JP2021044879A - Control device for induction motor - Google Patents

Control device for induction motor Download PDF

Info

Publication number
JP2021044879A
JP2021044879A JP2019163602A JP2019163602A JP2021044879A JP 2021044879 A JP2021044879 A JP 2021044879A JP 2019163602 A JP2019163602 A JP 2019163602A JP 2019163602 A JP2019163602 A JP 2019163602A JP 2021044879 A JP2021044879 A JP 2021044879A
Authority
JP
Japan
Prior art keywords
acceleration
deceleration torque
secondary resistance
variable gain
resistance fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019163602A
Other languages
Japanese (ja)
Other versions
JP7243537B2 (en
Inventor
和也 畔上
Kazuya Azegami
和也 畔上
信貴 毛塚
Nobutaka Kezuka
信貴 毛塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2019163602A priority Critical patent/JP7243537B2/en
Publication of JP2021044879A publication Critical patent/JP2021044879A/en
Application granted granted Critical
Publication of JP7243537B2 publication Critical patent/JP7243537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

To provide a control device for an induction motor, with which a secondary resistance fluctuation compensation is accurately effected even in a transient operation state so that a torque error can be reduced.SOLUTION: A control device for an induction motor 10 includes a secondary resistance fluctuation compensation unit 25 which compensates for a secondary resistance component of a slip calculation unit 13 for calculating a slip angle frequency such that a voltage fluctuation component of an output voltage from a current control amplifier becomes zero, has a secondary resistance fluctuation compensation system in which a transient state is not taken into consideration. The control device further includes an acceleration/deceleration torque calculation unit 26 that calculates an acceleration/deceleration torque from a speed detection component ωr obtained for the induction motor 10 by the speed calculator 12, and a gain varying unit 27 that changes a secondary resistance fluctuation compensation varying gain to be multiplied with the output from the secondary resistance fluctuation compensation unit 25 in accordance with the acceleration/deceleration torque calculated by the acceleration/deceleration torque calculation unit 26.SELECTED DRAWING: Figure 1

Description

本発明は、誘導電動機の制御装置に関し、特に二次抵抗変動補償方法に関する。 The present invention relates to a control device for an induction motor, and more particularly to a method for compensating for secondary resistance fluctuations.

誘導機(誘導電動機)の可変速駆動方式として、ベクトル制御が盛んに利用されている。しかし、ベクトル制御方式には誘導機の二次時定数が必要であるが、温度変動などにより二次抵抗が変動するため、この二次時定数は常に一定とはならない。そこで、従来、誘導機の電圧・電流・周波数情報などから二次抵抗の変動成分を推定して補償する方式について様々な提案がなされている。 Vector control is widely used as a variable speed drive system for induction motors (induction motors). However, although the vector control method requires a secondary time constant of the induction machine, this secondary time constant is not always constant because the secondary resistance fluctuates due to temperature fluctuations and the like. Therefore, various proposals have been made conventionally for a method of estimating and compensating for the fluctuation component of the secondary resistance from the voltage, current, frequency information and the like of the induction machine.

本出願人も、先行技術文献として、ベクトル制御を行う際に二次抵抗の変動を補償する特許文献1、2の誘導電動機のベクトル制御装置、特許文献3の誘導機の可変速駆動装置などを提案している。 As prior art documents, the present applicant also refers to the vector control device of the induction motor of Patent Documents 1 and 2 that compensates for the fluctuation of the secondary resistance when performing vector control, the variable speed drive device of the induction motor of Patent Document 3, and the like. is suggesting.

例えば特許文献3には、電源周波数と同期した回転座標系上でモデル電圧を演算したフィードフォワード電圧成分(V1γ*,V1δ*)と、電流制御アンプによるフィードバック電圧成分(ΔV1γ*,ΔV1δ*)とを加算して出力する電流制御系を有するベクトル制御部と、前記電流制御アンプの出力電圧のある特徴量(ΔV1δ*)が零となるように、すべり演算部の二次抵抗成分を補正することができる二次抵抗補償機能を有する誘導機の可変速駆動装置において、電流指令のベクトル位相φをリミッタした位相角φ´または電流指令のベクトル位相φを係数倍した位相角φ´´を演算する機能と、前記電流制御アンプの出力電圧から前記位相角φ´またはφ´´に直交した軸に投影した電圧成分を求める機能とを設け、前記投影した電圧成分を前記二次抵抗変動補償機能の入力とすることが記載されている。 For example, Patent Document 3 describes a feed-forward voltage component (V1γ * , V1δ * ) obtained by calculating a model voltage on a rotational coordinate system synchronized with a power supply frequency, and a feedback voltage component (ΔV1γ * , ΔV1δ * ) by a current control amplifier. Correct the secondary resistance component of the slip calculation unit so that a certain feature amount (ΔV1δ * ) of the output voltage of the current control amplifier and the vector control unit having a current control system that adds and outputs is zero. In the variable speed drive device of the inducer having the secondary resistance compensation function, the phase angle φ ′ that limits the vector phase φ of the current command or the phase angle φ ″ that is the coefficient multiplied by the vector phase φ of the current command is calculated. A function and a function of obtaining a voltage component projected on an axis orthogonal to the phase angle φ'or φ'from the output voltage of the current control amplifier are provided, and the projected voltage component is used in the secondary resistance fluctuation compensation function. It is stated that it will be input.

特許第2762617号公報Japanese Patent No. 27626117 特許第2940167号公報Japanese Patent No. 2940167 特開平11−136999号公報Japanese Unexamined Patent Publication No. 11-136999

先行技術文献では、過渡状態の項を省略して二次抵抗変動補償量を算出している。このため、過渡状態でも二次抵抗変動補償の演算を実施すると、過渡時の電圧誤差が外乱となり二次抵抗を正しく補正できなくなる問題点がある。二次抵抗変動補償が正しく補正できないとすべり周波数が真値と異なり、トルク誤差となる。 In the prior art document, the secondary resistance fluctuation compensation amount is calculated by omitting the term of the transient state. Therefore, if the calculation of the secondary resistance fluctuation compensation is performed even in the transient state, there is a problem that the voltage error at the time of the transient becomes a disturbance and the secondary resistance cannot be corrected correctly. If the secondary resistance fluctuation compensation cannot be corrected correctly, the slip frequency will be different from the true value, resulting in a torque error.

本発明は、上記課題を解決するものであり、その目的は、過渡運転状態でも二次抵抗変動補償を正確に動作させて、よりトルク誤差を減少させることができる誘導電動機の制御装置を提供することにある。 The present invention solves the above problems, and an object of the present invention is to provide a control device for an induction motor capable of accurately operating secondary resistance fluctuation compensation even in a transient operation state to further reduce torque error. There is.

