JPH11151000A - Controller for induction motor - Google Patents

Controller for induction motor

Info

Publication number
JPH11151000A
JPH11151000A JP9331298A JP33129897A JPH11151000A JP H11151000 A JPH11151000 A JP H11151000A JP 9331298 A JP9331298 A JP 9331298A JP 33129897 A JP33129897 A JP 33129897A JP H11151000 A JPH11151000 A JP H11151000A
Authority
JP
Japan
Prior art keywords
output
induction motor
detecting means
vector
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9331298A
Other languages
Japanese (ja)
Other versions
JP3454409B2 (en
Inventor
Yoichi Omori
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP33129897A priority Critical patent/JP3454409B2/en
Publication of JPH11151000A publication Critical patent/JPH11151000A/en
Application granted granted Critical
Publication of JP3454409B2 publication Critical patent/JP3454409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a predetermined torque output by regulating the mutual inductance such that the difference of secondary flux outputted from first and second flux operating means becomes zero. SOLUTION: An induction motor controller comprises a first regulating means 9 which increases the output T2 if the instantaneous reactive power Q2>Q1 and decreases the output T2 if Q2<Q1 until Q1=Q2 is satisfied. The induction motor controller further comprises a first flux operating means 10 for determining a secondary flux f21 by receiving a primary current vector (i) and a primary voltage vector (v) from a current detecting means 4 and a voltage detecting means 6, and determining a secondary flux f22 by receiving the primary current vector (i) and a speed ωm from the current detecting means 4 and a speed detecting means 3. Output M from a second regulating means 12 is regulated such that the secondary fluxes f21, f22 from the first and second flux operating means 10, 11 will be equalized. According to the arrangement, a specified torque output can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,誘導電動機のトル
クを制御するシステムに関するもので,誘導電動機の二
次抵抗または二次時定数や相互インダクタンスが温度や
磁束の大きさ等の運転条件によって変動することにより
高精度なトルク制御精度が劣化することを抑制するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for controlling the torque of an induction motor, in which the secondary resistance or the secondary time constant of the induction motor or the mutual inductance varies according to operating conditions such as temperature and magnetic flux. By doing so, it is possible to suppress the deterioration of high-precision torque control accuracy.

【0002】[0002]

【従来の技術】図3に従来の技術のブロック線図の一例
を示し,以下この図に沿って説明する。電力変換器1に
より誘導電動機2に電力が供給される。トルク制御器5
は誘導電動機2が所定のトルクを出力するように電力変
換器1を制御する信号を出力する。その時,トルク制御
器5は,電流検出手段4の出力の誘導電動機2の一次電
流ベクトルiと,速度検出手段3の出力の前記誘導電動
機2の回転速度ωmと,誘導電動機2の二次時定数T2
または二次抵抗R2と,誘導電動機2の相互インダクタ
ンスMを用いる。
2. Description of the Related Art FIG. 3 shows an example of a block diagram of a conventional technique, which will be described below with reference to FIG. Power is supplied to the induction motor 2 by the power converter 1. Torque controller 5
Outputs a signal for controlling the power converter 1 so that the induction motor 2 outputs a predetermined torque. At that time, the torque controller 5 determines the primary current vector i of the induction motor 2 output from the current detection means 4, the rotation speed ωm of the induction motor 2 output from the speed detection means 3, and the secondary time constant of the induction motor 2. T2
Alternatively, the secondary resistance R2 and the mutual inductance M of the induction motor 2 are used.

【0003】[0003]

【発明が解決しようとする課題】従来技術のトルク制御
器5では,誘導電動機のトルクを制御するために誘導電
動機2の二次時定数T2または二次抵抗R2と相互イン
ダクタンスMを用いている。これらの値は,運転に入る
前に測定された値や設計された値を用いており,運転中
には変更されない。しかし二次抵抗R2は,誘導電動機
2の温度によって変化するものなので運転中に変動す
る。また二次時定数T2は,T2=L2/R2で表され
るので同様に運転中に変動する。ここでL2は二次自己
インダクタンスである。相互インダクタンスMは,磁束
密度で変化するので磁束の大きさが変化すればそれに応
じて変動する。よって,トルク制御器で用いる二次時定
数T2または二次抵抗R2や相互インダクタンスMの値
が誘導電動機2の値と運転中にずれる可能性がある。す
るとトルク制御器5は誤ったT2,R2,Mを用いて制
御するので,所定のトルクが誘導電動機2から出力でき
なくなる。
The conventional torque controller 5 uses the secondary time constant T2 or the secondary resistance R2 of the induction motor 2 and the mutual inductance M to control the torque of the induction motor. These values use values measured or designed before starting operation and are not changed during operation. However, since the secondary resistance R2 changes depending on the temperature of the induction motor 2, it fluctuates during operation. In addition, the secondary time constant T2 is represented by T2 = L2 / R2, and thus similarly varies during operation. Here, L2 is a secondary self inductance. Since the mutual inductance M changes with the magnetic flux density, if the magnitude of the magnetic flux changes, it changes accordingly. Therefore, the value of the secondary time constant T2 or the secondary resistance R2 or the mutual inductance M used in the torque controller may be different from the value of the induction motor 2 during operation. Then, since the torque controller 5 controls using the incorrect T2, R2, and M, a predetermined torque cannot be output from the induction motor 2.

