JPH05336786A - Vector control equipment for induction motor - Google Patents

Vector control equipment for induction motor

Info

Publication number
JPH05336786A
JPH05336786A JP4136400A JP13640092A JPH05336786A JP H05336786 A JPH05336786 A JP H05336786A JP 4136400 A JP4136400 A JP 4136400A JP 13640092 A JP13640092 A JP 13640092A JP H05336786 A JPH05336786 A JP H05336786A
Authority
JP
Japan
Prior art keywords
delta
value
axis
primary
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4136400A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4136400A priority Critical patent/JPH05336786A/en
Publication of JPH05336786A publication Critical patent/JPH05336786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable suppression of a current pulsation component by a method wherein a variable gain value obtained on the basis of the polarity of a fluctuation of a delta-axis component of a primary current of a second coordinate transformation part from a target value, an output frequency and a rotational direction are added to an addition value of the target value of the delta-axis component of a primary voltage and a fluctuation thereof. CONSTITUTION:A first coordinate transformation part 5 computes a primary current I1, an i1gamma-axis in gamma-delta coordinates as a reference axis and a phase difference phi between a delta-axis and a gamma-axis on the basis of target values i1d and i1q. These computed values and i1d* being used, voltage target values v1gamma' and v1delta' are determined. These target values and deviations of I1gamma and I1delta obtained by a second coordinate transformation part 6 from i1d and i1q are inputted to PI amplifiers 7 and 8 and fluctuations DELTAv1gamma and DELTAv1delta are obtained in outputs of the PI amplifiers 7 and 8. These fluctuations and the preceding target values are added up. Moreover, a fluctuation of a PI amplifier 12 is added to the addition value of DELTAv1delta and v1delta' and a value thus obtained is inputted to a polar- coordinate transformation part 9. In this way, a current pulsation component can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は誘導電動機のベクトル
制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vector control device for an induction motor.

【0002】[0002]

【従来の技術】2次磁束とそれに直交する2次電流を非
干渉に制御する誘導電動機のベクトル制御が広く適用さ
れてきている。(特開平3−135388号公報の従来
技術参照)この公報に記載のベクトル制御は、3相誘導
電動機の場合電流や磁束を、電源による回転磁界と同速
度で回転する直交2軸のd−q座標系のベクトルとして
取り扱い、演算結果を3相電源の各相の電流指令値に換
算して制御する方法である。次にその具体的方法につい
て述べると、d−q座標系での電圧方程式は次の(1)
式で表される。
2. Description of the Related Art Vector control of an induction motor that controls a secondary magnetic flux and a secondary current orthogonal thereto has been widely applied. In the vector control described in this publication, in the case of a three-phase induction motor, the current and the magnetic flux rotate at the same speed as the rotating magnetic field generated by the power supply. It is a method of handling as a vector of the coordinate system and converting the calculation result into a current command value of each phase of the three-phase power source for control. Next, the specific method will be described. The voltage equation in the dq coordinate system is as follows (1)
It is represented by a formula.

【0003】[0003]

【数1】 [Equation 1]

【0004】ただし、ωs=ω−ωr Lσ=(L12
2)/L2である。
However, ω s = ω-ω r Lσ = (L 1 L 2
M 2 ) / L 2 .

【0005】ここで、v1d,v1qは夫々1次電圧のd,
q軸成分、i1d,i1qは夫々1次電流のd,q軸成分、
λ2d,λ2qは夫々2次磁束のd,q軸成分、R1,R2
夫々1次,2次抵抗、L1,L2,Mは夫々1次,2次,
励磁インダクタンス、ω,ωr,ωsは夫々1次電源角周
波数,回転子角周波数,すべり角周波数、Pはd/dt
を表すものである。
Here, v 1d and v 1q are d and v of the primary voltage, respectively.
q-axis components, i 1d and i 1q are d- and q-axis components of the primary current,
λ 2d and λ 2q are d and q axis components of the secondary magnetic flux, R 1 and R 2 are primary and secondary resistances, respectively, L 1 , L 2 and M are primary and secondary, respectively.
Excitation inductance, ω, ω r , and ω s are primary power source angular frequency, rotor angular frequency, slip angular frequency, and P is d / dt.
It represents.

【0006】d−q座標系においてd軸を二次磁束上に
とればλ2q=0となる。このときλ2d=Φ2=一定、i
2d=0、i2q=i2となり直流機と同様なトルクと磁束
の直交制御が可能となる。
If the d axis is on the secondary magnetic flux in the dq coordinate system, then λ 2q = 0. At this time, λ 2d = Φ 2 = constant, i
Since 2d = 0 and i 2q = i 2 , the same orthogonal control of torque and magnetic flux as in a DC machine becomes possible.

【0007】一方二次磁束は次の関係がある。On the other hand, the secondary magnetic flux has the following relationship.