上記課題を解決するための請求項1に記載の誘導電動機の制御装置は、
電源周波数と同期した回転座標系上でモデル電圧を演算したフィードフォワード電圧成分と、電流制御アンプによるフィードバック電圧成分とを加算して出力する電流制御系を有するベクトル制御部と、前記電流制御アンプの出力電圧の電圧変動成分が零となるようにすべり角周波数を演算するすべり演算部の二次抵抗成分を補正する二次抵抗変動補償部と、を備え、過渡状態を考慮しない二次抵抗変動補償方式を有する誘導電動機の制御装置において、
誘導電動機の速度又はトルクの状態から加減速トルクを演算する加減速トルク演算部と、
前記加減速トルク演算部により演算された加減速トルクに応じて、前記二次抵抗変動補償部の出力に乗算する二次抵抗変動補償用可変ゲインを変更するゲイン可変部とを備えたことを特徴とする。
The control device for an induction motor according to claim 1 for solving the above problems is
A vector control unit having a current control system that adds and outputs a feed forward voltage component that calculates a model voltage on a rotational coordinate system synchronized with a power supply frequency and a feedback voltage component by a current control amplifier, and the current control amplifier. It is equipped with a secondary resistance fluctuation compensation unit that corrects the secondary resistance component of the slip calculation unit that calculates the slip angle frequency so that the voltage fluctuation component of the output voltage becomes zero, and secondary resistance fluctuation compensation that does not consider the transient state. In the control device of the induction motor having the method
Acceleration / deceleration torque calculation unit that calculates acceleration / deceleration torque from the speed or torque state of the induction motor,
It is characterized by including a gain variable unit that changes the variable gain for secondary resistance fluctuation compensation that is multiplied by the output of the secondary resistance fluctuation compensation unit according to the acceleration / deceleration torque calculated by the acceleration / deceleration torque calculation unit. And.

請求項2に記載の誘導電動機の制御装置は、請求項1において、
前記ゲイン可変部は、前記二次抵抗変動補償用可変ゲインを、前記加減速トルクが、設定した閾値未満のとき1とし、設定した閾値以上のとき0とすることを特徴としている。
The control device for an induction motor according to claim 2 is claimed in claim 1.
The gain variable unit is characterized in that the variable gain for compensating for secondary resistance fluctuation is set to 1 when the acceleration / deceleration torque is less than the set threshold value and 0 when the acceleration / deceleration torque is equal to or higher than the set threshold value.

請求項3に記載の誘導電動機の制御装置は、請求項1において、
前記ゲイン可変部は、前記加減速トルクが、設定した第1の閾値以下のときに二次抵抗変動補償用可変ゲインを1とし、前記加減速トルクが、前記第1の閾値を超えて、第1の閾値よりも大きく設定した第2の閾値までの範囲のときに、二次抵抗変動補償用可変ゲインを1から0の間で直線的に線形に変化させ、前記加減速トルクが第2の閾値以上のときに二次抵抗変動補償用可変ゲインを0とすることを特徴としている。
The control device for an induction motor according to claim 3 is claimed in claim 1.
The gain variable portion sets the variable gain for compensation for secondary resistance fluctuation to 1 when the acceleration / deceleration torque is equal to or less than the set first threshold value, and the acceleration / deceleration torque exceeds the first threshold value and becomes the first. In the range up to the second threshold value set larger than the threshold value of 1, the variable gain for compensation for secondary resistance fluctuation is linearly changed between 1 and 0, and the acceleration / deceleration torque is the second. It is characterized in that the variable gain for compensating for secondary resistance fluctuation is set to 0 when the value is equal to or higher than the threshold value.

請求項4に記載の誘導電動機の制御装置は、請求項1において、
前記ゲイン可変部は、1から0の間に設定した可変ゲイン用下限リミッタ値を有し、前記加減速トルクが、設定した第1の閾値以下のときに二次抵抗変動補償用可変ゲインを1とし、前記加減速トルクが、前記第1の閾値を超えるときに、二次抵抗変動補償用可変ゲインを1から前記可変ゲイン用下限リミッタ値の間で直線的に線形に変化させ、二次抵抗変動補償用可変ゲインが前記可変ゲイン用下限リミッタ値とされたときの加減速トルク以上の範囲では、二次抵抗変動補償用可変ゲインを可変ゲイン用下限リミッタ値とすることを特徴としている。
The control device for an induction motor according to claim 4 is claimed in claim 1.
The gain variable unit has a variable gain lower limit limiter value set between 1 and 0, and when the acceleration / deceleration torque is equal to or less than the set first threshold value, the variable gain for secondary resistance fluctuation compensation is set to 1. Then, when the acceleration / deceleration torque exceeds the first threshold value, the variable gain for compensation for secondary resistance fluctuation is linearly changed from 1 to the lower limit limiter value for variable gain, and the secondary resistance is changed. In the range equal to or larger than the acceleration / deceleration torque when the variable gain for fluctuation compensation is set to the lower limit limiter value for variable gain, the variable gain for secondary resistance fluctuation compensation is set to the lower limit limiter value for variable gain.

請求項5に記載の誘導電動機の制御装置は、請求項1から4のいずれか1項において、
前記加減速トルク演算部は、回転体の加減速トルクTと角速度ωの関係式である下記(9)式
The control device for an induction motor according to claim 5 is the device according to any one of claims 1 to 4.
The acceleration / deceleration torque calculation unit is the following equation (9), which is a relational expression between the acceleration / deceleration torque T of the rotating body and the angular velocity ω.

Figure 2021044879
Figure 2021044879

(但し、Jは慣性モーメント)
を、積分定数0で積分した下記(10)式
(However, J is the moment of inertia)
Is integrated with an integral constant of 0, and the following equation (10)

Figure 2021044879
Figure 2021044879

で表されるωと、前記誘導電動機の速度を検出した速度検出成分との偏差をとり、該偏差に慣性モーメントJを乗算して演算加減速トルクを出力し、前記演算加減速トルクをフィードバックしたものを積分し、さらに慣性モーメントの逆数を乗算し、その乗算値に角速度指令値を加算することによって前記(10)式の角速度ωとする加減速トルク演算回路を有していることを特徴とする。 The deviation between ω represented by and the speed detection component that detected the speed of the induction motor was taken, the deviation was multiplied by the moment of inertia J to output the calculated acceleration / deceleration torque, and the calculated acceleration / deceleration torque was fed back. It is characterized by having an acceleration / deceleration torque calculation circuit that obtains the angular velocity ω of the above equation (10) by integrating things, multiplying by the inverse of the moment of inertia, and adding the angular velocity command value to the multiplied value. To do.

