【数3】 τ2=L2/R2 …(3)Τ 2 = L 2 / R 2 (3)

【0008】[0008]

【発明が解決しようとする課題】上記の電動機の内部定
数のうち、インダクタンス分は温度による変動は少ない
が、二次抵抗R2等は温度によって抵抗値が変化する。
このため、温度によって内部定数が変動し、前述の仮定
が成立しなくなって、ベクトル制御条件からのずれでト
ルク分電流と発生トルクが比例しなくなり、トルク変動
時にオーバシュートなどの不安定現象を生じる。
Of the above internal constants of the electric motor, the inductance component has little variation with temperature, but the resistance value of the secondary resistance R 2 etc. varies with temperature.
Therefore, the internal constant fluctuates depending on the temperature, the above assumption is no longer satisfied, and the torque component current and the generated torque become non-proportional due to deviation from the vector control condition, and an unstable phenomenon such as overshoot occurs when the torque fluctuates. .

【0009】二次抵抗の変動分を補償する手法は従来か
ら種々提案されており、たとえば電動機の温度を測定し
て抵抗の変化を補償する方法、磁気センサーで二次側の
磁束を測定することで磁束演算に代える方法があるが、
高精度のセンサなどの付加装置を必要とするし、また取
扱う信号がアナログであるためノイズに弱くなる等の問
題があった。
Various methods for compensating for fluctuations in the secondary resistance have been proposed in the past. For example, a method of measuring the temperature of an electric motor to compensate for a change in resistance, or measuring the magnetic flux on the secondary side with a magnetic sensor. There is a method to replace the magnetic flux calculation with
There is a problem that an additional device such as a high-precision sensor is required, and the signal to be handled is analog, so that it is susceptible to noise.

【0010】この発明の目的は、かかる問題に鑑み、簡
素な構成で二次抵抗変化の補償を可能とし、制御精度を
向上させたベクトル制御装置を提供することにある。
In view of such a problem, an object of the present invention is to provide a vector control device capable of compensating for a change in secondary resistance with a simple structure and improving control accuracy.

【0011】[0011]

【課題を解決するための手段】この発明は、上記の目的
を達成するため、二次抵抗その他の電動機内部定数が設
定値として与えられ、該設定値を用いて電圧形ベクトル
制御演算を行い、励磁電流指令およびトルク電流指令か
ら出力電圧の励磁軸成分およびトルク軸成分を演算する
ベクトル制御装置において、次の手段を備えたものであ
る。
In order to achieve the above object, the present invention provides a secondary resistance and other internal constants of a motor as set values, and performs voltage type vector control calculation using the set values. A vector control device for calculating an excitation axis component and a torque axis component of an output voltage from an excitation current command and a torque current command is provided with the following means.

【0012】(1)トルク電流指令および検出トルク電
流の偏差を検出する演算手段。偏差を検出する手法に
は、たとえば入力の差分をとって比例積分する手法など
が挙げられる。
(1) Calculation means for detecting a deviation between the torque current command and the detected torque current. Examples of the method of detecting the deviation include a method of taking the input difference and performing proportional integration.

【0013】(2)トルク電流偏差演算手段の検出値を
零とすることを基準として二次抵抗の設定値を補正する
補正手段。この補正手段は、たとえば励磁電流およびト
ルク電流からすべり角周波数を演算するにあたって使用
する二次抵抗の設定値を補正の対象とすれば好適であ
る。
(2) Correcting means for correcting the set value of the secondary resistance with reference to the value detected by the torque current deviation calculating means being zero. It is preferable that this correcting means corrects the set value of the secondary resistance used for calculating the slip angular frequency from the exciting current and the torque current, for example.

【0014】また、上記の手段に加え、次の手段を備え
ることもできる。
In addition to the above means, the following means can be provided.

【0015】(1)励磁電流指令および検出励磁電流の
偏差を検出する演算手段。
(1) Calculation means for detecting the deviation between the exciting current command and the detected exciting current.

