JP3123235B2 - Induction motor vector control device - Google Patents
Induction motor vector control deviceInfo
- Publication number
- JP3123235B2 JP3123235B2 JP04193563A JP19356392A JP3123235B2 JP 3123235 B2 JP3123235 B2 JP 3123235B2 JP 04193563 A JP04193563 A JP 04193563A JP 19356392 A JP19356392 A JP 19356392A JP 3123235 B2 JP3123235 B2 JP 3123235B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- induction motor
- angular frequency
- change
- amn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は励磁インダクタンスの変
動補償を行うようにしたすべり周波数制御方式における
誘導電動機のベクトル制御装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vector control apparatus for an induction motor in a slip frequency control system for compensating for fluctuations in excitation inductance.
【0002】[0002]
【従来の技術】2次磁束とそれに直交する2次電流を非
干渉に制御する誘導電動機のベクトル制御が広く適用さ
れてきている。2. Description of the Related Art Vector control of an induction motor for controlling a secondary magnetic flux and a secondary current orthogonal to the secondary magnetic flux without interference has been widely applied.
【0003】このベクトル制御は、3相誘導電動機の場
合電流や磁束を、電源による回転磁界と同速度で回転す
る直交2軸のd−q座標系のベクトルとして取り扱い、
演算結果を3相電源の各相の電流指令値に換算して制御
する方法である。In this vector control, in the case of a three-phase induction motor, a current or a magnetic flux is treated as a vector of a dq coordinate system of two orthogonal axes rotating at the same speed as a rotating magnetic field generated by a power source.
This is a method in which the operation result is converted into a current command value of each phase of the three-phase power supply and controlled.
【0004】その具体的方法について述べると、d−q
座標系での電圧方程式は次の(1)式で表される。[0004] The specific method is as follows.
The voltage equation in the coordinate system is expressed by the following equation (1).
【0005】[0005]
【数1】 (Equation 1)
【0006】ただしωs=ω−ωr、Lσ=(L1L2−M
2)/L2である。Where ω s = ω−ω r , Lσ = (L 1 L 2 −M
2) / L 2.
【0007】ここでv1d,v1qは夫々1次電圧のd,q
軸成分、i1d,i1qは夫々1次電流のd,q軸成分、λ
2d,λ2qは夫々2次磁束のd,q軸成分、R1,R2は夫
々1次,2次抵抗、L1,L2,Mは夫々1次,2次,励
磁インダクタンス、ω,ωr,ωsは夫々1次電源角周波
数,回転子角周波数,すべり角周波数、Pはd/dtを
表すものである。Here, v 1d and v 1q are the primary voltages d and q, respectively.
Axis components, i 1d and i 1q are the d and q axis components of the primary current, λ
2d and λ 2q are the d and q axis components of the secondary magnetic flux, R 1 and R 2 are the primary and secondary resistances respectively, L 1 , L 2 and M are the primary and secondary, the excitation inductance, ω, ω r and ω s represent the primary power supply angular frequency, the rotor angular frequency, and the slip angular frequency, respectively, and P represents d / dt.
【0008】d−q座標系においてd軸を二次磁束上に
とればλ2q=0となる。このときλ2d=Φ2=一定、i
2d=0、i2q=i2となり直流機と同様なトルクと磁束
の直交制御が可能となる。If the d-axis is set on the secondary magnetic flux in the dq coordinate system, λ 2q = 0. At this time, λ 2d = Φ 2 = constant, i
2d = 0, i 2q = i quadrature control similar torque and flux and 2 next to the DC motor becomes possible.
【0009】一方二次磁束は次の関係がある。On the other hand, the secondary magnetic flux has the following relationship.
【0010】[0010]
【数2】 (Equation 2)
【0011】ベクトル制御条件よりi2d=0であり、
(2)式からλ2d=Mi1dとなる。According to the vector control condition, i 2d = 0,
From equation (2), λ 2d = Mi 1d .
【0012】また、λ2q=0より、i1q=−L2/M・
i2qとなり、i1qはトルク電流と比例する。From λ 2q = 0, i 1q = −L 2 / M ·
i 2q , where i 1q is proportional to the torque current.
【0013】次に(1)式4行目より(3)式が得ら
れ、この(3)式からすべり角周波数の条件を求める
と、ωsは(4)式で表される。Next, equation (3) is obtained from the fourth row of equation (1), and when the condition of the slip angular frequency is obtained from equation (3), ω s is expressed by equation (4).
【0014】[0014]
【数3】 (Equation 3)
【0015】以上がd軸上に二次磁束が一致するように
制御したときのベクトル制御条件である。従ってベクト
ル制御を行うためにはi1dをλ2d/Mに設定し、ωsを
(4)式が成り立つように制御することが必要である。The above is the vector control condition when the control is performed so that the secondary magnetic flux coincides with the d-axis. Therefore, in order to perform vector control, it is necessary to set i 1d to λ 2d / M and control ω s so that equation (4) is satisfied.
【0016】ここですべり角周波数ωsの演算に用いる
2次抵抗R2は周囲温度及び回転子の自己発熱などの温
度変化により抵抗値が変化するため、電動機の出力電圧
に基づいて抵抗値の変化分を推定し、この変化分により
すべり角周波数ωsの目標値を修正して、2次抵抗変化
による発生トルク変動を補償する必要がある。仮に2次
抵抗の変化分を無視したとすると、トルク制御精度やト
ルク応答が悪化する。このような2次抵抗の変化分の推
定を例えばインバータの出力電圧そのままを用いると1
次抵抗の変化分が取り込まれてしまうため、推定に用い
る信号としては、1次抵抗に左右されない信号であるこ
とが望ましい。Here, the resistance of the secondary resistor R 2 used for calculating the slip angular frequency ω s changes with the ambient temperature and temperature changes such as self-heating of the rotor, so that the resistance of the secondary resistor R 2 is determined based on the output voltage of the motor. It is necessary to estimate the change and correct the target value of the slip angular frequency ω s with the change to compensate for the generated torque change due to the change in the secondary resistance. If the change in the secondary resistance is neglected, the torque control accuracy and the torque response deteriorate. If such a change in the secondary resistance is estimated by using the output voltage of the inverter as it is, for example,
Since a change in the secondary resistance is taken in, it is desirable that the signal used for estimation is a signal that is not affected by the primary resistance.