(1)請求項1〜5に記載の発明によれば、過渡状態に応じて二次抵抗変動補償用可変ゲインを変更することができる。このため、過渡運転状態でも二次抵抗変動補償を正確に動作させて、よりトルク誤差を減少させることができる
(2)請求項3に記載の発明によれば、加減速トルクが、第1の閾値から第2の閾値までの範囲のとき(過渡状態時)に、二次抵抗変動補償用可変ゲインを徐々に弱めて二次抵抗変動補償の効果を弱めることができる。これによって、二次抵抗変動補償が外乱となりにくい。
(3)請求項4に記載の発明によれば、過渡状態時に二次抵抗変動補償の効果を無くすことなく運転することが可能である。
(4)請求項5に記載の発明によれば、簡単な構成で精度良く加減速トルクを算出することができる。
(1) According to the inventions of claims 1 to 5, the variable gain for compensation for secondary resistance fluctuation can be changed according to the transient state. Therefore, even in the transient operation state, the secondary resistance fluctuation compensation can be operated accurately to further reduce the torque error. (2) According to the invention according to claim 3, the acceleration / deceleration torque is the first. In the range from the threshold value to the second threshold value (in a transient state), the variable gain for secondary resistance fluctuation compensation can be gradually weakened to weaken the effect of secondary resistance fluctuation compensation. As a result, the secondary resistance fluctuation compensation is less likely to become a disturbance.
(3) According to the invention of claim 4, it is possible to operate without losing the effect of the secondary resistance fluctuation compensation in the transient state.
(4) According to the invention of claim 5, the acceleration / deceleration torque can be calculated accurately with a simple configuration.

本発明の実施形態例の誘導電動機の制御装置のブロック図。The block diagram of the control device of the induction motor of the Embodiment of this invention. 本発明の実施例1における二次抵抗変動補償用可変ゲインの推移を示す特性図。The characteristic figure which shows the transition of the variable gain for secondary resistance fluctuation compensation in Example 1 of this invention. 本発明の実施例2における二次抵抗変動補償用可変ゲインの推移を示す特性図。The characteristic figure which shows the transition of the variable gain for secondary resistance fluctuation compensation in Example 2 of this invention. 本発明の実施例3における二次抵抗変動補償用可変ゲインの推移を示す特性図。The characteristic figure which shows the transition of the variable gain for secondary resistance fluctuation compensation in Example 3 of this invention. 本発明の実施形態例の加減速トルク演算部のブロック図。The block diagram of the acceleration / deceleration torque calculation part of the Example of Embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples of embodiments.

本実施形態例では、速度又はトルクの状態から(例えば速度を検出した成分、又はトルク検出値、又は速度推定値などから)加減速トルクを演算して、加減速トルク値が発生している場合を過渡状態とみなし、過渡状態のときに、二次抵抗変動補償を操作し、過渡状態を考慮した二次抵抗変動補償を行うように構成した。 In the present embodiment, when the acceleration / deceleration torque value is generated by calculating the acceleration / deceleration torque from the state of speed or torque (for example, from the component that detected the speed, the torque detection value, or the speed estimation value). Is regarded as a transient state, and in the transient state, the secondary resistance fluctuation compensation is operated to perform the secondary resistance fluctuation compensation in consideration of the transient state.

図1に、本発明を特許文献3に記載の二次抵抗変動補償方式の制御装置に適用した実施例のブロック図を示す。図1における各記号の定義は以下のとおりである。 FIG. 1 shows a block diagram of an example in which the present invention is applied to the control device of the secondary resistance fluctuation compensation method described in Patent Document 3. The definition of each symbol in FIG. 1 is as follows.

Torque*:トルク指令、Flux*:磁束指令、ωr:速度検出成分、ωs*:すべり周波数指令、ω1:出力周波数、I1d*:励磁電流指令成分、I1q*:トルク電流指令成分、I1γ*:電流指令成分、V1γ*,V1δ*:モデル電圧成分(γδ軸成分)、ΔV1γ*,ΔV1δ*:電流制御部の出力電圧成分(γδ軸成分)、V1γ,V1δ:出力電圧成分(γδ軸成分)、θ:固定座標を基準としたd軸(磁束軸)の回転位相角、φ:d軸(磁束軸)を基準としたI1の位相角、θφ:固定座標を基準としたI1の位相角、Kr:二次抵抗変動補償係数、K:二次抵抗の変動を補償するフィードバック係数、T:加減速トルク。 Torque * : Torque command, Lux * : Magnetic flux command, ωr: Speed detection component, ωs * : Sliding frequency command, ω1: Output frequency, I1d * : Excitation current command component, I1q * : Torque current command component, I1γ * : Current Command component, V1γ * , V1δ * : Model voltage component (γδ axis component), ΔV1γ * , ΔV1δ * : Output voltage component of current control unit (γδ axis component), V1γ, V1δ: Output voltage component (γδ axis component), θ: rotation phase angle of d-axis (magnetic flux axis) based on fixed coordinates, φ: phase angle of I1 based on d-axis (magnetic flux axis), θ φ: phase angle of I1 based on fixed coordinates, Kr: Secondary resistance fluctuation compensation coefficient, K: Feedback coefficient for compensating for secondary resistance fluctuation, T: Acceleration / deceleration torque.

図1において、1は磁束指令Flux*を励磁電流指令I1d*に変換する指令変換器、2はトルク指令Torque*をトルク電流指令I1q*に変換する指令変換器、3は電流指令I1d*,I1q*の合成ベクトルを、電流指令成分(γ成分)I1γ*とd軸(磁束軸)を基準としたI1の位相角φに変換する極座標変換器である。 In FIG. 1, 1 is a command converter that converts a magnetic flux command Flex * into an exciting current command I1d * , 2 is a command converter that converts a torque command Torque * into a torque current command I1q * , and 3 is a current command I1d * , I1q. This is a polar coordinate converter that converts the combined vector of * into the phase angle φ of I1 with respect to the current command component (γ component) I1γ * and the d-axis (magnetic flux axis).

4は、電流指令成分I1γ*、位相角φ、出力角周波数ω1および設定したモータ定数から、誘導機の端子電圧成分をγ、δ軸成分V1γ*,V1δ*として演算するモデル電圧演算部である。 Reference numeral 4 denotes a model voltage calculation unit that calculates the terminal voltage component of the inducer as γ, δ-axis component V1γ * , V1δ * from the current command component I1γ * , the phase angle φ, the output angular frequency ω1, and the set motor constant. ..