【0016】(2)励磁電流偏差演算手段の検出値を補
正成分として出力電圧の励磁軸成分を補正する補正手
段。
(2) Correction means for correcting the excitation axis component of the output voltage using the detection value of the excitation current deviation calculation means as the correction component.

【0017】[0017]

【作用】この発明によれば、ベクトル制御により電動機
が理想的に制御されたときのトルク電流の誤差成分が二
次抵抗設定値の誤差に起因するものとし、トルク電流誤
差成分を零とするように、たとえばすべり角周波数の演
算に使用される二次抵抗設定値を補正することで二次抵
抗変動分を補償する。また、二次磁束が目標からずれる
と、上記の二次抵抗の補正動作における誤差発生原因と
なるため、励磁電流誤差成分を零とするように出力電圧
(指令)の励磁軸成分を補正することで二次磁束のずれ
を抑制する。
According to the present invention, the error component of the torque current when the electric motor is ideally controlled by the vector control is caused by the error of the secondary resistance setting value, and the torque current error component is set to zero. In addition, the secondary resistance variation is compensated by correcting the secondary resistance set value used for calculating the slip angular frequency, for example. Also, if the secondary magnetic flux deviates from the target, it will cause an error in the above-mentioned secondary resistance correction operation, so correct the excitation axis component of the output voltage (command) so that the excitation current error component becomes zero. Suppresses the deviation of the secondary magnetic flux.

【0018】[0018]

【実施例】図1は、この発明の実施例に係るベクトル制
御装置を示す。図1において、電圧形ベクトル演算部1
は、(1)(2)式を用いて励磁電流指令I1d*、電動
機トルク電流指令I1q*およびインバータ出力周波数ω
1から電動機一次d軸およびq軸電圧指令Vid*および
iq*を演算するものである。PWM制御インバータ2
は、この電圧指令Vid*,Viq*に基づいてPWM演算
を行い、この演算により得られるパルスパターンを用い
てインバータ主回路を動作させてかご形誘導電動機3を
速度制御するものである。
1 shows a vector control device according to an embodiment of the present invention. In FIG. 1, a voltage-type vector calculation unit 1
Is the excitation current command I 1d *, the motor torque current command I 1q * and the inverter output frequency ω using the equations (1) and (2).
1 from those for calculating the motor primary d-axis and q-axis voltage command V id * and V iq *. PWM control inverter 2
, The voltage command V id *, performs PWM operation on the basis of V iq *, is to control the speed squirrel cage induction motor 3 by operating the inverter main circuit by using a pulse pattern obtained by this calculation.

【0019】速度検出器4は、電動機3の軸又はギヤ出
力から1回転当り数パルスの速度検出パルスを得る回転
センサを有し、この検出パルスから検出周波数ωrを求
めるものである。クッション回路5は、周波数指令ωr
*の変化時の影響を緩和するものである。速度制御増幅
器6は、検出周波数ωrと周波数指令ωr*とを突き合わ
せてPI演算を行うことでトルク電流指令I1q*を得る
ものである。
The speed detector 4 has a rotation sensor for obtaining a speed detection pulse of several pulses per rotation from the shaft or gear output of the electric motor 3, and obtains the detection frequency ω r from this detection pulse. The cushion circuit 5 uses the frequency command ω r
It is intended to mitigate the impact of changes in *. The speed control amplifier 6 obtains the torque current command I 1q * by matching the detected frequency ω r and the frequency command ω r * and performing PI calculation.