【0017】こうしたことから図5に示す制御回路が既
に提案されている。図中1は励磁分電流指令部であり、
角周波数ωrがある値を越えるまでλ2d*/M*をi1d
の目標値i1d*とし、ωrがある値を越えるとi1d*を
小さくする。以下目標値あるいは理想値に*を付して示
すと、速度指令ωr*及びωrの偏差分を速度アンプ2を
通じてi1q*とし、i1d*,i1q*に基づいてd−q軸
上の一次電圧の理想値v1d*,v1q*を演算で求め、一
次抵抗と二次抵抗変化による電圧変動分の補正をi1d*
=i1d、i1q*=i1qとなるように制御すると、i1d*
=i1dを制御するPIアンプ31にはΔv1dが得られ、
i1q*=i1qを制御するPIアンプ32にはΔv1qが得
られる。Δv1d,Δv1qには一次抵抗と二次抵抗の変化
による電圧変動分を共に含んでいるため、一次抵抗変化
による電圧変動を含まない成分を求めることにより二次
抵抗変化の補償を行えば、一次抵抗変化に影響されない
補償が可能となる。そこで一次電流I1のベクトル上に
基準軸γを置いた回転座標γ−δ軸をとり、このδ軸の
一次電圧変動分Δv1δをすべり補正演算部33で求めて
いる。このΔv1δは一次抵抗R1を含まない式で表さ
れ、従って一次抵抗R1の影響を受けない。For this reason, a control circuit shown in FIG. 5 has already been proposed. In the figure, reference numeral 1 denotes an excitation current command unit.
Until the angular frequency ω r exceeds a certain value, λ 2d * / M * is i 1d
And the target value i 1d * of, ω r is the i 1d * is reduced when it exceeds a certain value. Hereinafter, when the target value or the ideal value is indicated with *, the deviation between the speed commands ω r * and ω r is set to i 1q * through the speed amplifier 2, and the dq axis is determined based on i 1d * and i 1q *. The ideal values v 1d *, v 1q * of the above primary voltage are obtained by calculation, and the correction of the voltage fluctuation due to the change in the primary resistance and the secondary resistance is i 1d *.
= I 1d , i 1q * = i 1q , i 1d *
Δv 1d is obtained for the PI amplifier 3 1 that controls = i 1d ,
i 1q * = i is the PI amplifier 3 2 for controlling 1q Delta] v 1q is obtained. Since Δv 1d and Δv 1q include both the voltage change due to the change in the primary resistance and the secondary resistance, if the component that does not include the voltage change due to the change in the primary resistance is obtained, the compensation for the change in the secondary resistance is performed. Compensation that is not affected by the primary resistance change is possible. So taking the rotating coordinate gamma-[delta] axes spaced reference axis gamma on the vector of the primary current I 1, are determined by the primary voltage change Delta] v 1 [delta] a slip correction calculation unit 3 3 of the [delta] axis. This Δv 1 δ is represented by an expression not including the primary resistance R 1 , and thus is not affected by the primary resistance R 1 .
【0018】図6はd−q軸及びγ−δ軸と電圧、電流
との関係を示すベクトル図、図7は一次電圧変動分を示
すベクトル図であり、図6においてV、Eは夫々一次電
圧、二次電圧、図7において、Δv1は一次電圧変動
分、Δv1γ,Δv1δは夫々その変動分のγ軸成分、δ
軸成分、φはγ軸とd軸との位相、I0は励磁分電流、
I2はトルク分電流である。Δv1δは次の(5)式によ
り表される。FIG. 6 is a vector diagram showing the relationship between the dq axis and the γ-δ axis and the voltage and current, and FIG . 7 is a vector diagram showing the primary voltage fluctuation . In FIG. 6, V and E represent the primary voltage, respectively . In FIG. 7, Δv 1 is the primary voltage variation, Δv 1 γ, Δv 1 δ are the γ-axis components of the variation, δ
Axis component, φ is phase between γ axis and d axis, I 0 is excitation current,
I 2 is the torque current. Δv 1 δ is represented by the following equation (5).
【0019】 Δv1δ=−Δv1d・sinφ+Δv1qcosφ…(5) ただしcosφ=I0/I1=i1d/i1γ、sinφ=I2/I
1=i1q/i1γ そしてすべり補正演算部33ではΔv1δに基づいて2次
抵抗変化分に対応するすべり角周波数の修正分Δωsを
演算で求め、すべり角周波数演算部34で求めたωs*と
Δωsとの加算値をすべり角周波数の目標値とし、これ
に回転子角周波数ωrを加算して一次電圧の角周波数ω
=dθ/dtの目標値としている。図5中35は極座標
変換部、36は座標変換部、41はPWM回路、42はイ
ンバータ、IMは誘導電動機、PPはパルスピックアッ
プ部、43は速度検出部である。Δv 1 δ = −Δv 1d · sin φ + Δv 1q cos φ (5) where cos φ = I 0 / I 1 = i 1d / i 1 γ and sin φ = I 2 / I
1 = i 1q / i 1 γ and obtains a correction amount [Delta] [omega s of the slip angular frequency corresponding to the secondary resistance variation based on the slip correction calculation unit 3, 3 Delta] v 1 [delta] in operation, the slip angular frequency calculation unit 3 4 The added value of ω s * and Δω s obtained in the above is set as the target value of the slip angular frequency, and the rotor angular frequency ω r is added thereto, and the angular frequency of the primary voltage
= Dθ / dt. 5 3 5 polar conversion unit, the 3 6 coordinate conversion unit, the 4 1 PWM circuit, 4 2 inverters, IM induction motor, PP pulse pickup unit, 4 3 is a speed detecting unit.
【0020】[0020]
【発明が解決しようとする課題】(a)一次電圧変動分
Δv1d,Δv1qは一次抵抗の変動分及び二次抵抗の変動
分を共に含んでいるため、図5の回路では、すべり補正
演算部33にてΔv1d,Δv1qから更に一次抵抗変化の
影響を受けないΔv 1 δを算出し、更にこのΔv1δから
Δωrを算出している。(A) Since the primary voltage fluctuations Δv 1d and Δv 1q include both the fluctuation of the primary resistance and the fluctuation of the secondary resistance, the circuit shown in FIG. Delta] v 1d in part 3 3, further calculates a Delta] v 1 [delta] that is not affected by the primary resistance change from Delta] v 1q, calculates the [Delta] [omega r further from the Delta] v 1 [delta].
【0021】(b)界磁制御を行う場合にはλ2dとi1d
とは(1)式3行目より次の(6)式の関係にある。ま
た、λ2q=0であるから(7)式が成り立つ。(B) When performing field control, λ 2d and i 1d
Is in the relationship of the following equation (6) from the third line of the equation (1). Also, since λ 2q = 0, equation (7) holds.
【0022】[0022]
【数4】 (Equation 4)
【0023】(7)式より界磁制御時にはi1dはλ2dの
変化に対して一次進みで制御されることがわかる。つま
り界磁指令λ2d*が変化しているときはλ2d=Mi1dは
成り立たない。From equation (7), it can be seen that during field control, i 1d is controlled in a first-order manner with respect to a change in λ 2d . That is, when the field command λ 2d * is changing, λ 2d = Mi 1d does not hold.