5はγ軸の電流指令成分I1γ*と電流検出との差を減算器5bを用いてフィードバック制御し、出力電圧成分ΔV1γ*を出力する電流制御アンプである。6はδ軸成分の電流指令I1δ*(=0)と電流検出との差を減算器6bを用いてフィードバック制御し、電圧成分V1δ*を出力する電流制御アンプである。 Reference numeral 5 denotes a current control amplifier that feedback-controls the difference between the current command component I1γ * on the γ-axis and the current detection using the subtractor 5b, and outputs the output voltage component ΔV1γ *. Reference numeral 6 denotes a current control amplifier that feedback-controls the difference between the current command I1δ * (= 0) of the δ-axis component and the current detection using the subtractor 6b and outputs the voltage component V1δ *.

7は、γ、δの各軸成分について、モデル電圧演算部4のモデル電圧成分V1γ*,V1δ*と電流制御アンプ5、6からの電流制御出力電圧成分ΔV1γ*,ΔV1δ*を加算して出力電圧成分V1γ,V1δを求め、この出力電圧成分(指令)と等価なPWM電圧パターンを出力するPWM制御部である。 7 outputs by adding the model voltage components V1γ * and V1δ * of the model voltage calculation unit 4 and the current control output voltage components ΔV1γ * and ΔV1δ * from the current control amplifiers 5 and 6 for each axis component of γ and δ. This is a PWM control unit that obtains voltage components V1γ and V1δ and outputs a PWM voltage pattern equivalent to this output voltage component (command).

8は、3相(または2相)の出力電流検出センサ、9は出力電流検出センサ8で検出された3相電流成分u,v,wを、位相積分器14が出力する位相角θφにより、γ、δ軸の直交2相成分I1γ、I1δに変換する座標変換部である。 8, the output current detecting sensor of the three-phase (or two-phase), 9 3-phase current components u detected by the output current detecting sensor 8, v, and w, the phase angle theta phi phase integrator 14 outputs , Γ, δ axis is a coordinate conversion unit that converts into orthogonal two-phase components I1γ, I1δ.

10は3相の出力電流により駆動される負荷誘導電動機(誘導機)、11は速度検出器、12は速度検出器11の計測結果から速度検出成分ωrを演算する速度演算器である。 Reference numeral 10 denotes a load induction motor (induction motor) driven by a three-phase output current, 11 is a speed detector, and 12 is a speed calculator that calculates a speed detection component ωr from the measurement results of the speed detector 11.

13は、励磁電流指令I1d*、トルク電流指令I1q*から誘導機10のすべり指令ωs*(すべり角周波数の指令)を演算するすべり演算部である。14は、すべり指令ωs*と速度検出成分ωrとを加算器13aによって加算した出力周波数ω1を積分してd軸の回転位相角θ(固定座標を基準としたd軸(磁束軸)の回転位相角)を演算する位相積分器である。 Reference numeral 13 denotes a slip calculation unit that calculates the slip command ωs * (slip angular frequency command) of the inducer 10 from the exciting current command I1d * and the torque current command I1q *. Reference numeral 14 is an integral of the output frequency ω1 obtained by adding the slip command ωs * and the speed detection component ωr by the adder 13a, and the rotation phase angle θ of the d-axis (the rotation phase of the d-axis (fog axis) with respect to the fixed coordinates). It is a phase integrator that calculates the angle).

この位相積分器14で演算された回転位相角θは、加算器14aにおいて、d軸を基準としたI1の位相角φと加算され、固定座標に対する電流指令の位相角θφ(固定座標を基準としたI1の位相角)が演算される。 The rotation phase angle θ calculated by the phase integrator 14 is added to the phase angle φ of I1 with respect to the d-axis in the adder 14a, and the phase angle θ φ of the current command with respect to the fixed coordinates (based on the fixed coordinates). The phase angle of I1) is calculated.

25は、δ軸の電流制御出力(電流制御アンプ6の出力電圧成分)ΔV1δ*が零となるように、すべり演算部13の二次抵抗R1´成分の補償係数Kr(後述する二次抵抗変動補償ゲインAを有した二次抵抗変動補償係数)を演算する二次抵抗変動補償部である。 Reference numeral 25 denotes a compensation coefficient Kr (secondary resistance described later) of the secondary resistance R 1 ′ component of the slip calculation unit 13 so that the current control output (output voltage component of the current control amplifier 6) ΔV1δ * of the δ axis becomes zero. This is a secondary resistance fluctuation compensation unit that calculates a secondary resistance fluctuation compensation coefficient) having a fluctuation compensation gain A.

26は、速度演算器12により演算された速度検出成分ωrから、加減速トルクを演算する加減速トルク演算部である。 Reference numeral 26 denotes an acceleration / deceleration torque calculation unit that calculates an acceleration / deceleration torque from the speed detection component ωr calculated by the speed calculator 12.

27は、加減速トルク演算部26により演算された加減速トルクに応じて、二次抵抗変動補償部25の出力に乗算する二次抵抗変動補償用可変ゲインを変更するゲイン可変部である。 Reference numeral 27 denotes a gain variable unit that changes the variable gain for secondary resistance fluctuation compensation that is multiplied by the output of the secondary resistance fluctuation compensation unit 25 according to the acceleration / deceleration torque calculated by the acceleration / deceleration torque calculation unit 26.

このゲイン可変部27からは、二次抵抗の変動を補償するフィードバック係数Kが出力され、この係数Kによってすべり演算部13の二次抵抗成分が補正される。 A feedback coefficient K that compensates for fluctuations in the secondary resistance is output from the gain variable unit 27, and the secondary resistance component of the slip calculation unit 13 is corrected by this coefficient K.

前記指令変換器1、2、極座標変換器3、モデル電圧演算部4、電流制御アンプ5、6、減算器5b、6b、加算器5a,6aによって、フィードフォワード電圧成分V1γ*,V1δ*とフィードバック電圧成分ΔV1γ*,ΔV1δ*とを加算して出力する電流制御系を有するベクトル制御部を構成している。 Feed-forward voltage components V1γ * , V1δ * and feedback by the command converters 1 and 2, the polar coordinate converter 3, the model voltage calculation unit 4, the current control amplifiers 5 and 6, the subtractors 5b and 6b, and the adders 5a and 6a. It constitutes a vector control unit having a current control system that adds and outputs voltage components ΔV1γ * and ΔV1δ *.

尚、図1のブロック図では、加減速トルク演算部26への入力を速度検出成分ωrとしているが、トルク検出値から加減速トルクを求めてもよいし、速度推定値から加減速トルクを求めてもよい。また、他の二次抵抗変動補償方法でも、過渡状態を考慮していない制御方式であれば、本発明を適用することが可能である。 In the block diagram of FIG. 1, the input to the acceleration / deceleration torque calculation unit 26 is the speed detection component ωr, but the acceleration / deceleration torque may be obtained from the torque detection value, or the acceleration / deceleration torque may be obtained from the speed estimation value. You may. Further, even in other secondary resistance fluctuation compensation methods, the present invention can be applied as long as the control method does not consider the transient state.