【0008】[0008]

【数2】 ベクトル制御条件よりi2d=0であり、(2)式からλ
2d=Mi1dとなる。
[Equation 2] From the vector control condition, i 2d = 0, and from equation (2), λ
2d = Mi 1d .

【0009】また、λ2q=0より i1q=−L2×i2q
/Mとなり、i1qはトルク電流と比例する。
From λ 2q = 0, i 1q = -L 2 × i 2q
/ M, and i 1q is proportional to the torque current.

【0010】次に(1)式4行目より(3)式が得ら
れ、この(3)式からすべり角周波数の条件を求める
と、ωsは(4)式で表される。
Next, from the fourth line of the equation (1), the equation (3) is obtained. When the condition of the slip angular frequency is obtained from the equation (3), ω s is expressed by the equation (4).

【0011】[0011]

【数3】 [Equation 3]

【0012】[0012]

【数4】 [Equation 4]

【0013】以上がd軸上に二次磁束が一致するように
制御したときのベクトル制御条件である。従ってベクト
ル制御を行うためにはi1dをΦ2/Mに設定し、ωs
(4)式が成り立つように制御することが必要である。
The above are the vector control conditions when the secondary magnetic flux is controlled to match on the d-axis. Therefore, in order to perform vector control, it is necessary to set i 1d to Φ 2 / M and control ω s so that equation (4) holds.

【0014】ここですべり角周波数ωsの演算に用いる
2次抵抗R1は周囲温度及び回転子の自己発熱などの温
度変化により抵抗値が変化するため、電動機の出力電圧
に基づいて抵抗値の変化分を推定し、この変化分により
すべり角周波数ωsの目標値を修正して、2次抵抗変化
による発生トルク変動を補償する必要がある。仮に2次
抵抗の変化分を無視したとすると、トルク制御精度やト
ルク応答が悪化する。このような2次抵抗の変化分の推
定を例えばインバータの出力電圧そのままを用いると1
次抵抗の変化分が取り込まれてしまうため、推定に用い
る信号としては、1次抵抗に左右されない信号であるこ
とが望ましい。
Since the resistance value of the secondary resistance R 1 used for calculating the slip angular frequency ω s changes due to the ambient temperature and temperature changes such as self-heating of the rotor, the resistance value of the secondary resistance R 1 changes based on the output voltage of the motor. It is necessary to estimate the variation and correct the target value of the slip angular frequency ω s by this variation to compensate for the generated torque variation due to the secondary resistance variation. If the change in the secondary resistance is ignored, the torque control accuracy and torque response deteriorate. If the output voltage of the inverter is used as it is to estimate the change in the secondary resistance,
Since the amount of change in the secondary resistance is captured, it is desirable that the signal used for estimation be a signal that is not affected by the primary resistance.

【0015】こうしたことから図2に示す制御回路が既
に提案されている。図中1は励磁分電流指令部であり、
角周波数ωrがある値を越えるまで二次磁束指令値Φ2
1dの目標値i1d*とし、ωrがある値を越えるとi1d
*を小さくする。以下目標値あるいは理想値に符号*を
付して示すと、速度指令ωr*及びωrの偏差分を速度ア
ンプ2を通じてi1q*とし、i1d*,i1q*に基づいて
d−q軸上の一次電圧の理想値v1d*,v1q*を演算で
求め、一次抵抗と二次抵抗変化による電圧変動分の補正
をi1d*=i1d,i1q*=i1qとなるように制御する
と、i1d*=i1dを制御するPIアンプ31にはΔv1d
が得られ、i1q*=i1qを制御するPIアンプ32には
Δv1qが得られる。Δv1d,Δv1qには一次抵抗と二次
抵抗の変化による電圧変動分を共に含んでいるため、一
次抵抗変化による電圧変動を含まない成分を求めること
により二次抵抗変化の補償を行えば、一次抵抗変化に影
響されない補償が可能となる。そこで一次電流I1のベ
クトル上に基準軸γを置いた回転座標γ−δ軸をとり、
このδ軸の一次電圧変動分Δv1δをすべり補正演算部
3で求めている。このΔv1δは一次抵抗R1を含まな
い式で表され、従って一次抵抗R1の影響を受けない。
For this reason, the control circuit shown in FIG. 2 has already been proposed. In the figure, 1 is an excitation current command section,
A secondary magnetic flux command value Φ 2 until it exceeds a certain value angular frequency ω r to the target value i 1d of i 1d *, exceeds a certain value ω r i 1d
Reduce *. In the following, the target value or the ideal value is indicated by a symbol *, and the deviation of the speed commands ω r * and ω r is set to i 1q * via the speed amplifier 2, and dq is calculated based on i 1d *, i 1q *. The ideal values v 1d *, v 1q * of the primary voltage on the axis are calculated, and the voltage fluctuations due to changes in the primary resistance and the secondary resistance are corrected to i 1d * = i 1d , i 1q * = i 1q. Control of i 1d * = i 1d , the PI amplifier 3 1 has Δv 1d
Is obtained, and Δv 1q is obtained in the PI amplifier 3 2 that controls i 1q * = i 1q . Since Δv 1d and Δv 1q include both the voltage fluctuation due to the change of the primary resistance and the secondary resistance, if the component not including the voltage fluctuation due to the change of the primary resistance is obtained to compensate for the change of the secondary resistance, It is possible to perform compensation without being affected by the change in primary resistance. Therefore, the rotational coordinate γ-δ axis is set with the reference axis γ on the vector of the primary current I 1 ,
The slip correction calculation unit 3 3 obtains the primary voltage variation Δv 1 δ on the δ-axis. This Δv 1 δ is expressed by an equation that does not include the primary resistance R 1 , and therefore is not affected by the primary resistance R 1 .