【0024】しかしながら従来の回路では、界磁制御に
対しては考慮していないため、励磁電流i1dを一定とし
て、つまりi1d=λ2d/Mとして理論的展開を行い、す
べり補正演算を実行していた。このため界磁制御領域で
は、すべり角周波数の設定値を正確に演算することがで
きず、有効な方法ではなかった。ベクトル制御に用いる
誘導電動機の等価回路は図8に示すように構成され、励
磁インダクタンスM′は周波数と励磁電流により変化
し、図9のような特性をしめす。そのためM′とI0比
を一定値として制御すると正確なトルク制御が不可能と
なる。特に、定出力領域でのM′変動は大きく、定出力
でのトルク精度が低下するおそれがある。However, in the conventional circuit, since the field control is not taken into consideration, the theoretical development is performed with the excitation current i 1d constant, that is, i 1d = λ 2d / M, and the slip correction calculation is executed. Was. For this reason, in the field control region, the set value of the slip angular frequency cannot be accurately calculated, and is not an effective method. The equivalent circuit of the induction motor used for the vector control is configured as shown in FIG. 8, and the exciting inductance M 'changes depending on the frequency and the exciting current, and has characteristics as shown in FIG. Therefore, if the ratio between M ′ and I 0 is controlled to a constant value, accurate torque control becomes impossible. In particular, the variation of M 'in the constant output region is large, and the torque accuracy at the constant output may be reduced.
【0025】上記のように、励磁指令λ2d*/M*を図
9に示す定トルク範囲では一定に制御するが、定出力範
囲では図9に示すように回転子角周波数ωrに反比例し
て制御する。このため、電動機鉄心の磁気飽和特性によ
り界磁制御を行う定出力範囲では大幅に励磁インダクタ
ンスM′が変動し、トルク制御精度が低下することにな
る。[0025] As described above, the excitation command λ 2d * / M * is controlled to be constant in the constant torque range shown in FIG. 9, is in the constant output range is inversely proportional to the rotor angular frequency omega r as shown in FIG. 9 Control. Therefore, in a constant output range in which the field control is performed by the magnetic saturation characteristics of the motor core, the excitation inductance M 'fluctuates greatly, and the torque control accuracy is reduced.
【0026】本発明の目的は上記の事情に鑑みてなされ
たもので、全運転範囲で励磁インダクタンスの変動を補
償することにより、トルク制御精度の向上を図るように
した誘導電動機のベクトル制御装置を提供することにあ
る。An object of the present invention has been made in view of the above circumstances, and a vector control device for an induction motor in which the accuracy of torque control is improved by compensating for fluctuations in excitation inductance over the entire operation range. To provide.
【0027】[0027]
【課題を解決するための手段及び作用】本発明は上記の
目的を達成するために、第1発明は誘導電動機の電源角
周波数と同期して回転する回転座標であって、二次磁束
を基準軸とする座標をd−q座標とすると、誘導電動機
の一次電流のd軸成分及びq軸成分の目標値i1d*,i
1q*を夫々算出する第1の手段と、d−q軸に対し位相
φがtan-1(i1q*/i1d*)異なりかつ一次電流I1を
基準軸とする座標をγ−δ座標とすると、i1d*,i1q
*に基づいて一次電流のγ軸成分の目標値i1γ*(=
I1)及び前記位相φを算出する第1の座標変換部と、
λ2d*と励磁インダクタンスの目標値M*との比λ2d*
/M*、第1の座標変換部の演算結果及び電源角周波数
ω 0 に基づいて一次電圧のγ,δ軸成分の目標値v1γ
*,v1δ*を夫々算出する第2の手段と、誘導電動機
の一次電流の検出値をγ−δ座標の各軸成分i1γ,i1
δに変換する第2の座標変換部と、二次時定数の設定値
を含む演算式に基づいてすべり角周波数を演算するすべ
り角周波数演算部を備えた誘導電動機のベクトル制御装
置において、前記i1d*を算出する手段は、誘導電動機
の回転子角周波数に応じた二次磁束のd軸成分の目標値
λ 2d */M*を出力する手段と、このλ 2d */M*を励
磁インダクタンス変化分AMnで除算して出力する手段
と、この手段から出力された値を一次進み要素演算部に
入力してi 1d *を算出する手段とを有し、前記λ 2d */
M*を励磁インダクタンス変化分AMnで除算して出力
する手段から出力された値、励磁インダクタンス変化分
AMnおよび電源角周波数ω 0 を下記演算式で演算し、得
られた値にq軸成分の目標値i 1q *を加算してトルク指
令値i 1q ’*を算出する手段とを設けたことを特徴とす
るものである。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a first invention, which is a rotating coordinate system which rotates in synchronization with a power supply angular frequency of an induction motor and uses a secondary magnetic flux as a reference. Assuming that the coordinates used as axes are dq coordinates, target values i 1d *, i of the d-axis component and the q-axis component of the primary current of the induction motor
A first means for calculating 1q *, respectively, and a coordinate having a phase φ different from tan -1 (i 1q * / i 1d *) with respect to the dq axes and having the primary current I 1 as a reference axis is a γ-δ coordinate. Then, i 1d *, i 1q
* Based on the target value i 1 γ * (=
I 1 ) and a first coordinate converter for calculating the phase φ;
λ 2d * and the target value M * ratio of the λ 2d of magnetizing inductance *
/ M *, calculation result of first coordinate transformation unit and power supply angular frequency
Based on ω 0 , the target values v 1 γ of the γ and δ axis components of the primary voltage
*, V 1 δ *, respectively, and the primary current detection value of the induction motor is converted to each axis component i 1 γ, i 1 of the γ-δ coordinate.
a vector control device for an induction motor, comprising: a second coordinate conversion unit for converting into δ; and a slip angular frequency calculation unit for calculating a slip angular frequency based on an arithmetic expression including a set value of a secondary time constant. The means for calculating 1d * is the target value of the d-axis component of the secondary magnetic flux according to the rotor angular frequency of the induction motor.
and means for outputting a λ 2d * / M *, this λ 2d * / M * the excitation
Means for output by dividing by the magnetic inductance change AMn
And the value output from this means to the first-order element operation unit
Means for calculating i 1d * by inputting the λ 2d * /
Divide M * by exciting inductance change AMn and output
Output from the means for changing the excitation inductance
AMn and the power supply angular frequency ω 0 are calculated by
The target value i 1q * of the q-axis component is added to the obtained value, and the torque
Means for calculating the command value i 1q ′ * is provided .
【数15】 (Equation 15)
【0028】本発明の第2発明は、前記一次進み要素演
算部には微分項を有し、この微分項に前記λ 2d */M*
を励磁インダクタンス変化分AMnで除算した出力を加
算してi 1d *を算出することを特徴とするものである。According to a second aspect of the present invention, there is provided the primary advance element
The calculation unit has a differential term, before Symbol λ 2d to this differential term * / M *
And i 1d * is calculated by adding an output obtained by dividing the value by the exciting inductance change AMn .