次に図1のブロック図における二次抵抗変動補償の動作を説明する。図1における二次抵抗変動補償ゲインは下記の(1)式で定義する。 Next, the operation of the secondary resistance fluctuation compensation in the block diagram of FIG. 1 will be described. The secondary resistance fluctuation compensation gain in FIG. 1 is defined by the following equation (1).

二次抵抗変動補償ゲイン=A×B…(1)
ここで、A:従来の二次抵抗変動補償ゲイン(二次抵抗変動補償部25によるゲイン)、B:演算加減速トルクによる二次抵抗変動補償用可変ゲイン。
Secondary resistance fluctuation compensation gain = A × B ... (1)
Here, A: the conventional secondary resistance fluctuation compensation gain (gain by the secondary resistance fluctuation compensation unit 25), B: variable gain for secondary resistance fluctuation compensation by the calculated acceleration / deceleration torque.

本実施例1における、演算加減速トルクによる二次抵抗変動補償用可変ゲインB(ゲイン可変部27のゲイン)は、図2に示す演算加減速トルク値対ゲインの特性図のとおり推移させる。 The variable gain B (gain of the gain variable unit 27) for compensating for the secondary resistance fluctuation due to the calculated acceleration / deceleration torque in the first embodiment is changed as shown in the characteristic diagram of the calculated acceleration / deceleration torque value vs. gain shown in FIG.

すなわち、加減速トルク演算部26で演算した加減速トルクが、ある閾値(設定した演算加減速トルク閾値)を超えなければBの値を1とし、閾値を超えたらBの値を0とする。このようにBの値を0とするが、二次抵抗変動補償値の前回値(二次抵抗変動補償部25の出力)をラッチするため定常状態での補償値で運転を継続する。これにより、より正確な二次抵抗変動補償で運転できる。 That is, if the acceleration / deceleration torque calculated by the acceleration / deceleration torque calculation unit 26 does not exceed a certain threshold value (set calculated calculation acceleration / deceleration torque threshold value), the value of B is set to 1, and if it exceeds the threshold value, the value of B is set to 0. Although the value of B is set to 0 in this way, the operation is continued with the compensation value in the steady state in order to latch the previous value (output of the secondary resistance fluctuation compensation unit 25) of the secondary resistance fluctuation compensation value. As a result, it is possible to operate with more accurate secondary resistance fluctuation compensation.

ここで、演算加減速トルク閾値は速度検出の検出精度を考慮した値とすればよい。速度検出精度の分は、加減速度が発生してしまうためである。 Here, the calculated acceleration / deceleration torque threshold value may be a value in consideration of the detection accuracy of speed detection. This is because acceleration / deceleration occurs due to the speed detection accuracy.

尚図1において、すべり演算部13の二次抵抗変動補償以外のブロックの動作は、特許文献3に記載の動作と同様となる。 In FIG. 1, the operation of the block other than the secondary resistance fluctuation compensation of the slip calculation unit 13 is the same as the operation described in Patent Document 3.

本実施例2では、演算加減速トルクによる二次抵抗変動補償用可変ゲインの値を線形に変えることとし、過渡時には、ゲインを弱めることにより二次抵抗変動補償の効果を弱める。これにより、ある程度の過渡運転状態では二次抵抗変動補償が効くようにする。ゲインを弱めるため、二次抵抗変動補償は外乱となりにくい。 In the second embodiment, the value of the variable gain for compensating for the secondary resistance fluctuation due to the calculated acceleration / deceleration torque is changed linearly, and the effect of compensating for the secondary resistance fluctuation is weakened by weakening the gain at the time of transient. As a result, the secondary resistance fluctuation compensation is effective in a certain transient operation state. Since the gain is weakened, the secondary resistance fluctuation compensation is less likely to cause disturbance.

以下に、演算加減速トルクによる二次抵抗変動補償用可変ゲインの動作を、演算加減速トルク値対ゲインの特性を示す図3とともに説明する。 Hereinafter, the operation of the variable gain for compensating for the secondary resistance fluctuation due to the calculated acceleration / deceleration torque will be described together with FIG. 3, which shows the characteristics of the calculated acceleration / deceleration torque value vs. the gain.

(1)演算加減速トルク値(加減速トルク演算部26の出力値)≦演算加減速トルクlowレベル(設定した第1の閾値)であるとき(図示(1)の範囲)、ゲインを次の(2)式とする。 (1) When the calculated acceleration / deceleration torque value (output value of the acceleration / deceleration torque calculation unit 26) ≤ the calculated acceleration / deceleration torque low level (set first threshold value) (range of (1) in the figure), the gain is set to the following. The formula (2) is used.

演算加減速トルクによる二次抵抗変動補償用可変ゲイン=1.0…(2)
(2)演算加減速トルクlowレベル<演算加減速トルク値<演算加減速トルクhighレベル(第1の閾値よりも大きく設定した第2の閾値)であるとき(図示(2)の範囲)、演算加減速トルク値に応じてリミット処理を行うものであり、ゲインを次の(3)式とする。
Variable gain for compensation for secondary resistance fluctuation due to calculated acceleration / deceleration torque = 1.0 ... (2)
(2) When the calculated acceleration / deceleration torque low level <calculated acceleration / deceleration torque value <calculated acceleration / deceleration torque high level (second threshold value set larger than the first threshold value), the calculation is performed (range (2) in the figure). Limit processing is performed according to the acceleration / deceleration torque value, and the gain is given by the following equation (3).

演算加減速トルクによる二次抵抗変動補償用可変ゲイン=1.0−(演算加減速トルク値−演算加減速トルクlowレベル)/(演算加減速トルクhighレベル−演算加減速トルクlowレベル)…(3)
すなわち、二次抵抗変動補償用可変ゲインを1から0の間で直線的に線形に変化させる。
Variable gain for compensation for secondary resistance fluctuation due to calculated acceleration / deceleration torque = 1.0- (Calculated acceleration / deceleration torque value-Calculated acceleration / deceleration torque low level) / (Calculated acceleration / deceleration torque high level-Calculated acceleration / deceleration torque low level) ... ( 3)
That is, the variable gain for compensating for the secondary resistance fluctuation is linearly changed between 1 and 0.

(3)演算加減速トルクhighレベル≦演算加減速トルク値であるとき(図示(3)の範囲)、ゲインを次の(4)式とする。 (3) When the calculated acceleration / deceleration torque high level ≤ the calculated acceleration / deceleration torque value (range of (3) in the figure), the gain is given by the following equation (4).