【0016】図3はd−q軸及びγ−δ軸と電圧、電流
との関係を示すベクトル図、図4は一次電圧変動分を示
すベクトル図であり、図中V1、Eは夫々一次電圧、二
次電圧、Δv1は一次電圧変動分、Δv1γ,Δv1δは
夫々その変動分のγ軸成分、δ軸成分、φはγ軸とd軸
との位相差、I0は励磁分電流、I2はトルク分電流であ
る。Δv1δは次の(5)式により表される。
FIG. 3 is a vector diagram showing the relationship between the dq axes and the γ-δ axes and the voltage and current, and FIG. 4 is a vector diagram showing the primary voltage fluctuations. In the figure, V 1 and E are respectively primary. Voltage, secondary voltage, Δv 1 is the primary voltage fluctuation, Δv 1 γ, Δv 1 δ are the γ-axis component and δ-axis component of the fluctuation, respectively, φ is the phase difference between the γ-axis and the d-axis, and I 0 is Excitation current, I 2 is torque current. Δv 1 δ is expressed by the following equation (5).

【0017】[0017]

【数5】 Δv1δ=−Δv1d・sinφ+Δv1qcosφ ‥‥‥(5) ただしcosφ=I0/I1=i1d/i1q、sinφ=I
2/I1=i1q/i1γ そしてすべり補正演算部33ではΔv1δに基づいて2次
抵抗変化分に対応するすべり角周波数の修正分Δωs
演算で求め、すべり角周波数演算部34で求めたωs*と
Δωsとの加算値をすべり角周波数の目標値とし、これ
に回転子角周波数ωrを加算して一次電圧の角周波数ω
=θ/tの目標値としている。図2中35は極座標変換
部、36は座標変換部、41はPWM回路、42はインバ
ータ、IMは誘導電動機、PPはパルスピックアップ
部、43は速度検出部である。
[Formula 5] Δv 1 δ = −Δv 1d · sin φ + Δv 1q cos φ (5) where cos φ = I 0 / I 1 = i 1d / i 1q , sin φ = I
2 / I 1 = i 1q / i 1 γ Then, the slip correction calculation unit 3 3 calculates the correction amount Δω s of the slip angular frequency corresponding to the secondary resistance change based on Δv 1 δ, and calculates the slip angular frequency. The added value of ω s * and Δω s obtained in part 3 4 is set as the target value of the slip angular frequency, and the rotor angular frequency ω r is added to this value to add the angular frequency ω of the primary voltage.
= Θ / t is the target value. 2 3 5 polar conversion unit figure, 3 6 coordinate conversion unit, the 4 1 PWM circuit, 4 2 inverters, IM induction motor, PP pulse pickup unit, 4 3 is a speed detecting unit.

【0018】[0018]

【発明が解決しようとする課題】前述した特開平3−1
35388号公報には従来技術を改良した発明が開示さ
れているが、この発明のものは出力の相電流が電流零付
近で脈動していることが判明した。図5(a),(b)
はu相における電流脈動成分の波形であるが、図5
(b)に示す丸印A,Bの部分が前述した脈動である。
この脈動は図では1相しか示していないが3相共通に発
生している。この脈動は1周期中6回発生することから
(1相当たり2回)トルク脈動の要因となるため、抑制
することが要望されている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Japanese Patent No. 35388 discloses an invention in which the prior art is improved. However, in the invention, it has been found that the output phase current pulsates near zero current. 5 (a), (b)
Is the waveform of the current ripple component in the u phase.
The circles A and B shown in (b) are the above-mentioned pulsations.
Although this pulsation shows only one phase in the figure, it is common to all three phases. Since this pulsation occurs 6 times in one cycle (twice for each phase), it causes torque pulsation, and therefore it is desired to suppress it.