【0029】[0029]
【0030】本発明の第3発明は、励磁インダクタンス
変化分AMnが、δ軸誤差電圧値△v1δを、励磁インダ
クタンスの初期設定値M2*/L2*、電源角周波数ω0
および励磁指令λ2d*/M*を乗算した値で除算して、
励磁インダクタンス変化分AMnを電源角周波数ω 0 に対
してデータテーブル化とするようにしたことを特徴とす
るものである。According to a third aspect of the present invention, there is provided an exciting inductance.
The amount of change AMn represents the δ-axis error voltage value △ v 1 δ, the initial setting value M 2 * / L 2 * of the exciting inductance, the power supply angular frequency ω 0
And the excitation command λ 2d * / M *,
Versus the exciting inductance variation AMn to the power source angular frequency ω 0
It is characterized in that it is made into a data table.
【0031】本発明の第4発明は、前記データテーブル
化が、励磁インダクタンス変化分AMnを励磁指令λ2d
*/M*に対して行うことを特徴とするものである。According to a fourth aspect of the present invention, the data table
The excitation inductance change AMn to the excitation command λ 2d
* / M *.
【0032】本発明の第5発明は、データテーブル化さ
れた励磁インダクタンス変化分AMnを使用して励磁指
令λ2d*/M*を除算し、得られた値を一次進み要素演
算部に入力して、その出力に誘導電動機の一次電流のd
軸成分の目標値i1d*を算出することを特徴とするもの
である。According to a fifth aspect of the present invention, the excitation command λ 2d * / M * is divided using the excitation inductance change AMn in the form of a data table, and the obtained value is input to the first-order advance element calculation unit. The output of the primary current of the induction motor
It is characterized in that a target value i 1d * of the axis component is calculated.
【0033】本発明の第6発明は、データテーブル化さ
れた励磁インダクタンス変化分AMnを使用して励磁指
令λ2d*/M*を除算し、得られた値と一次進み要素演
算部の微分項とを加算して誘導電動機の一次電流のd軸
成分の目標値i1d*を算出することを特徴とするもので
ある。According to a sixth aspect of the present invention, the excitation command λ 2d * / M * is divided using the excitation inductance change AMn in the form of a data table, and the obtained value is divided by the differential term of the first-order advanced element calculation unit. And the d-axis of the primary current of the induction motor
It is characterized by calculating a target value i 1d * of the component .
【0034】本発明の第7発明は、励磁指令λ2d*/M
*とデータテーブル化された励磁インダクタンス変化分
AMnを前記鉄損補償回路に入力して鉄損補償電流を演
算し、得られた補償電流出力と誘導電動機の一次電流の
q軸成分の目標値i1q*とを加算してトルク指令値
i1q’*を算出することを特徴とするものである。According to a seventh aspect of the present invention, an excitation command λ 2d * / M
* And the change AMn in the data table are input to the iron loss compensation circuit to calculate the iron loss compensation current. The obtained compensation current output and the primary current of the induction motor are calculated .
The torque command value i 1q ′ * is calculated by adding the target value i 1q * of the q-axis component .
【0035】[0035]
【実施例】図1は本発明の第1実施例を示す回路図であ
り、図5と同符号のものは同一部分を示している。11
は速度検出部43よりの角周波数ωrに応じてλ2d*/M
*を出力する二次磁束指令アンプであり、ωrがある値
を越えて界磁制御領域に入るとωrに応じてλ2d*/M
*は小さくなる。12は(7)式、即ちλ2d*/M*
(1+L2*/R2*・S)の演算を実行する一次進み要
素演算部である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention, in which the same reference numerals as in FIG. 5 denote the same parts. 1 1
Depending on the angular frequency ω r of than the speed detection unit 4 3 λ 2d * / M
* Is a secondary magnetic flux command amplifier that outputs *, and when ω r exceeds a certain value and enters the field control region, λ 2d * / M according to ω r
* Becomes smaller. 1 2 is the formula (7), that is, λ 2d * / M *
This is a first-order advanced element operation unit that executes the operation of (1 + L 2 * / R 2 * · S).
【0036】51は第1の座標変換部であって、i
1d*、i1q*に基づいて一次電流I1を基準軸としたγ
−δ座標におけるi1γ*とd軸とγ軸との位相差φと
を演算する機能を有し、具体的には次式の演算を実行す
る。5 1 is a first coordinate converter, i
Γ based on primary current I 1 based on 1d * and i 1q *
It has a function of calculating i 1 γ * on the −δ coordinate and the phase difference φ between the d axis and the γ axis, and specifically executes the calculation of the following equation.
【0037】[0037]
【数5】 (Equation 5)
【0038】52は一次電圧の目標値を演算するための
理想電圧演算部であり、第1の座標変換部51より出力
されたsinφ、I1、cosφ及び二次磁束指令アンプ11よ
りのλ2d*/M*並びに電源角周波数ω0を用いて次の
(8)式の演算を実行し、v1γ*,v1δ*を演算す
る。[0038] 5 2 is an ideal voltage calculation unit for calculating a target value of the primary voltage, the first coordinate conversion unit 5 1 than output the sin [phi, I 1, from cosφ and the secondary magnetic flux instruction amplifier 1 1 The following equation (8) is executed using λ 2d * / M * and the power supply angular frequency ω 0 to calculate v 1 γ * and v 1 δ *.
【0039】[0039]
【数6】 (Equation 6)
【0040】6は第2の座標変換部であり、一次電流の
検出値iu,iwをγ−δ座標の各軸成分i1γ,i1δに
変換する。これらi1γ,i1δは夫々目標値i1γ*、
i1δ*(=0)と比較され、その偏差分が夫々電流制
御アンプであるPIアンプ7,8に入力される。PIア
ンプ7,8からは夫々Δv1γ,Δv1δが出力され、既
述したようにΔv1γはv1γ*と、またΔv1δはv1δ
*と夫々加算される。Reference numeral 6 denotes a second coordinate conversion unit, which converts the primary current detection values i u , i w into respective axis components i 1 γ, i 1 δ of the γ-δ coordinate. These i 1 γ and i 1 δ are the target values i 1 γ *,
is compared with i 1 δ * (= 0), and the deviation is input to PI amplifiers 7 and 8 which are current control amplifiers, respectively. Δv 1 γ and Δv 1 δ are output from the PI amplifiers 7 and 8, respectively. As described above, Δv 1 γ is v 1 γ * and Δv 1 δ is v 1 δ
* Is added to each.
【0041】34はすべり角周波数演算部であり、λ2d
*/M*及びi1q*を取り込みωsを求める機能を有す
る。ところでコンピュータにより図1の回路の各部の演
算を実行する場合には次のようにしてωsを算出する。
即ちKの演算やすべり角周波数演算を含む一連の演算は
クロック信号により瞬時に行われ、すべり角周波数演算
部34における(n−1)回目の演算で求めた2次抵抗
値をn回目の演算における設定値とする。n回目の演算
で求めたK及びR2を夫々Kn,R2nとして表し、R2nの
初期値R20に予め設定した値R2*を割り当てると、1
回目からn回目までの演算は次のようになる。[0041] 3 4 is a slip angular frequency calculating unit, λ 2d
* / M * and i 1q * are taken in and ω s is obtained. By the way, when the computer executes the operation of each part of the circuit of FIG. 1, ω s is calculated as follows.