【0020】電流検出器7は電動機3の相電流IU,IV,
Wを検出するものである。座標変換部8は位相θから
回転座標d−qを定め、相電流IU,IV,IWを回転座標
d−qによる電流I1d,I1qに変換するものである。減
算部9は、検出トルク電流I1qとトルク電流指令I1q
とを突き合わせて誤差成分ΔI1qを求めるものである。
PI演算部10は、誤差成分ΔI1qを比例積分して二次
時定数τ2(二次抵抗)の補正成分△τ2を求めるもので
ある。すべり演算部11は、(3)式を用いて励磁電流
指令I1d*と電動機トルク電流指令I1q*とからすべり
角周波数ωSを演算するものであり、このときPI演算
部10からの補正指令△τ2により二次時定数τ2を補正
して演算を行う。出力周波数演算部12は、すべり角周
波数ωSと検出周波数ωrとから一次(出力)周波数ω1
を演算するものである。位相演算部13は、出力周波数
ω1から位相θを演算するものである。
The current detector 7 detects the phase currents I U , I V ,
I W is detected. The coordinate conversion unit 8 determines the rotation coordinates dq from the phase θ and converts the phase currents I U , I V , and I W into the currents I 1d and I 1q based on the rotation coordinates dq. The subtracting unit 9 detects the detected torque current I 1q and the torque current command I 1q *
The error component ΔI 1q is obtained by matching and.
PI calculation unit 10 is a proportionally integrating the error component [Delta] I 1q obtaining a correction component △ tau 2 of the secondary time constant tau 2 (secondary resistance). The slip calculation unit 11 calculates the slip angular frequency ω S from the excitation current command I 1d * and the motor torque current command I 1q * using the equation (3), and at this time, the correction from the PI calculation unit 10 is performed. command △ tau 2 by a secondary time constant tau 2 corrected by performing a calculation. The output frequency calculation unit 12 calculates the primary (output) frequency ω 1 from the slip angular frequency ω S and the detection frequency ω r.
Is calculated. The phase calculator 13 calculates the phase θ from the output frequency ω 1 .

【0021】減算部14は、検出励磁電流I1dと励磁電
流指令I1d*とを突き合わせて誤差成分ΔI1dを求める
ものである。PI演算部15は、誤差成分ΔI1dを比例
積分して電圧補正成分ΔV1d*を求めるものである。減
算部16は、この誤差成分ΔV1dを用いて電圧指令V1d
*を補正するものである。
The subtraction unit 14 matches the detected exciting current I 1d with the exciting current command I 1d * to obtain the error component ΔI 1d . The PI calculator 15 proportionally integrates the error component ΔI 1d to obtain the voltage correction component ΔV 1d *. The subtraction unit 16 uses the error component ΔV 1d to generate the voltage command V 1d.
It corrects *.

【0022】かかる構成において、磁束電流・トルク電
流が理想的に制御されたときのトルク電流の誤差成分Δ
1qは、すべり角周波数の演算に使用する二次時定数設
定値の誤差、すなわち二次抵抗設定値の誤差(二次イン
ダクタンスは変動が極めて少ない)に起因するものと考
えられる。そこでPI演算部10によりトルク電流誤差
成分ΔI1qから二次時定数τ2の補正成分Δτ2を取得
し、この補正成分Δτ2により二次時定数τ2を補正する
ことで誤差成分ΔI1qを零にすることとし、二次抵抗R
2の温度補償を行う。
In such a configuration, the error component Δ of the torque current when the magnetic flux current and the torque current are ideally controlled
It is considered that I 1q is caused by an error in the secondary time constant setting value used in the calculation of the slip angular frequency, that is, an error in the secondary resistance setting value (the secondary inductance has extremely small fluctuation). Therefore to get the correction component .DELTA..tau 2 of the torque current error components [Delta] I 1q from the secondary time constant tau 2 by PI calculating unit 10, the error component [Delta] I 1q by this correction component .DELTA..tau 2 corrects the secondary time constant tau 2 The secondary resistance R is set to zero.
Perform temperature compensation of 2 .