【0019】この発明は上記の事情に鑑みてなされたも
ので、電流脈動成分を確実に抑制できるようにした誘導
電動機のベクトル制御装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a vector control device for an induction motor capable of reliably suppressing a current pulsation component.

【0020】[0020]

【課題を解決するための手段】この発明は上記の目的を
達成するために、誘導電動機の電源角周波数と同期して
回転する回転座標であって、二次磁束を基準軸とする座
標をd−q座標とすると、誘導電動機の一次電流のd軸
成分及びq軸成分の目標値i1d*,i1q*を算出し、こ
れら目標値と二次時定数の設定値とに基づいてすべり角
周波数を演算するすべり角周波数演算部を備えた誘導電
動機のベクトル制御装置において、d−q軸に対し位相
ψがtan-1(i1d*/i1q*)異なりかつ一次電流I
1を基準軸とする座標をγ−δ座標とすると、i1d*,
1q*に基づいて一次電流のγ軸成分の目標値i1γ*
(=I1)及び前記位相ψを算出する第1の座標変換部
と、i1γ*,ψに基づいて一次電圧のγ,δ軸成分の
目標値v1γ*,v1δ*を夫々算出する手段と、誘導電
動機の一次電流の検出地をγ−δ座標の各軸成分i
1γ,i1δに変換する第2の座標変換部と、i1γ*及
び一次電流のδ軸成分の目標値i1δ*(=0)と前記
第2の座標変換部よりのi1γ,i1δとに基づいて、現
在の一次電圧のγ軸成分におけるv1γ*からの変動分
Δv1γと、現在の一次電圧のδ軸成分におけるv1γ*
からの変動分Δv1δとを算出する手段と、i1d*,i
1q*,i1γ*及びΔv1δに基づいて二次抵抗の設定値
に対する変化分を演算する二次抵抗変化分演算部とを設
け、一次電流のδ軸成分の目標値i1δ*と第2の座標
変換部よりのi1δとの偏差分から変動分ΔI1δを得、
この変動分の極性により出力に可変ゲイン値を算出する
手段とを設け、v1γ*とΔv1γとの加算値を一次電圧
のγ軸成分の目標値v1γとし、またv1δ*とΔ1δと
の加算値に前記可変ゲイン値を加算してその加算値を一
次電圧のδ軸成分の目標値v1δとし、これら目標値v1
γ,v1δに基づいて電源電圧を制御すると共に、前記
すべり角周波数演算部は二次時定数の設定値と前記二次
抵抗変化分演算部で得られた演算結果とに基づいてその
ときの二次時定数を求め、この二次時定数を用いて演算
を行うことを特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides rotational coordinates that rotate in synchronism with the power source angular frequency of an induction motor, where the secondary magnetic flux is the reference axis. Assuming −q coordinates, the target values i 1d * and i 1q * of the d-axis component and the q-axis component of the primary current of the induction motor are calculated, and the slip angle is calculated based on these target values and the set value of the secondary time constant. In a vector controller for an induction motor having a slip angle frequency calculator for calculating a frequency, a phase ψ is tan −1 (i 1d * / i 1q *) different with respect to the dq axes and a primary current I
If the coordinates with 1 as the reference axis are γ-δ coordinates, i 1d *,
Target value i 1 γ * of the γ-axis component of the primary current based on i 1q *
(= I 1 ) and the first coordinate conversion unit for calculating the phase ψ, and the target values v 1 γ *, v 1 δ * of the γ and δ axis components of the primary voltage based on i 1 γ *, ψ. The means for calculating each and the location where the primary current of the induction motor is detected are each axis component i of the γ-δ coordinates.
A second coordinate conversion unit for converting into 1 γ, i 1 δ, a target value i 1 δ * (= 0) of i 1 γ * and a δ-axis component of the primary current, and i from the second coordinate conversion unit. Based on 1 γ, i 1 δ, a variation Δv 1 γ from v 1 γ * in the γ-axis component of the current primary voltage and v 1 γ * in the δ-axis component of the current primary voltage
Means for calculating a variation Delta] v 1 [delta] from, i 1d *, i
1q *, i 1 γ * and Δv is provided a secondary resistance variation calculator for calculating a variation with respect to the set value of the rotor resistance based on 1 [delta], the target value of [delta] axis component of the primary current i 1 [delta] * And a deviation ΔI 1 δ from the deviation between i 1 δ from the second coordinate conversion unit and
A means for calculating a variable gain value for the output according to the polarity of this variation is provided, and the added value of v 1 γ * and Δv 1 γ is set as the target value v 1 γ of the γ-axis component of the primary voltage, and v 1 δ * and adds the variable gain value to the sum of the delta 1 [delta] and the target value v 1 [delta] of [delta] axis component of the primary voltage and the added value, these target values v 1
The power supply voltage is controlled on the basis of γ, v 1 δ, and the slip angular frequency calculation unit is based on the set value of the secondary time constant and the calculation result obtained by the secondary resistance change calculation unit. Is obtained, and the calculation is performed using this secondary time constant.