That sequence of operations including operations and the slip angular frequency calculation of K is performed instantaneously by the clock signal, the slip angular frequency calculation unit 3 4 (n-1) th secondary resistance value obtained by the calculation n th of This is the set value in the calculation. n th K and R 2 respectively K n obtained by the calculation expressed as R 2n, assigning a value R 2 * is set in advance in the initial value R 20 of R 2n, 1
The calculations from the first to the nth time are as follows.
【0042】 1回目 R21=(1+K1)・R20=(1+K1)・R2* 2回目 R22=(1+K2)・R21=(1+K2)・(1+K1)・R2* : n回目 R2n=(1+Kn)・R2(n-1)=(1+Kn)(1+Kn-1)…(1+K1)・ R2* 従ってn回目の演算で求めるωsをωsnとして表すと、
ωsnは次の(9)式となり、 ωsn=(1+Kn)・ωs(n-1)……(9) (n−1)回目の演算で求めたωs(n-1)を記憶しておい
て、(9)式により得られたKnを用いることによりω
snが求められる。First time R 21 = (1 + K 1 ) · R 20 = (1 + K 1 ) · R 2 * Second time R 22 = (1 + K 2 ) · R 21 = (1 + K 2 ) · (1 + K 1 ) · R 2 * : N-th time R 2n = (1 + K n ) · R 2 (n-1) = (1 + K n ) (1 + K n-1 ) ... (1 + K 1 ) · R 2 * Therefore, ω s obtained in the n-th calculation is ω sn Expressed as
ω sn is given by the following equation (9). ω sn = (1 + K n ) · ω s (n-1) (9) The ω s (n-1) obtained in the (n−1) th operation is keep in stores, omega by using K n obtained by (9)
sn is required.
【0043】この場合初期値ωs1はωs1=(1+K1)
・R2*・1/L2*・i1q*/(λ2d*/M*)であ
る。こうして得られたωsと電動機IMの回転子角周波
数検出値ωrとを加算し、その加算値ω0を電源角周波数
の目標値とする。In this case, the initial value ω s1 is ω s1 = (1 + K 1 )
· R 2 * · 1 / L 2 * · i 1q * / (λ 2d * / M *). The obtained ω s and the detected rotor angular frequency ω r of the electric motor IM are added, and the added value ω 0 is set as a target value of the power supply angular frequency.
【0044】10は二次抵抗変化分アンプで、このアン
プ10の出力Kは掛算器11を介してすべり角周波数演
算部34の出力ωs*と加算する。掛算器11にはωs*
が与えられる。上記のように二次抵抗補償アンプ出力と
して二次抵抗変化分Kを得るようにすれば、ωs*が変
化したときでも、アンプ出力Kは一定値でもよいことに
なる。そのため、トルク分電流指令i1q*や励磁分電流
指令λ2d*/M*が変化して、ωs*が急変しても、二
次抵抗補償の応答は良好となる。[0044] 10 is a secondary resistance variation amplifier, the output K of the amplifier 10 adds the output omega s * and the slip angular frequency calculation unit 3 4 via the multiplier 11. The multiplier 11 has ω s *
Is given. If the secondary resistance change K is obtained as the secondary resistance compensation amplifier output as described above, the amplifier output K may be a constant value even when ω s * changes. Therefore, even when the torque component current command i 1q * and the excitation component current command λ 2d * / M * change, and ω s * changes suddenly, the response of the secondary resistance compensation becomes good.
【0045】次に励磁インダクタンスM′の補償回路1
2について述べる。この回路12は無負荷運転時に電動
機の速度を全運転範囲の何点かに設定し(例えば1/2
0・Nmax〜Nmaxまでの20点での運転を行う。
Nmaxは最高回転数である。)、各々の測定点におい
て、ΔV1δnまたはΔV1δIn(nは各々の測定点に相
当するデータ番号)を測定し、次の(10)式から励磁
インダクタンス変化分AMnを求める。Next, a compensation circuit 1 for the excitation inductance M '
2 will be described. This circuit 12 sets the speed of the motor to some point in the entire operation range during no-load operation (for example, 1/2).
The operation is performed at 20 points from 0 · Nmax to Nmax.
Nmax is the maximum rotation speed. ), In each of the measuring points [Delta] V 1 [delta] n or ΔV 1 δ In (n measures the data number) corresponding to each measurement point, obtains an exciting inductance variation A Mn from the following equation (10).
【0046】[0046]
【数7】 (Equation 7)
【0047】上記(10)式において、Δv1δnは測定
点nでのδ軸誤差電圧、ωonは測定点nでの一次角周波
数である。上記励磁インダクタンス変化分AMnを用いて
励磁インダクタンスM′n*を次の(11)式より求め
る。[0047] In the above equation (10), Δv 1 δ n is [delta] axis error voltage at a measuring point n, omega on is primary angular frequency at the measuring point n. With the exciting inductance variation A Mn Request exciting inductance M 'n * from the following equation (11).
【0048】[0048]
【数8】 (Equation 8)
【0049】上記(11)式において、M2*/L2*は
励磁インダクタンスの初期設定値である。上記式のM′
n*を用いて図10に示すような励磁インダクタンスの
変化データを作成し、データ間は直線補間する。この
M′*を用いて次の(12)式による理想電圧演算を行
う。In the above equation (11), M 2 * / L 2 * is an initial setting value of the exciting inductance. M ′ in the above equation
The change data of the excitation inductance as shown in FIG. 10 is created using n *, and linear interpolation is performed between the data. Using this M '*, an ideal voltage calculation is performed by the following equation (12).
【0050】[0050]
【数9】 (Equation 9)
【0051】また、励磁指令λ2do*/M*のM*を
M′*を代用して演算することにより、励磁インダクタ
ンス変化に対応して励磁指令も変化させる。これにより
二次磁束λ2dが正確に制御され、全運転範囲におけるト
ルク制御精度が向上する。Further, by calculating M * of the excitation command λ 2do * / M * instead of M ′ *, the excitation command is also changed corresponding to the change of the excitation inductance. As a result, the secondary magnetic flux λ 2d is accurately controlled, and the torque control accuracy in the entire operation range is improved.