演算加減速トルクによる二次抵抗変動補償用可変ゲイン=0.0…(4)
演算加減速トルクlowレベルは実施例1と同様に、速度検出の検出精度を考慮した値とすればよい。演算加減速トルクhighレベルは、運用上ありうる最大加減速トルク値を考慮した値とすればよい。
Variable gain for compensation for secondary resistance fluctuation due to calculated acceleration / deceleration torque = 0.0 ... (4)
The calculated acceleration / deceleration torque low level may be a value in consideration of the detection accuracy of the speed detection, as in the first embodiment. The calculated acceleration / deceleration torque high level may be a value that takes into consideration the maximum acceleration / deceleration torque value that is possible in operation.

本実施例3では、可変ゲインにリミッタを設けるように構成した。これにより、過渡状態時に二次抵抗変動補償の効果を無くすことなく運転が可能である。 In the third embodiment, a limiter is provided for the variable gain. As a result, it is possible to operate without losing the effect of the secondary resistance fluctuation compensation in the transient state.

以下に、演算加減速トルクによる二次抵抗変動補償用可変ゲインの動作を、演算加減速トルク値対ゲインの特性を示す図4とともに説明する。 Hereinafter, the operation of the variable gain for compensating for the secondary resistance fluctuation due to the calculated acceleration / deceleration torque will be described together with FIG. 4, which shows the characteristics of the calculated acceleration / deceleration torque value vs. the gain.

図4においてゲイン1.0から0の間に可変ゲイン用下限リミッタ値を設定している。
(1)演算加減速トルク値≦演算加減速トルクlowレベルであるとき(図示(1)の範囲)、ゲインを次の(5)式とする。
In FIG. 4, the lower limit limiter value for variable gain is set between the gains of 1.0 and 0.
(1) When the calculated acceleration / deceleration torque value ≤ the calculated acceleration / deceleration torque low level (range of (1) in the figure), the gain is given by the following equation (5).

演算加減速トルクによる二次抵抗変動補償用可変ゲイン=1.0…(5)
(2)演算加減速トルクlowレベル<演算加減速トルク値<演算加減速トルクhighレベルであるとき(図示(2−1)〜(2−2)の範囲)、演算加減速トルク値に応じてリミット処理を行うものである。
Variable gain for compensation for secondary resistance fluctuation due to calculated acceleration / deceleration torque = 1.0 ... (5)
(2) When the calculated acceleration / deceleration torque low level <calculated acceleration / deceleration torque value <calculated acceleration / deceleration torque high level (range of (2-1) to (2-2) in the figure), depending on the calculated acceleration / deceleration torque value. Limit processing is performed.

(2−1)可変ゲイン用下限リミッタ≦二次抵抗変動補償用可変ゲインであるとき(図示(2−1)の範囲)、ゲインを次の(6)式とする。 (2-1) When the lower limit limiter for variable gain ≤ the variable gain for compensation for secondary resistance fluctuation (range of (2-1) in the figure), the gain is given by the following equation (6).

演算加減速トルクによる二次抵抗変動補償用可変ゲイン=1.0−(演算加減速トルク値−演算加減速トルクlowレベル)/(演算加減速トルクhighレベル−演算加減速トルクlowレベル)…(6)
すなわち、二次抵抗変動補償用可変ゲインを1から可変ゲイン用下限リミッタ値の間で直線的に線形に変化させる。
Variable gain for compensation for secondary resistance fluctuation due to calculated acceleration / deceleration torque = 1.0- (Calculated acceleration / deceleration torque value-Calculated acceleration / deceleration torque low level) / (Calculated acceleration / deceleration torque high level-Calculated acceleration / deceleration torque low level) ... ( 6)
That is, the variable gain for compensation for secondary resistance fluctuation is linearly changed from 1 to the lower limit limiter value for variable gain.

(2−2)二次抵抗変動補償用可変ゲイン<可変ゲイン用下限リミッタ値であるとき、すなわち二次抵抗変動補償用可変ゲインが可変ゲイン用下限リミッタ値とされたときの演算加減速トルク値から演算加減速トルクhighレベルまでの間(図示(2−2)の範囲)では、ゲインを次の(7)式とする。 (2-2) Calculated acceleration / deceleration torque value when the variable gain for secondary resistance fluctuation compensation <the lower limit limiter value for variable gain, that is, when the variable gain for secondary resistance fluctuation compensation is set to the lower limit limiter value for variable gain. From to the calculated acceleration / deceleration torque high level (range of (2-2) in the figure), the gain is given by the following equation (7).

演算加減速トルクによる二次抵抗変動補償用可変ゲイン=可変ゲイン用下限リミッタ値…(7)
(3)演算加減速トルクhighレベル≦演算加減速トルク値であるとき(図示(3)の範囲)、ゲインを次の(8)式とする。
Variable gain for compensation for secondary resistance fluctuation due to calculated acceleration / deceleration torque = lower limit limiter value for variable gain ... (7)
(3) When the calculated acceleration / deceleration torque high level ≤ the calculated acceleration / deceleration torque value (range of (3) in the figure), the gain is given by the following equation (8).

演算加減速トルクによる二次抵抗変動補償用可変ゲイン=可変ゲイン用下限リミッタ値…(8)
前記演算加減速トルクlowレベルと演算加減速トルクhighレベルは、実施例2と同じ値に設定してよい。
Variable gain for compensation for secondary resistance fluctuation due to calculated acceleration / deceleration torque = Lower limit limiter value for variable gain ... (8)
The calculated acceleration / deceleration torque low level and the calculated acceleration / deceleration torque high level may be set to the same values as in the second embodiment.

本実施例4では、二次抵抗変動補償用可変ゲインを決定するための加減速トルクを簡単で精度よく算出できるように、加減速トルク演算部26を図5のブロック図に示す加減速トルク演算回路のように構成した。 In the fourth embodiment, the acceleration / deceleration torque calculation unit 26 is shown in the block diagram of FIG. 5 so that the acceleration / deceleration torque for determining the variable gain for secondary resistance fluctuation compensation can be calculated easily and accurately. It was configured like a circuit.

図5内の演算加減速トルクは次の関係より求める。まず、回転体のトルクと角速度の関係は下記(9)式となる。 The calculated acceleration / deceleration torque in FIG. 5 is obtained from the following relationship. First, the relationship between the torque of the rotating body and the angular velocity is given by the following equation (9).

Figure 2021044879
Figure 2021044879

(9)式のωを左辺に移項し、積分定数を0とし積分すると下記(10)式となる。 When ω in Eq. (9) is transferred to the left side and the integration constant is set to 0 and integrated, the following Eq. (10) is obtained.