【0023】ここで、二次抵抗補正の応答を速くする場
合、実際の二次磁束が制御したい位相からずれることが
あり、二次抵抗変動分の推定に誤差が発生する。このた
め、減算部14により励磁電流誤差成分ΔI1dから電圧
指令V1d*の補正成分ΔV1d*を取得し、この補正成分
ΔV1d*により電圧指令V1d*を補正することで誤差成
分ΔI1dを零にする。このことにより、二次磁束のずれ
を抑制して二次抵抗推定における誤差を抑える。
Here, when the response of the secondary resistance correction is made faster, the actual secondary magnetic flux may deviate from the phase to be controlled, and an error occurs in the estimation of the secondary resistance variation. Therefore, the subtraction unit 14 by obtains the voltage command V 1d * of compensation value [Delta] V 1d * from the exciting current error components [Delta] I 1d, error components [Delta] 1d by correcting the voltage command V 1d * The correction component [Delta] V 1d * To zero. This suppresses the deviation of the secondary magnetic flux and suppresses the error in the secondary resistance estimation.

【0024】また、前述のモデル演算式は定常時の式で
あり、速度や負荷が急変した際の過渡時には電流微分項
による電圧が実際の電動機に生じ、二次抵抗変動分の推
定における誤差発生原因となる。このため、たとえば電
流指令が変化した場合、その変化時刻から一定期間二次
時定数の補正を禁止するスイッチ回路をPI演算部10
の後段等に挿入する。あるいは、上記の電流微分項は高
周波成分であることに着目して、減算部9の後段等にロ
ーパスフィルタ等を挿入する。
Further, the above-mentioned model calculation formula is a steady-state formula, and a voltage due to a current differential term is generated in an actual electric motor during a transition when a speed or a load changes suddenly, and an error occurs in estimation of a secondary resistance variation. Cause. Therefore, for example, when the current command changes, a PI circuit 10 is provided with a switch circuit that prohibits correction of the secondary time constant for a certain period from the change time.
Insert it in the subsequent stage. Alternatively, focusing on the fact that the current differential term is a high frequency component, a low-pass filter or the like is inserted in the subsequent stage of the subtraction unit 9 or the like.

【0025】なお、実施例における二次時定数τ2や電
圧指令V1d*の補正は設定値や演算値を補正する手法を
とったが、たとえば二次抵抗R2の設定値を直接補正す
る構成や、すべり角周波数ωSを補正する構成等、目的
とするパラメータを直接的・間接的に補償する種々の態
様をとることができる。
Although the secondary time constant τ 2 and the voltage command V 1d * are corrected in the embodiment by the method of correcting the set value or the calculated value, for example, the set value of the secondary resistor R 2 is directly corrected. Various modes for directly or indirectly compensating for a target parameter, such as a configuration and a configuration for correcting the slip angular frequency ω S , can be adopted.

【0026】[0026]

【発明の効果】以上説明したようにこの発明によれば、
定常時の電動機のトルク電流指令と検出トルク電流との
偏差が零になるように二次抵抗設定値を補正するため、
以下の効果がある。
As described above, according to the present invention,
In order to correct the secondary resistance setting value so that the deviation between the torque current command of the electric motor and the detected torque current during constant time becomes zero,
It has the following effects.

【0027】(1)トルク電流成分の指令値・検出値の
偏差に基づいて二次抵抗補償のためのパラメータ補正成
分を得るので、制御構成が簡素で演算量も少なくて済
み、たとえば汎用ワンチップ・マイクロコンピュータに
よりベクトル制御装置を実現できる。
(1) Since the parameter correction component for secondary resistance compensation is obtained based on the deviation between the command value and the detected value of the torque current component, the control configuration is simple and the amount of calculation is small. -A vector controller can be realized by a microcomputer.

【0028】(2)上記の偏差はPWM演算周期ごとに
算出可能であるから、応答性に優れた二次抵抗補償を行
える。
(2) Since the above deviation can be calculated for each PWM calculation cycle, it is possible to perform secondary resistance compensation with excellent responsiveness.

【0029】(3)電動機の内部温度が変動する場合で
あっても、すべり角周波数の演算誤差を抑制するので、
実トルクの直線性が向上して高いトルク制御精度が得ら
れる。
(3) Since the calculation error of the slip angular frequency is suppressed even when the internal temperature of the electric motor fluctuates,
The linearity of the actual torque is improved, and high torque control accuracy can be obtained.