【0052】上述のように無負荷運転時に測定した励磁
インダクタンス変化分AMnデータを用いて励磁インダク
タンスを補償するときに、励磁インダクタンス設定値
M′*=M2*/L2*と励磁指令λ2d*/M*のM*
(等価的にM′*として)を補償する必要がある。ここ
で、理想電圧演算8式におけるv1δ*,v1δ*を算出
するときにM*×λ2d*/M*の演算がある。しかし、
ここではM′*/M*となり、等価的にM′変動の影響
が相殺される。As described above, when the exciting inductance is compensated using the exciting inductance change A Mn data measured during the no-load operation, the exciting inductance set value M ′ * = M 2 * / L 2 * and the exciting command λ M * of 2d * / M *
(Equivalently as M '*). Here, when calculating v 1 δ * and v 1 δ * in the ideal voltage calculation equation (8), there is a calculation of M * × λ 2d * / M *. But,
Here, M ′ * / M *, and the effect of M ′ fluctuation is equivalently canceled.
【0053】また、すべり周波数演算は次式(13)式
から得られる。The slip frequency calculation is obtained from the following equation (13).
【0054】[0054]
【数10】 (Equation 10)
【0055】ただし、R′2=(M/L2)2・R2,M′
=M2/L2である。ωs*の演算においてもM′*/M
*の項が現われるため、等価的にM′変動の影響が相殺
される。以上よりM′変動補償は励磁電流指令i1d*を
演算する部分のみ実行すればよいことになる。そこで、
図1に示すようにM′補償回路12からの励磁インダク
タンス変化分AMnとλ2d*/M*とを割算部13で割算
した値を一次進み演算部12に入力すればM′変動の影
響が相殺できるようになる。Where R ' 2 = (M / L 2 ) 2 · R 2 , M'
= A M 2 / L 2. M ′ * / M in the calculation of ω s *
Since the term “*” appears, the effect of the M ′ fluctuation is offset equivalently. As described above, the M 'fluctuation compensation only needs to be executed for the portion for calculating the excitation current command i 1d *. Therefore,
Figure 1 As shown in M 'if the input to the exciting inductance variation A Mn and λ 2d * / M * and the division unit 13 calculating unit 1 2 division value primary proceeds at from the compensation circuit 12 M' The effects of fluctuations can be offset.
【0056】図2は第2実施例を示すもので、図2にお
いて、まず図1における一次進み要素演算部12はM′
補償を行わないときはi1d*は次式で演算される。[0056] Figure 2 shows a second embodiment, in FIG. 2, the primary lead element calculation unit 1 2 in Figure 1 is M '
When no compensation is performed, i 1d * is calculated by the following equation.
【0057】[0057]
【数11】 [Equation 11]
【0058】上記(14)式において、Sの付いた微分
項ではλ2d*/M*×M*が現われる。そのため、一次
進み要素の微分時定数の項はM′変動の影響が相殺され
る。これには図2のように構成すればよい。つまり、一
次進み微分項はM′補償が不要となる。この図2におけ
るi1d*を示すと次式のようになる。In the above equation (14), λ 2d * / M * × M * appears in the differential term with S. Therefore, the term of the differential time constant of the first-order advance element cancels out the influence of the M ′ variation. This may be configured as shown in FIG. That is, the first-order advanced differential term does not require M 'compensation. The following equation shows i 1d * in FIG.
【0059】[0059]
【数12】 (Equation 12)
【0060】第3実施例は図1に示す鉄損補償を行う場
合におけるM′変動補償である。鉄損補償電流IRMはI
RM=Rm*/M*×λ2d*/M*×1/ωoで与えられる
ので、M′変動の影響を受ける。このため、励磁インダ
クタンス変化分AMnを鉄損失補償回路14のRm*/M
*の項に与えることによりM′変動の補償を行う。この
ときの、補償電流T RM (図1、図2ではiR m と表示す
る)の演算式を示すと(16)式のようになる。また、
R m は等価鉄損抵抗である。 The third embodiment is M 'variation compensation in the case of performing iron loss compensation shown in FIG. The iron loss compensation current I RM is I
RM = R m * / M * × λ 2d * / M * × 1 / ω o, which is affected by M ′ fluctuation. Therefore, the excitation inductor
The inductance change A Mn is calculated as R m * / M of the iron loss compensation circuit 14.
Compensation for the variation of M 'is performed by giving to the item of *. this
The compensation current T RM (in FIG. 1 and FIG. 2, indicated by iR m)
When showing the operation expression of that) (16) becomes as expression. Also,
R m is an equivalent iron loss resistance.
【0061】[0061]
【数13】 (Equation 13)
【0062】なお、15はデットタイム補償回路付PW
M回路である。上述した第1〜第3実施例は定トルク範
囲でも周波数によってM′がわずかでも変化することを
考慮して、電源角周波数(出力周波数)ω0に対する
M′の変化データを測定して補償する手段であった。し
かし、鉄鋼ラインの巻取機などでは、張力一定制御を行
うために、直流機と同様な制御を行いたい用途がある。
つまり、一次電流の目標値(トルク分電流)i1q*を張
力指令とし、巻太りによる補償を励磁指令λ2d*/M*
により行う。このとき、励磁指令は巻取ったコイル径に
比例して変化するようになる。このような場合、励磁指
令は周波数でなくコイル径により決定されるため、M′
変動データ(あるいはAMn 変化データ)は励磁指令に対
する変化データとしてデータテーブル化させておくと、
処理が容易になる。Reference numeral 15 denotes a PW with a dead time compensation circuit.
It is an M circuit. In the above-described first to third embodiments, the change in M 'with respect to the power supply angular frequency (output frequency) [omega] 0 is measured and compensated for in consideration of the fact that M' slightly changes depending on the frequency even in the constant torque range. It was a means. However, there are applications where it is desired to perform control similar to that of a DC machine in order to perform constant tension control in a winding machine of a steel line.
That is, the target value (current for torque) i 1q * of the primary current is set as the tension command, and the compensation due to the winding thickening is performed as the excitation command λ 2d * / M *.
Performed by At this time, the excitation command changes in proportion to the wound coil diameter. In such a case, the excitation command is determined not by the frequency but by the coil diameter.
If the fluctuation data (or A Mn change data ) is made into a data table as change data for the excitation command,
Processing becomes easier.
【0063】そこで、第4実施例として無負荷運転時に
電動機の速度を定出力範囲の何点かに設定し、各々の測
定点において、△v1δnを測定して(10)式より得ら
れる励磁インダクタンス変化分AMnを求める。これを、
励磁指令(定出力範囲ではλ2d*/M*∝1/ωrとな
る。)に対するデータテーブル化を行う。これには求め
たAMnデータを図4に示す第4実施例のブロック図に示
す励磁インダクタンス補償回路12′を用いて図4に示
すようにデータテーブル化し、励磁指令値によりAMnを
求める。図4において、データ間(測定点)は直線補間
してAMnを算出する。なお、第4実施例は第1実施例と
同一部分は同一符号を付してその説明を省略した。[0063] Therefore, the speed of the motor during no-load operation as the fourth embodiment is set to several points of a constant output range, obtained from the respective measuring points, △ v by measuring the 1 δ n (10) formula A change in excitation inductance A Mn is determined. this,
A data table is prepared for the excitation command (λ 2d * / M * ∝1 / ω r in the constant output range). This was a data table as shown in FIG. 4 with the fourth embodiment excitation inductance compensation circuit 12 shown in the block diagram of a 'shown in FIG. 4 A Mn data determined obtains the A Mn by excitation command value. In FIG. 4, A Mn is calculated by linear interpolation between data (measurement points). In the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
【0064】[0064]
【発明の効果】以上述べたように、本発明によれば、全
運転範囲で励磁インダクタンス変動の補償を行うことに
より、トルク制御精度の向上を図ることができる。ま
た、張力一定制御を行うため、励磁指令は巻取ったコイ
ル径に比例して変化するようになり、トルク制御精度が
良くなる。As described above, according to the present invention, the torque control accuracy can be improved by compensating for the variation in the excitation inductance in the entire operation range. In addition, since the constant tension control is performed, the excitation command changes in proportion to the wound coil diameter, and the torque control accuracy is improved.