Figure 2021044879
Figure 2021044879

ここでは、加減速トルクのみを求めたい。(10)式で求めた角速度(ω)と角速度検出値の差分を図5の減算器51で取り、その偏差出力に、慣性モーメントJ(ゲイン2)を設定した調整ゲイン項52を乗算すれば角速度変動分のトルクが算出できるため、加減速トルク(T)となる。 Here, we want to obtain only the acceleration / deceleration torque. The difference between the angular velocity (ω) obtained by Eq. (10) and the angular velocity detection value is taken by the subtractor 51 in FIG. 5, and the deviation output is multiplied by the adjustment gain term 52 in which the moment of inertia J (gain 2) is set. Since the torque corresponding to the fluctuation of the angular velocity can be calculated, it becomes the acceleration / deceleration torque (T).

ここで、T:加減速トルク、ω:角速度、J:慣性モーメントであり、角速度は、速度検出(図1の速度演算器12の出力ωr)で代用している。 Here, T: acceleration / deceleration torque, ω: angular velocity, J: moment of inertia, and the angular velocity is substituted by speed detection (output ωr of the speed calculator 12 in FIG. 1).

前記演算加減速トルク(T)をフィードバックして積分器53にて積分を行い、さらに乗算項54にて慣性モーメントJの逆数を乗算して角速度分を出力する。 The calculated acceleration / deceleration torque (T) is fed back and integrated by the integrator 53, and further multiplied by the reciprocal of the moment of inertia J in the multiplication term 54 to output the angular velocity component.

乗算項54の角速度出力と角速度指令値設定部55の角速度指令値は加算器56で加算され、加算器56の出力側に設けた加算器57の出力を積分器58で積分し、積分器58の積分出力と加算器56の出力を加算器57で加算することによって前記(10)式の角速度ω(減算器51の負側入力)を求める。 The angular velocity output of the multiplication term 54 and the angular velocity command value of the angular velocity command value setting unit 55 are added by the adder 56, the output of the adder 57 provided on the output side of the adder 56 is integrated by the integrator 58, and the integrator 58 is used. By adding the integrator output of the above and the output of the adder 56 with the adder 57, the angular velocity ω (negative side input of the subtractor 51) of the above equation (10) is obtained.

尚、調整ゲイン項52のゲイン2は、慣性モーメント(J)の誤差や速度検出精度の誤差を考慮した調整ゲインであり、誤差がある場合に調整ゲインを設定すればよい。 The gain 2 of the adjustment gain term 52 is an adjustment gain in consideration of an error of the moment of inertia (J) and an error of the speed detection accuracy, and the adjustment gain may be set when there is an error.

1、2…指令変換器
3…極座標変換器
4…モデル電圧演算部
5、6…電流制御アンプ
5a,6a,13a,14a,56,57…加算器
5b,6b,51…減算器
7…PWM制御部
8…出力電流検出センサ
9…座標変換部
10…負荷誘導電動機
11…速度検出器
12…速度演算器
13…すべり演算部
14…位相積分器
25…二次抵抗変動補償部
26…加減速トルク演算部
27…ゲイン可変部
52…調整ゲイン項
53,58…積分器
54…乗算項
55…角速度指令値設定部
1, 2 ... Command converter 3 ... Polar coordinate converter 4 ... Model voltage calculation unit 5, 6 ... Current control amplifier 5a, 6a, 13a, 14a, 56, 57 ... Adder 5b, 6b, 51 ... Subtractor 7 ... PWM Control unit 8 ... Output current detection sensor 9 ... Coordinate conversion unit 10 ... Load induction motor 11 ... Speed detector 12 ... Speed calculator 13 ... Sliding calculation unit 14 ... Phase integrator 25 ... Secondary resistance fluctuation compensation unit 26 ... Acceleration / deceleration Torque calculation unit 27 ... Gain variable unit 52 ... Adjustment gain term 53, 58 ... Integrator 54 ... Multiplication term 55 ... Angle speed command value setting section

Claims (5)