【0021】[0021]

【作用】一次電流のδ軸成分の目標値i1δ*と第2の
座標変換部よりのi1δとの偏差分である変動分Δi1δ
を得る。その後、この変動分Δi1δの極性と出力周波
数の回転方向とにより可変ゲイン値を得る。この可変ゲ
イン値を一次電圧のδ軸成分の目標値v1δを得るため
のv1δ*とΔv1δの加算値に加える。これにより電流
脈動成分を抑制することができる。
[Action] target value of [delta] axis component of the primary current i 1 [delta] * and the deviation amount is variation .DELTA.i 1 [delta] of the i 1 [delta] than the second coordinate conversion unit
To get After that, a variable gain value is obtained from the polarity of this variation Δi 1 δ and the rotation direction of the output frequency. This variable gain value is added to the added value of v 1 δ * and Δv 1 δ for obtaining the target value v 1 δ of the δ-axis component of the primary voltage. As a result, the current pulsation component can be suppressed.

【0022】[0022]

【実施例】以下この発明の実施例を図面に基づいて説明
するに、図2と同一部分は同一符号を付して示す。図1
において、5は第1の座標変換部で、この第1の座標変
換部5はi1d*,i1q*に基づいて一次電流I1を基準
軸としたγ−δ座標におけるi1γ*とd軸とγ軸との
位相差φとを演算する機能を有し、具体的にはtan-1
(i1q*/I1d*)=φ√(i1d2+i1q2)=I1
の演算を実行する。そして第1の座標変換部5より出力
されたsinφ、I1、cosφ及び励磁分電流指令部
1よりのi1d*を用いて次式の(6)式、(7)式の演
算を実行し、v1γ*、v1δ*が求められる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the drawings. Figure 1
In the above, 5 is a first coordinate conversion unit, and the first coordinate conversion unit 5 calculates i 1 γ * in the γ-δ coordinates with the primary current I 1 as the reference axis based on i 1d *, i 1q *. It has a function of calculating the phase difference φ between the d-axis and the γ-axis, and specifically, tan -1
(I 1q * / I 1d * ) = φ√ (i 1d * 2 + i 1q * 2) = I 1
Perform the operation of. Then, using sin φ, I 1 , cos φ output from the first coordinate conversion unit 5 and i 1d * from the excitation current command unit 1, the following formulas (6) and (7) are calculated. , V 1 γ *, v 1 δ * are obtained.

【0023】[0023]

【数6】 [Equation 6]

【0024】6は第2の座標変換部で、この第2の座標
変換部6は一次電流の検出値iu,iwをγ−δ座標の各
軸成分i1γ、i1δに変換する。これらi1γ、i1δは
それぞれ目標値i1γ*、i1δ*(=0)と比較され、
その偏差分がそれぞれ電圧制御アンプであるPIアンプ
7,8に入力される。PIアンプ7,8は入力された偏
差分から出力にそれぞれ一次電圧変動分Δv1γ、Δ1δ
を得る。得られたΔv1γ、Δ1δは目標値v1γ*、v1
δ*とそれぞれ加算される。
Reference numeral 6 denotes a second coordinate conversion unit, which converts the detected values i u and i w of the primary current into respective axis components i 1 γ and i 1 δ of the γ-δ coordinate. To do. These i 1 γ and i 1 δ are compared with target values i 1 γ * and i 1 δ * (= 0), respectively,
The deviations are input to the PI amplifiers 7 and 8 which are voltage control amplifiers, respectively. The PI amplifiers 7 and 8 output primary voltage fluctuations Δv 1 γ and Δ 1 δ from the input deviations, respectively.
To get The obtained Δv 1 γ and Δ 1 δ are target values v 1 γ * and v 1
δ * is added to each.

【0025】Δv1δとΔ1δ*との加算値には次に示す
PIアンプ12の出力が加算される。PIアンプ12は
トルク脈動を抑制させるためのもので、このPIアンプ
12には、i1δとi1δ*との偏差分Δi1δが入力さ
れる。この偏差分は電流空間ベクトルの回転方向に対し
て逆方向に発生するからPIアンプ12はΔi1δの極
性と出力周波数の時計方向(CW)と反時計方向(CC
W)により可変ゲインとする。これを表としたものを次
に示す。
The output of the PI amplifier 12 shown below is added to the added value of Δv 1 δ and Δ 1 δ *. PI amplifier 12 is for to suppress the torque pulsation, this PI amplifier 12, i 1 [delta] and i 1 [delta] * and deviations .DELTA.i 1 [delta] in is inputted. Since this deviation is generated in the direction opposite to the rotation direction of the current space vector, the PI amplifier 12 has the polarity of Δi 1 δ, the output frequency in the clockwise direction (CW) and the counterclockwise direction (CC
The variable gain is set according to W). This is shown in the table below.