【図1】本発明の第1実施例および第3実施例を示すブ
ロック図、FIG. 1 is a block diagram showing a first embodiment and a third embodiment of the present invention;
【図2】本発明の第2実施例の要部を示すブロック図、FIG. 2 is a block diagram showing a main part of a second embodiment of the present invention;
【図3】本発明の第4実施例を示すブロック図、FIG. 3 is a block diagram showing a fourth embodiment of the present invention;
【図4】励磁指令に対する励磁インダクタンス変化デー
タを示す特性図、FIG. 4 is a characteristic diagram showing excitation inductance change data with respect to an excitation command;
【図5】従来例を示すブロック図、FIG. 5 is a block diagram showing a conventional example;
【図6】従来例を説明するためのベクトル図、FIG. 6 is a vector diagram for explaining a conventional example;
【図7】従来例を説明するためのベクトル図、FIG. 7 is a vector diagram for explaining a conventional example;
【図8】誘導電動機の等価回路図、FIG. 8 is an equivalent circuit diagram of the induction motor,
【図9】一次角周波数ω0と励磁インダクタンスM′お
よびω0と励磁指令との関係を示す特性図、FIG. 9 is a characteristic diagram showing a relationship between a primary angular frequency ω 0 , excitation inductances M ′ and ω 0, and an excitation command;
【図10】励磁インダクタンスの変化データを示す特性
図。FIG. 10 is a characteristic diagram showing change data of excitation inductance.
【符号の説明】 11…二次磁束指令アンプ、12…一次進み要素演算部、
2…速度アンプ、34…すべり角周波数演算部、51…第
1の座標変換部、52…理想電圧演算部、6…第2の座
標変換部、10…二次抵抗変化分演算部、12,12′
…M′補償回路、13…割算部、14…鉄損補償回路。[Explanation of Signs] 1 1 ... Secondary magnetic flux command amplifier, 1 2 ... Primary lead element calculation unit,
2 ... speed amplifier, 3 4 ... slip angular frequency calculation unit, 5 1 ... first coordinate conversion unit, 5 2 ... ideal voltage calculation unit, 6 ... second coordinate conversion unit, 10 ... secondary resistance change calculation section , 12, 12 '
... M 'compensation circuit, 13 ... divider, 14 ... iron loss compensation circuit.
Claims (7)
転する回転座標であって、二次磁束を基準軸とする座標
をd−q座標とすると、誘導電動機の一次電流のd軸成
分及びq軸成分の目標値i1d*,i1q*を夫々算出する
第1の手段と、 d−q軸に対し位相φがtan-1(i1q*/i1d*)異な
りかつ一次電流I1を基準軸とする座標をγ−δ座標と
すると、i1d*,i1q*に基づいて一次電流のγ軸成分
の目標値i1γ*(=I1)及び前記位相φを算出する第
1の座標変換部と、 λ2d*と励磁インダクタンスの目
標値M*との比λ2d*/M*、第1の座標変換部の演算
結果及び電源角周波数ω 0 に基づいて一次電圧のγ,δ
軸成分の目標値v1γ*,v1δ*を夫々算出する第2の
手段と、 誘導電動機の一次電流の検出値をγ−δ座標の各軸成分
i1γ,i1δに変換する第2の座標変換部と、 二次時定数の設定値を含む演算式に基づいてすべり角周
波数を演算するすべり角周波数演算部を備えた誘導電動
機のベクトル制御装置において、 前記i1d*を算出する手段は、誘導電動機の回転子角周
波数に応じた二次磁束のd軸成分の目標値λ 2d */M*
を出力する手段と、このλ 2d */M*を励磁インダクタ
ンス変化分AMnで除算して出力する手段と、この手段
から出力された値を一次進み要素演算部に入力してi 1d
*を算出する手段とを有し、 前記λ 2d */M*を励磁インダクタンス変化分AMnで
除算して出力する手段から出力された値、励磁インダク
タンス変化分AMnおよび電源角周波数ω 0 を下記演算式
で演算し、得られた値にq軸成分の目標値i 1q *を加算
してトルク指令値i 1q ’*を算出する手段とを設けた こ
とを特徴とする誘導電動機のベクトル制御装置。 【数14】 1. A d-axis coordinate of a primary current of an induction motor, assuming that d-q coordinates are rotation coordinates rotating in synchronization with a power supply angular frequency of the induction motor and having a secondary magnetic flux as a reference axis. a first means for calculating target values i 1d * and i 1q * of the q-axis component, respectively, and a primary current I 1 having a phase φ different from tan -1 (i 1q * / i 1d *) with respect to the d-q axes. Is the γ-δ coordinate, and the target value i 1 γ * (= I 1 ) of the γ-axis component of the primary current and the phase φ are calculated based on i 1d * and i 1q *. and 1 of the coordinate conversion unit, the ratio between the target value M * of lambda 2d * and the exciting inductance lambda 2d * / M *, the primary voltage on the basis of the calculation results and the power supply angular frequency omega 0 of the first coordinate conversion unit γ , Δ
Second means for calculating the target values v 1 γ * and v 1 δ * of the axis components, respectively, and converting the primary current detection value of the induction motor into each axis component i 1 γ and i 1 δ of the γ-δ coordinate. a second coordinate transformation unit which, in the vector control apparatus for an induction motor having a slip angular frequency calculator for calculating the slip angular frequency based on the arithmetic expression including the setting value of the secondary time constant, the i 1d * The calculating means includes a target value λ 2d * / M * of the d-axis component of the secondary magnetic flux according to the rotor angular frequency of the induction motor .
Λ 2d * / M * and the exciting inductor
Means for dividing and outputting the result by the change in
Is input to the primary-advanced element operation unit, and i 1d
* Means for calculating *, and the λ 2d * / M * is calculated by the exciting inductance change AMn.
The value output from the means for dividing and outputting
The following formula is used to calculate the change AMn and the power supply angular frequency ω 0
And add the q-axis component target value i 1q * to the obtained value.