【0030】(4)ベクトル演算による誘導電動機モデ
ルの正確性が確保され、また励磁電流の指令値・検出値
の誤差をフィードバックすることで二次磁束一定制御の
精度が向上し、理想的なベクトル制御が可能となる。
(4) The accuracy of the induction motor model is ensured by the vector calculation, and the accuracy of the secondary magnetic flux constant control is improved by feeding back the error between the command value and the detected value of the exciting current. It becomes possible to control.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係るベクトル制御装置を
示すブロック図。
FIG. 1 is a block diagram showing a vector control device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

7…電流検出器 8…座標変換部 9…トルク電流の誤差成分ΔI1qを求める減算部 10…二次時定数の補正成分Δτ2を求めるPI演算部 11…すべり演算部 14…励磁電流の誤差成分ΔI1dを求める減算部 15…電圧指令の補正成分ΔV1d*を求めるPI演算部 16…電圧指令V1d*を補正する減算部7 ... Current detector 8 ... Coordinate conversion unit 9 ... Subtraction unit for obtaining torque current error component ΔI 1q 10 ... PI calculation unit for obtaining secondary time constant correction component Δτ 2 11 ... Slip calculation unit 14 ... Excitation current error Subtraction unit for obtaining component ΔI 1d 15 ... PI calculation unit for obtaining correction component ΔV 1d * of voltage command 16 ... Subtraction unit for correcting voltage command V 1d *

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二次抵抗その他の電動機内部定数が設定
値として与えられ、該設定値を用いて電圧形ベクトル制
御演算を行い、励磁電流指令およびトルク電流指令から
出力電圧の励磁軸成分およびトルク軸成分を演算するベ
クトル制御装置において、 前記トルク電流指令および検出トルク電流の偏差を検出
する演算手段と、該トルク電流偏差演算手段の検出値を
零とすることを基準として前記二次抵抗の設定値を補正
する補正手段とを備えたことを特徴とする誘導電動機の
ベクトル制御装置。
1. An internal constant of a motor such as a secondary resistance is given as a set value, a voltage type vector control calculation is performed using the set value, and an exciting axis component and a torque of an output voltage from an exciting current command and a torque current command. In a vector control device for calculating an axial component, a calculation means for detecting a deviation between the torque current command and the detected torque current, and setting of the secondary resistance on the basis of setting a detection value of the torque current deviation calculation means to zero. A vector control device for an induction motor, comprising: a correction unit that corrects a value.
【請求項2】 請求項1記載の誘導電動機のベクトル制
御装置において、 前記補正手段は、励磁電流およびトルク電流からすべり
角周波数を演算するにあたって使用する二次抵抗の設定
値を補正の対象とするものであることを特徴とする誘導
電動機のベクトル制御装置。
2. The vector control device for an induction motor according to claim 1, wherein the correction means corrects a set value of a secondary resistance used in calculating a slip angular frequency from an exciting current and a torque current. A vector control device for an induction motor, characterized by being a thing.
【請求項3】 請求項1または2記載の誘導電動機のベ
クトル制御装置において、 前記励磁電流指令および検出励磁電流の偏差を検出する
演算手段と、該励磁電流偏差演算手段の検出値を補正成
分として前記出力電圧の励磁軸成分を補正する補正手段
とを備えたことを特徴とする誘導電動機のベクトル制御
装置。
3. The vector controller for an induction motor according to claim 1, wherein the exciting current command and a deviation of the detected exciting current are detected by a calculating means, and a detected value of the exciting current deviation calculating means is used as a correction component. A vector control device for an induction motor, comprising: a correction unit that corrects an excitation axis component of the output voltage.
JP4194991A 1992-07-22 1992-07-22 Motor controller for induction motor Pending JPH0638574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4194991A JPH0638574A (en) 1992-07-22 1992-07-22 Motor controller for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4194991A JPH0638574A (en) 1992-07-22 1992-07-22 Motor controller for induction motor

Publications (1)