【0026】[0026]

【表1】 [Table 1]

【0027】PIアンプ12はΔi1δを可変ゲインと
して出力にΔv1δを得、このΔv1δを前述したΔv1
δとv1δ*との加算値に加算する。この加算出力v1δ
と、前述したΔv1γとv1γ*との加算出力v1γとが
極座標変換部9に入力される。この極座標変換部9はv
1γとv1δから出力に一次電圧のベクトルV1の大きさ
│V1│と、γ軸との位相角φとを出力する。この位相
角φは後述するθ(=ωot)と加算され、これら加算値
と│V1│とがPWM回路41に入力されてU、V、W相
に対応する一次電圧指令値に変換され、これによりイン
バータ42の電圧が制御される。
The PI amplifier 12 obtains Δv 1 δ at the output by using Δi 1 δ as a variable gain, and this Δv 1 δ is used for the above-mentioned Δv 1
Add to the added value of δ and v 1 δ *. This addition output v 1 δ
And the above-mentioned addition output v 1 γ of Δv 1 γ and v 1 γ * are input to the polar coordinate conversion unit 9. This polar coordinate conversion unit 9
From 1 γ and v 1 δ, the magnitude | V 1 | of the vector V 1 of the primary voltage and the phase angle φ with the γ axis are output. The phase angle φ is summed with θ will be described later (= ω ot), transformation and these sum values and │V 1 │ is inputted to the PWM circuit 4 1 U, V, the primary voltage command value corresponding to the W-phase The voltage of the inverter 4 2 is controlled by this.

【0028】10は二次抵抗変化分演算部で、この演算
部10はi1d*,i1q*,i1γ*及びΔv1γを取り込
んで次の(8)式の演算を実行して二次抵抗変化分Kを
求める。
Numeral 10 is a secondary resistance change amount calculation unit, and this calculation unit 10 takes in i 1d *, i 1q *, i 1 γ * and Δv 1 γ and executes the calculation of the following equation (8). The secondary resistance change K is calculated.

【0029】[0029]

【数7】 [Equation 7]

【0030】また、11はすべり角周波数演算部で、こ
の演算部11はK、i1d*及びi1q*を取り込んで次の
(9)式を実行してωsを求める機能を有している。
Numeral 11 is a slip angular frequency calculator, which has a function of taking in K, i 1d * and i 1q * and executing the following equation (9) to obtain ω s. There is.

【0031】[0031]

【数8】 [Equation 8]

【0032】ところでコンピュータにより第1図の回路
の各部の演算を実行する場合には次のようにしてωs
算出する。即ちKの演算やすべり角周波数演算を含む一
連の演算はクロック信号により瞬時に行われ、すべり角
周波数演算部11における(n−1)回目の演算で求め
た2次抵抗値をn回目の演算における設定値とする。n
回目の演算で求めたK及びR2を夫々Kn,R2nとして表
し、R2nの初期値R20に予め設定した値R2*を割り当
てると、1回目からn回目までの演算は次のようにな
る。
By the way, when the computer executes the calculation of each part of the circuit of FIG. 1, ω s is calculated as follows. That is, a series of calculations including K calculation and slip angular frequency calculation are instantaneously performed by the clock signal, and the secondary resistance value obtained by the (n-1) th calculation in the slip angular frequency calculation unit 11 is calculated as the nth calculation. Set value in. n
Representing K and R 2 obtained in the second calculation as K n and R 2n , respectively , and assigning a preset value R 2 * to the initial value R 20 of R 2n , the first to nth calculations are as follows. Like

【0033】 1回目 R21=(1+K1)・R20=(1+K1)・R2* 2回目 R22=(1+K2)・R21=(1+K2)・(1+K1)・R2* : n回目 R2n=(1+Kn)・R2(n-1)=(1+Kn)(1+Kn-1)… (1+K1)・R2* 従ってn回目の演算で求めるωsをωsnとして表すと、
ωsnは次の(10)式となり、 ωsn=(1+Kn)・ωs(n-1) ‥‥‥(10) (n−1)回目の演算で求めたωs(n-1)を記憶しておい
て、(10)式により得られたKnを用いることにより
ωsnが求められる。
First R 21 = (1 + K 1 ) · R 20 = (1 + K 1 ) · R 2 * Second R 22 = (1 + K 2 ) · R 21 = (1 + K 2 ) · (1 + K 1 ) · R 2 * : Nth R 2n = (1 + K n ) ・ R 2 (n-1) = (1 + K n ) (1 + K n-1 ) ... (1 + K 1 ) ・ R 2 * Therefore, ω s obtained by the nth calculation is ω sn When expressed as
ω sn becomes the following equation (10), and ω sn = (1 + K n ) ω s (n-1) (10) (n -1) ω s (n-1) Is stored and ω sn is obtained by using K n obtained by the equation (10).