Means for calculating a torque command value i 1q ′ * . [Equation 14]
し、この微分項に前記λ 2d */M*を励磁インダクタン
ス変化分AMnで除算した出力を加算してi 1d *を算出
することを特徴とする請求項1に記載の誘導電動機のベ
クトル制御装置。2. A differential term is provided in said first-order lead element computing section.
Then, the above-mentioned λ 2d * / M * is added to this derivative term as an exciting inductor.
2. The vector control apparatus for an induction motor according to claim 1, wherein i 1d * is calculated by adding outputs divided by the change amount AMn .
軸誤差電圧値△v1δを、励磁インダクタンスの初期設
定値M2*/L2*、電源角周波数ω0および励磁指令λ
2d*/M*を乗算した値で除算して、励磁インダクタン
ス変化分AMnを電源角周波数ω0に対してデータテーブ
ル化とするようにしたことを特徴とする請求項1、2記
載の誘導電動機のベクトル制御装置。3. The exciting inductance change AMn is δ
The axis error voltage value △ v 1 δ is converted to the initial set value M 2 * / L 2 * of the excitation inductance, the power supply angular frequency ω 0, and the excitation command λ
2d * / M * by dividing the value obtained by multiplying the exciting inductance variation AMn claim 1, characterized in that as the data table of the relative power supply angular frequency omega 0, 2 induction motor according Vector control device.
タンス変化分AMnを励磁指令λ2d*/M*に対して行
うことを特徴とする請求項3記載の誘導電動機のベクト
ル制御装置。 4. The vector control device for an induction motor according to claim 3, wherein the data table is created by applying an exciting inductance change AMn to an excitation command λ 2d * / M *.
ンス変化分AMnを使用して励磁指令λ2d*/M*を除
算し、得られた値を一次進み要素演算部に入力して、そ
の出力に誘導電動機の一次電流のd軸成分の目標値i1d
*を算出することを特徴とする請求項3又は4記載の誘
導電動機のベクトル制御装置。5. An excitation command λ 2d * / M * is divided by using a change in the excitation inductance AMn stored in a data table, and the obtained value is input to a primary-advance element calculation unit, and the output is derived. The target value i 1d of the d-axis component of the primary current of the motor
5. The vector control device for an induction motor according to claim 3 , wherein * is calculated.
ンス変化分AMnを使用して励磁指令λ2d*/M*を除
算し、得られた値と一次進み要素演算部の微分項とを加
算して誘導電動機の一次電流のd軸成分の目標値i1d*
を算出することを特徴とする請求項3又は4記載の誘導
電動機のベクトル制御装置。6. An excitation command λ 2d * / M * is divided by using an exciting inductance change AMn in a data table, and the obtained value is added to a derivative term of a primary-advance element operation unit to derive a guidance. Target value i 1d * of the d-axis component of the primary current of the motor
5. The vector control device for an induction motor according to claim 3, wherein
化された励磁インダクタンス変化分AMnを前記鉄損補
償回路に入力して鉄損補償電流を演算し、得られた補償
電流出力と誘導電動機の一次電流のq軸成分の目標値i
1q*とを加算してトルク指令値i1q’*を算出すること
を特徴とする請求項3又は4記載の誘導電動機のベクト
ル制御装置。7. An iron loss compensating current is calculated by inputting an exciting command λ 2d * / M * and an exciting inductance change AMn tabulated in a data table to the iron loss compensating circuit, and calculating the obtained compensating current output and induction. Target value i of q-axis component of primary current of motor
5. The vector control device for an induction motor according to claim 3, wherein a torque command value i 1q ′ * is calculated by adding 1q *.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04193563A JP3123235B2 (en) | 1991-07-31 | 1992-07-21 | Induction motor vector control device |
CA002101796A CA2101796C (en) | 1992-07-21 | 1993-08-03 | Vector control apparatus for induction motor |
EP93112497A EP0637870B1 (en) | 1992-07-21 | 1993-08-04 | Vector control apparatus for induction motor |
US08/102,220 US5341081A (en) | 1992-07-21 | 1993-08-05 | Vector control apparatus for induction motor |
TW82106263A TW232103B (en) | 1991-07-31 | 1993-08-05 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19174391 | 1991-07-31 | ||
JP3-191743 | 1991-07-31 | ||
JP04193563A JP3123235B2 (en) | 1991-07-31 | 1992-07-21 | Induction motor vector control device |
CA002101796A CA2101796C (en) | 1992-07-21 | 1993-08-03 | Vector control apparatus for induction motor |
EP93112497A EP0637870B1 (en) | 1992-07-21 | 1993-08-04 | Vector control apparatus for induction motor |
US08/102,220 US5341081A (en) | 1992-07-21 | 1993-08-05 | Vector control apparatus for induction motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05199784A JPH05199784A (en) | 1993-08-06 |
JP3123235B2 true JP3123235B2 (en) | 2001-01-09 |
Family
ID=27508518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04193563A Expired - Lifetime JP3123235B2 (en) | 1991-07-31 | 1992-07-21 | Induction motor vector control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3123235B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024076156A (en) * | 2022-11-24 | 2024-06-05 | 株式会社日立産機システム | Power conversion device and motor control system |
-
1992
- 1992-07-21 JP JP04193563A patent/JP3123235B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05199784A (en) | 1993-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6281659B1 (en) | Induction motor drive and a parameter estimation method thereof | |
KR100222358B1 (en) | Apparatus and method for controlling torque of induction motor through vector control type inverter | |
EP0637870B1 (en) | Vector control apparatus for induction motor | |
JPH0951700A (en) | Controlling device of rotary electric machine | |
JP2943377B2 (en) | Vector controller for induction motor | |
JP3099159B2 (en) | Method and apparatus for measuring motor constants | |
JPH07250500A (en) | Variable speed controller for induction motor | |
KR0129561B1 (en) | Induction motor vector control | |
JP3123235B2 (en) | Induction motor vector control device | |
JP2579119B2 (en) | Vector controller for induction motor | |
JP2000341999A (en) | Identification of constant for synchronous motor | |
JP6108114B2 (en) | Control device for permanent magnet type synchronous motor | |
JP2940167B2 (en) | Controlling device for vector of induction motor | |
JP2953044B2 (en) | Vector controller for induction motor | |
JP2762617B2 (en) | Vector controller for induction motor | |
JP3309520B2 (en) | Induction motor control method | |
JPH0787800A (en) | Automatic torque boost control of inverter and slip compensation controller | |
JPH06315291A (en) | Computing method for position of magnetic flux of induction motor, and its control method using the same | |
JP3770302B2 (en) | Induction motor speed control device | |
JPS6159071B2 (en) | ||
JP3159330B2 (en) | Induction motor vector control device | |
JPH06101954B2 (en) | Induction motor vector controller | |
JP2712632B2 (en) | Variable speed control device for induction motor | |
JPH04304184A (en) | Vector control method for induction motor | |
JPH05336786A (en) | Vector control equipment for induction motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071027 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081027 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 12 |