Publication Number Publication Date
JPH0638574A true JPH0638574A (en) 1994-02-10

Family

ID=16333724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4194991A Pending JPH0638574A (en) 1992-07-22 1992-07-22 Motor controller for induction motor

Country Status (1)

Country Link
JP (1) JPH0638574A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673580A (en) * 1995-01-26 1997-10-07 Daitoh Inc. Burring processing method, jig for burring processing, and burring processing apparatus
KR100451369B1 (en) * 2002-03-14 2004-10-06 엘지산전 주식회사 Speed search method for induction motor
JP2006296197A (en) * 2005-04-13 2006-10-26 Schneider Toshiba Inverter Europe Sas Method for adjusting motor parameter and transmission using it
KR100768397B1 (en) * 2005-11-08 2007-10-18 오므론 가부시키가이샤 Motor control apparatus
CN104158457A (en) * 2014-07-24 2014-11-19 中国东方电气集团有限公司 Torque calibration method for AC induction motor of electric vehicle
WO2014201808A1 (en) * 2013-06-20 2014-12-24 国家电网公司 Method for detecting dc component of current at neutral-point of transformer
JP2018014809A (en) * 2016-07-20 2018-01-25 株式会社明電舎 Controller of induction motor
JP2021044879A (en) * 2019-09-09 2021-03-18 株式会社明電舎 Control device for induction motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673580A (en) * 1995-01-26 1997-10-07 Daitoh Inc. Burring processing method, jig for burring processing, and burring processing apparatus
KR100451369B1 (en) * 2002-03-14 2004-10-06 엘지산전 주식회사 Speed search method for induction motor
JP2006296197A (en) * 2005-04-13 2006-10-26 Schneider Toshiba Inverter Europe Sas Method for adjusting motor parameter and transmission using it
KR100768397B1 (en) * 2005-11-08 2007-10-18 오므론 가부시키가이샤 Motor control apparatus
WO2014201808A1 (en) * 2013-06-20 2014-12-24 国家电网公司 Method for detecting dc component of current at neutral-point of transformer
CN104158457A (en) * 2014-07-24 2014-11-19 中国东方电气集团有限公司 Torque calibration method for AC induction motor of electric vehicle
JP2018014809A (en) * 2016-07-20 2018-01-25 株式会社明電舎 Controller of induction motor
JP2021044879A (en) * 2019-09-09 2021-03-18 株式会社明電舎 Control device for induction motor

Similar Documents

Publication Publication Date Title
KR102017806B1 (en) Extended Luenberger-Sliding Mode Observer Capable of Estimating Rotor flux and Rotor Resistance for Three Phase Induction Motor
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JPH09219999A (en) Variable speed drive device
JP2585376B2 (en) Control method of induction motor
JP3513561B2 (en) Induction motor control device
JPH0638574A (en) Motor controller for induction motor
US6075337A (en) Speed control apparatus for induction motor
JP3067659B2 (en) Control method of induction motor
JP2943377B2 (en) Vector controller for induction motor
JPH06225574A (en) Method and apparatus for controlling motor
JP2634333B2 (en) Induction motor control device
JP2713857B2 (en) Sensorless inverter device with resistance fluctuation compensation
JPH0898600A (en) Controller of motor
US20220306133A1 (en) Method for Online Direct Estimation and Compensation of Flux and Torque Errors in Electric Drives
JP4839552B2 (en) Induction motor control method
JP2935962B2 (en) Speed sensorless control inverter
JPH11136999A (en) Variable speed driver for induction machine
JPS61106091A (en) Slip frequency calculator of induction motor and rotation controller of induction motor using the same
JP2940167B2 (en) Controlling device for vector of induction motor
JPH07108120B2 (en) Method of measuring secondary time constant of induction motor
JPH0496681A (en) Vector controller for induction motor
JPH06276776A (en) Vector controller of induction motor
JP3070264B2 (en) Speed sensorless vector control method
JPH11151000A (en) Controller for induction motor
JP3123235B2 (en) Induction motor vector control device