【0034】この場合初期値ωs1は、 ωs1=(1+K1)・R2*・1/L2*・i1δ*/i1
γ*である。
In this case, the initial value ω s1 is ω s1 = (1 + K 1 ) · R 2 * · 1 / L 2 * · i 1 δ * / i 1
γ *.

【0035】こうして得られたωsと電動機IMの回転
子角周波数検出値ωrとを加算し、その加算値ω0を電源
角周波数の目標値とする。
The thus obtained ω s and the rotor angular frequency detection value ω r of the electric motor IM are added, and the added value ω 0 is set as the target value of the power source angular frequency.

【0036】[0036]

【発明の効果】以上述べたように、この発明によれば、
電流脈動成分を確実に抑制することができ、これにより
トルクリップル等が減少する利点がある。
As described above, according to the present invention,
The current pulsation component can be reliably suppressed, which has the advantage of reducing torque ripple and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すブロック図、FIG. 1 is a block diagram showing an embodiment of the present invention,

【図2】従来のベクトル制御装置を示すブロック図、FIG. 2 is a block diagram showing a conventional vector control device,

【図3】電流,電圧のベクトル図、FIG. 3 is a vector diagram of current and voltage,

【図4】電流,電圧のベクトル図、FIG. 4 is a vector diagram of current and voltage,

【図5】aは電流指令波形図、bは電流脈動成分波形
図。
5A is a current command waveform diagram, and FIG. 5B is a current pulsation component waveform diagram.

【符号の説明】[Explanation of symbols]

5…第1の座標変換部、 6…第2の座標変換部、 7,8,12…PIアンプ 9…極座標変換部 5 ... 1st coordinate conversion part, 6 ... 2nd coordinate conversion part, 7, 8 and 12 ... PI amplifier 9 ... Polar coordinate conversion part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機の電源角周波数と同期して回
転する回転座標であって、二次磁束を基準軸とする座標
をd−q座標とすると、誘導電動機の一次電流のd軸成
分及びq軸成分の目標値i1d*,i1q*を算出し、これ
ら目標値と二次時定数の設定値とに基づいてすべり角周
波数を演算するすべり角周波数演算部を備えた誘導電動
機のベクトル制御装置において、 d−q軸に対し位相φがtan-1(i1d*/i1q*)異な
りかつ一次電流I1を基準軸とする座標をγ−δ座標と
すると、i1d*,i1q*に基づいて一次電流のγ軸成分
の目標値i1γ*(=I1)及び前記位相ψを算出する第
1の座標変換部と、 i1γ*,φに基づいて一次電圧のγ,δ軸成分の目標
値v1γ*,v1δ*を夫々算出する手段と、 誘導電動機の一次電流の検出値をγ−δ座標の各軸成分
1γ,i1δに変換する第2の座標変換部と、 i1γ*及び一次電流のδ軸成分の目標値i1δ*(=
0)と前記第2の座標変換部よりのi1γ,i1δとに基
づいて、現在の一次電圧のγ軸成分におけるv1γ*か
らの変動分Δv1γと、現在の一次電圧のδ軸成分にお
けるv1γ*からの変動分Δv1δとを算出する手段と、 i1d*,i1q*,i1γ*及びΔ1δに基づいて二次抵抗
の設定値に対する変化分を演算する二次抵抗変化分演算
部とを設け、 一次電流のδ軸成分の目標値i1δ*と第2の座標変換
部よりのi1δとの偏差分から変動分ΔI1δを得、この
変動分の極性により出力に可変ゲイン値を算出する手段
とを設け、 v1γ*とΔv1γとの加算値を一次電圧のγ軸成分の目
標値v1γとし、またv1δ*とΔ1δとの加算値に前記
可変ゲイン値を加算してその加算値を一次電圧のδ軸成
分の目標値v1δとし、これら目標値v1γ,v1δに基
づいて電源電圧を制御すると共に、 前記すべり角周波数演算部は二次時定数の設定値と前記
二次抵抗変化分演算部で得られた演算結果とに基づいて
そのときの二次時定数を求め、この二次時定数を用いて
演算を行うことを特徴とする誘導電動機のベクトル制御
装置。
1. A d-q component of a primary current of an induction motor and a d-q coordinate, which is a rotation coordinate that rotates in synchronization with a power source angular frequency of the induction motor and has coordinates of a secondary magnetic flux as a reference axis. Vector of an induction motor equipped with a slip angular frequency calculator that calculates the target values i 1d *, i 1q * of the q-axis component and calculates the slip angular frequency based on these target values and the set value of the secondary time constant. In the controller, if the phase φ is different from tan −1 (i 1d * / i 1q *) with respect to the d-q axes and the coordinates with the primary current I 1 as the reference axis are γ-δ coordinates, i 1d *, i A first coordinate conversion unit for calculating the target value i 1 γ * (= I 1 ) of the γ-axis component of the primary current and the phase ψ based on 1q *, and the primary voltage of the primary voltage based on i 1 γ *, φ A means for calculating the target values v 1 γ *, v 1 δ * of the γ and δ axis components, and a detection value of the primary current of the induction motor A second coordinate conversion unit for converting each axis component i 1 γ, i 1 δ of the γ-δ coordinates, and i 1 γ * and a target value i 1 δ * (= of the δ axis component of the primary current).
0) and i 1 γ, i 1 δ from the second coordinate conversion unit, the variation Δv 1 γ from v 1 γ * in the γ-axis component of the current primary voltage and the current primary voltage. Means for calculating the variation Δv 1 δ from v 1 γ * in the δ-axis component of the above, and a change in the secondary resistance with respect to the set value based on i 1d *, i 1q *, i 1 γ * and Δ 1 δ. a secondary resistance variation calculating unit for calculating the amount provided, the variation [Delta] 1 [delta] from deviations from the target value i 1 [delta] * and i 1 [delta] than the second coordinate conversion unit of [delta] axis component of the primary current And a means for calculating a variable gain value in the output according to the polarity of this variation is provided, and the added value of v 1 γ * and Δv 1 γ is set as the target value v 1 γ of the γ-axis component of the primary voltage, and v 1 [delta] * and the delta 1 [delta] and the by adding a variable gain value to the addition value and the target value v 1 [delta] of [delta] axis component of the primary voltage and the added value of these target values v 1 γ, v 1 δ While controlling the power supply voltage based on, the slip angular frequency calculation unit based on the setting value of the secondary time constant and the calculation result obtained by the secondary resistance change amount calculation unit, the secondary time constant at that time. A vector control device for an induction motor, characterized in that the calculation is performed using this quadratic time constant.
JP4136400A 1992-05-28 1992-05-28 Vector control equipment for induction motor Pending JPH05336786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4136400A JPH05336786A (en) 1992-05-28 1992-05-28 Vector control equipment for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4136400A JPH05336786A (en) 1992-05-28 1992-05-28 Vector control equipment for induction motor