電源周波数と同期した回転座標系上でモデル電圧を演算したフィードフォワード電圧成分と、電流制御アンプによるフィードバック電圧成分とを加算して出力する電流制御系を有するベクトル制御部と、前記電流制御アンプの出力電圧の電圧変動成分が零となるようにすべり角周波数を演算するすべり演算部の二次抵抗成分を補正する二次抵抗変動補償部と、を備え、過渡状態を考慮しない二次抵抗変動補償方式を有する誘導電動機の制御装置において、
誘導電動機の速度又はトルクの状態から加減速トルクを演算する加減速トルク演算部と、
前記加減速トルク演算部により演算された加減速トルクに応じて、前記二次抵抗変動補償部の出力に乗算する二次抵抗変動補償用可変ゲインを変更するゲイン可変部とを備えたことを特徴とする誘導電動機の制御装置。
A vector control unit having a current control system that adds and outputs a feed forward voltage component that calculates a model voltage on a rotational coordinate system synchronized with a power supply frequency and a feedback voltage component by a current control amplifier, and the current control amplifier. It is equipped with a secondary resistance fluctuation compensation unit that corrects the secondary resistance component of the slip calculation unit that calculates the slip angle frequency so that the voltage fluctuation component of the output voltage becomes zero, and secondary resistance fluctuation compensation that does not consider the transient state. In the control device of the induction motor having the method
Acceleration / deceleration torque calculation unit that calculates acceleration / deceleration torque from the speed or torque state of the induction motor,
It is characterized by including a gain variable unit that changes the variable gain for secondary resistance fluctuation compensation that is multiplied by the output of the secondary resistance fluctuation compensation unit according to the acceleration / deceleration torque calculated by the acceleration / deceleration torque calculation unit. The control device for the induction motor.
前記ゲイン可変部は、前記二次抵抗変動補償用可変ゲインを、前記加減速トルクが、設定した閾値未満のとき1とし、設定した閾値以上のとき0とすることを特徴とする請求項1に記載の誘導電動機の制御装置。 The variable gain unit according to claim 1, wherein the variable gain for compensation for secondary resistance fluctuation is set to 1 when the acceleration / deceleration torque is less than the set threshold value and 0 when the acceleration / deceleration torque is equal to or higher than the set threshold value. The control device for the induction motor described. 前記ゲイン可変部は、前記加減速トルクが、設定した第1の閾値以下のときに二次抵抗変動補償用可変ゲインを1とし、前記加減速トルクが、前記第1の閾値を超えて、第1の閾値よりも大きく設定した第2の閾値までの範囲のときに、二次抵抗変動補償用可変ゲインを1から0の間で直線的に線形に変化させ、前記加減速トルクが第2の閾値以上のときに二次抵抗変動補償用可変ゲインを0とすることを特徴とする請求項1に記載の誘導電動機の制御装置。 When the acceleration / deceleration torque is equal to or less than the set first threshold value, the gain variable unit sets the variable gain for compensation for secondary resistance fluctuation to 1, and the acceleration / deceleration torque exceeds the first threshold value and becomes the first. In the range up to the second threshold value set larger than the threshold value of 1, the variable gain for compensation for secondary resistance fluctuation is linearly changed between 1 and 0, and the acceleration / deceleration torque is the second. The control device for an induction motor according to claim 1, wherein the variable gain for compensating for secondary resistance fluctuation is set to 0 when the value is equal to or higher than a threshold value. 前記ゲイン可変部は、1から0の間に設定した可変ゲイン用下限リミッタ値を有し、前記加減速トルクが、設定した第1の閾値以下のときに二次抵抗変動補償用可変ゲインを1とし、前記加減速トルクが、前記第1の閾値を超えるときに、二次抵抗変動補償用可変ゲインを1から前記可変ゲイン用下限リミッタ値の間で直線的に線形に変化させ、二次抵抗変動補償用可変ゲインが前記可変ゲイン用下限リミッタ値とされたときの加減速トルク以上の範囲では、二次抵抗変動補償用可変ゲインを可変ゲイン用下限リミッタ値とすることを特徴とする請求項1に記載の誘導電動機の制御装置。 The gain variable unit has a variable gain lower limit limiter value set between 1 and 0, and when the acceleration / deceleration torque is equal to or less than the set first threshold value, the variable gain for secondary resistance fluctuation compensation is set to 1. Then, when the acceleration / deceleration torque exceeds the first threshold value, the variable gain for compensation for secondary resistance fluctuation is linearly changed from 1 to the lower limit limiter value for variable gain, and the secondary resistance is changed. The claim is characterized in that the variable gain for secondary resistance fluctuation compensation is set to the lower limit limiter value for variable gain in the range equal to or larger than the acceleration / deceleration torque when the variable gain for fluctuation compensation is set to the lower limit limiter value for variable gain. The control device for the induction motor according to 1. 前記加減速トルク演算部は、回転体の加減速トルクTと角速度ωの関係式である下記(9)式
Figure 2021044879
(但し、Jは慣性モーメント)
を、積分定数0で積分した下記(10)式
Figure 2021044879
で表されるωと、前記誘導電動機の速度を検出した速度検出成分との偏差をとり、該偏差に慣性モーメントJを乗算して演算加減速トルクを出力し、前記演算加減速トルクをフィードバックしたものを積分し、さらに慣性モーメントの逆数を乗算し、その乗算値に角速度指令値を加算することによって前記(10)式の角速度ωとする加減速トルク演算回路を有していることを特徴とする請求項1から4のいずれか1項に記載の誘導電動機の制御装置。
The acceleration / deceleration torque calculation unit is the following equation (9), which is a relational expression between the acceleration / deceleration torque T of the rotating body and the angular velocity ω.
Figure 2021044879
(However, J is the moment of inertia)
Is integrated with an integral constant of 0, and the following equation (10)
Figure 2021044879
The deviation between ω represented by and the speed detection component that detected the speed of the induction motor was taken, the deviation was multiplied by the moment of inertia J to output the calculated acceleration / deceleration torque, and the calculated acceleration / deceleration torque was fed back. It is characterized by having an acceleration / deceleration torque calculation circuit that obtains the angular velocity ω of the above equation (10) by integrating things, multiplying by the inverse of the moment of inertia, and adding the angular velocity command value to the multiplied value. The control device for the induction motor according to any one of claims 1 to 4.
JP2019163602A 2019-09-09 2019-09-09 Induction motor controller Active JP7243537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019163602A JP7243537B2 (en) 2019-09-09 2019-09-09 Induction motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019163602A JP7243537B2 (en) 2019-09-09 2019-09-09 Induction motor controller

Publications (2)

Publication Number Publication Date
JP2021044879A true JP2021044879A (en) 2021-03-18
JP7243537B2 JP7243537B2 (en) 2023-03-22

Family

ID=74864531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019163602A Active JP7243537B2 (en) 2019-09-09 2019-09-09 Induction motor controller

Country Status (1)

Country Link
JP (1) JP7243537B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183291A (en) * 1990-11-16 1992-06-30 Meidensha Corp Vector controller for induction motor
JPH0638574A (en) * 1992-07-22 1994-02-10 Meidensha Corp Motor controller for induction motor
JPH10295092A (en) * 1997-04-16 1998-11-04 Sanken Electric Co Ltd Speed controller of motor
JPH11136999A (en) * 1997-10-29 1999-05-21 Meidensha Corp Variable speed driver for induction machine
JP2016134970A (en) * 2015-01-16 2016-07-25 オークマ株式会社 Controller for induction motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438222B4 (en) 1994-10-26 2008-02-14 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Method and device for controlling or regulating the brake system of a vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183291A (en) * 1990-11-16 1992-06-30 Meidensha Corp Vector controller for induction motor
JPH0638574A (en) * 1992-07-22 1994-02-10 Meidensha Corp Motor controller for induction motor
JPH10295092A (en) * 1997-04-16 1998-11-04 Sanken Electric Co Ltd Speed controller of motor
JPH11136999A (en) * 1997-10-29 1999-05-21 Meidensha Corp Variable speed driver for induction machine
JP2016134970A (en) * 2015-01-16 2016-07-25 オークマ株式会社 Controller for induction motor

Also Published As

Publication number Publication date
JP7243537B2 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP5198332B2 (en) Torque control device for permanent magnet synchronous motor
KR20010014334A (en) Method for estimating induced electromotive force and speed of induction motor, method for correcting misalignment of shaft thereof, and induction motor controller
JP2009124811A (en) Control device of permanent magnet type synchronous motor
WO2006033180A1 (en) Vector controller of induction motor
JP2009290929A (en) Controller for permanent magnet type synchronous motor
WO2016139998A1 (en) Power conversion device and method for controlling same
JPH07110160B2 (en) Induction motor controller
JP2585376B2 (en) Control method of induction motor
JP6784061B2 (en) Vector control compensation method and vector control device for induction motors
US7948201B2 (en) Induction motor control device
JP4238646B2 (en) Speed sensorless vector controller for induction motor
EP2169820B1 (en) Alternating-current motor control apparatus
JP4601900B2 (en) Induction motor control device
JP6641445B2 (en) Power converter control method and power converter
JP7243537B2 (en) Induction motor controller
WO2022029911A1 (en) Motor iron-loss calculation device and motor control device comprising same
JP6847191B2 (en) Power converter control method and power converter
JP3770302B2 (en) Induction motor speed control device
WO2022137612A1 (en) Power conversion device
JP5228436B2 (en) Motor control device and control method thereof
JP3283729B2 (en) Induction motor control device
JP2654547B2 (en) Induction motor control device
JP2008011625A (en) Speed sensorless vector controller of induction motor and its control method
JPH07303398A (en) Secondary resistance compensating method of induction motor
JPH05336786A (en) Vector control equipment for induction motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7243537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150