Publications (1)

Publication Number Publication Date
JPH05336786A true JPH05336786A (en) 1993-12-17

Family

ID=15174285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4136400A Pending JPH05336786A (en) 1992-05-28 1992-05-28 Vector control equipment for induction motor

Country Status (1)

Country Link
JP (1) JPH05336786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664581A (en) * 2012-04-17 2012-09-12 北京交通大学 Torque ripple control system caused by direct current side secondary ripples of high speed trains

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664581A (en) * 2012-04-17 2012-09-12 北京交通大学 Torque ripple control system caused by direct current side secondary ripples of high speed trains
CN102664581B (en) * 2012-04-17 2015-03-11 北京交通大学 Torque ripple control system caused by direct current side secondary ripples of high speed trains

Similar Documents

Publication Publication Date Title
EP1014558B1 (en) Method and apparatus of controlling an induction motor
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
JPH07110160B2 (en) Induction motor controller
JPH02254987A (en) Method and apparatus for control of induction motor
JP4238646B2 (en) Speed sensorless vector controller for induction motor
JPH07250500A (en) Variable speed controller for induction motor
JP2000037098A (en) Power conversion apparatus using speed sensor-less vector control
JP2943377B2 (en) Vector controller for induction motor
JP3674638B2 (en) Induction motor speed estimation method and induction motor drive device
JPH06225574A (en) Method and apparatus for controlling motor
JPH05336786A (en) Vector control equipment for induction motor
JPH07123798A (en) Speed sensorless vector control system for induction motor
JP4238652B2 (en) Speed sensorless vector control method and apparatus
JP2762617B2 (en) Vector controller for induction motor
JPH07123799A (en) Speed sensorless vector control system for induction motor
JPH0870598A (en) Sensorless vector control apparatus for induction motor speed
JP2007244200A (en) Speed control device of rotating electrical machine
JP2953044B2 (en) Vector controller for induction motor
JP2940167B2 (en) Controlling device for vector of induction motor
JP3770302B2 (en) Induction motor speed control device
JP2008011625A (en) Speed sensorless vector controller of induction motor and its control method
JPH06101954B2 (en) Induction motor vector controller
JPH04304184A (en) Vector control method for induction motor
JPH0530792A (en) Equipment for controlling induction motor
JP3123235B2 (en) Induction motor vector control device