【0004】二次時定数または二次抵抗の変動によるト
ルク制御精度の劣化を抑制するために,特開平8−80
099号公報「誘導電動機の制御装置」(発明者 野口
敏彦,高橋勲,大森洋一)が報告されている。これは二
次時定数または二次抵抗のみの変動によるトルク変動を
補償しようとするものであり,相互インダクタンスの変
動の補償はされていない。また二次時定数または二次抵
抗の変動補償の手段に相互インダクタンスを用いている
ために,相互インダクタンスの変動により二次時定数ま
たは二次抵抗の変動補償が正常に行われない問題点が残
っている。本発明は上述した点に鑑みて創案されたもの
で、その目的とするところは、これらの欠点を解決し、
二次時定数または二次抵抗が温度などによって変動した
り,相互インダクタンスが磁気飽和などで変動しても,
トルク制御器で用いるそれらの値を正しい値にすること
ができ,所定のトルク出力が得られるようにした誘導電
動機の制御装置を提供することにある。
To suppress the deterioration of the torque control accuracy due to the fluctuation of the secondary time constant or the secondary resistance, Japanese Patent Application Laid-Open No. 8-80 is disclosed.
No. 099, “Induction motor control device” (inventors Toshihiko Noguchi, Isao Takahashi, Yoichi Omori) has been reported. This is intended to compensate for the torque fluctuation due to the fluctuation of only the secondary time constant or the secondary resistance, but does not compensate for the fluctuation of the mutual inductance. In addition, since mutual inductance is used as a means for compensating the fluctuation of the secondary time constant or the secondary resistance, there remains a problem that the fluctuation of the secondary time constant or the secondary resistance is not normally compensated due to the fluctuation of the mutual inductance. ing. The present invention has been made in view of the above points, and aims to solve these disadvantages.
Even if the secondary time constant or secondary resistance fluctuates due to temperature, etc., or the mutual inductance fluctuates due to magnetic saturation, etc.,
It is an object of the present invention to provide a control device for an induction motor in which those values used in a torque controller can be set to correct values and a predetermined torque output can be obtained.

【0005】[0005]

【課題を解決するための手段】つまり、その目的を達成
するための手段は、 1)請求項1において、誘導電動機の一次電圧を検出ま
たは推定してベクトル変換する電圧検出手段と,前記電
流検出手段の出力の一次電流ベクトルと前記電圧検出手
段の出力の一次電圧ベクトルとの外積で瞬時無効電力を
演算する第1無効電力演算手段と,前記電流,速度検出
手段の出力の一次電流ベクトルと速度と,前記誘導電動
機の二次抵抗または二次時定数を用いて瞬時無効電力を
演算する第2無効電力演算手段と,前記第1および第2
の無効電力演算手段の出力の無効電力の差が零となるよ
うに前記第2無効電力演算手段に用いる二次抵抗または
二次時定数や前記トルク制御器で用いる二次抵抗または
二次時定数を調整する第1調整手段と,前記電流検出手
段の出力の一次電流ベクトルと前記電圧検出手段の出力
の一次電圧ベクトルとを用いて積分演算で前記誘導電動
機の二次磁束を演算する第1磁束演算手段と,前記電
流,速度検出手段の出力の一次電流ベクトルと速度と,
前記誘導電動機の相互インダクタンスを用いて該誘導電
動機の二次磁束を演算する第2磁束演算手段と,前記第
1および第2の磁束演算手段の出力の二次磁束の大きさ
の差が零となるように前記第2磁束演算手段に用いる相
互インダクタンスの値や前記トルク制御器で用いる相互
インダクタンスの値を調整する第2調整手段とを具備す
るものである。
Means for achieving the object are as follows: 1) A voltage detecting means for detecting or estimating a primary voltage of an induction motor and converting it into a vector, and the current detecting means according to claim 1 First reactive power calculating means for calculating instantaneous reactive power by a cross product of a primary current vector output from the means and a primary voltage vector output from the voltage detecting means; a primary current vector and a speed output from the current and speed detecting means; Second reactive power calculating means for calculating instantaneous reactive power using a secondary resistance or a secondary time constant of the induction motor; and the first and second reactive power calculating means.
The secondary resistance or secondary time constant used in the second reactive power calculation means or the secondary resistance or secondary time constant used in the torque controller so that the difference in the reactive power of the output of the reactive power calculation means becomes zero. And a first magnetic flux for calculating a secondary magnetic flux of the induction motor by an integral operation using a primary current vector output from the current detecting means and a primary voltage vector output from the voltage detecting means. A calculating means, a primary current vector and a speed of the output of the current and speed detecting means,
A second magnetic flux calculating means for calculating a secondary magnetic flux of the induction motor using a mutual inductance of the induction motor; and a difference between magnitudes of secondary magnetic fluxes of outputs of the first and second magnetic flux calculating means is zero. A second adjusting means for adjusting the value of the mutual inductance used in the second magnetic flux calculating means and the value of the mutual inductance used in the torque controller.

【0006】2)請求項2において、誘導電動機の一次
電圧を検出または推定してベクトル変換する電圧検出手
段と,前記電流検出手段の出力の一次電流ベクトルと前
記電圧検出手段の出力の一次電圧ベクトルとの外積で瞬
時無効電力を演算する第1無効電力演算手段と,前記電
流,速度検出手段の出力の一次電流ベクトルと速度と,
前記誘導電動機の相互インダクタンスを用いて瞬時無効
電力を演算する第3無効電力演算手段と,前記第1およ
び第3の無効電力演算手段の出力の無効電力の差が零と
なるように前記第3無効電力演算手段に用いる相互イン
ダクタンスの値や前記トルク制御器で用いる相互インダ
クタンスの値を調整する第3調整手段と,前記電流検出
手段の出力の一次電流ベクトルと前記電圧検出手段の出
力の一次電圧ベクトルとを用いて積分演算で前記誘導電
動機の二次磁束を演算する第1磁束演算手段と,前記電
流,速度検出手段の出力の一次電流ベクトルと速度と,
前記誘導電動機の二次抵抗または二次時定数を用いて該
電動機の二次磁束を演算する第3磁束演算手段と,前記
第1および第3の磁束演算手段の出力の二次磁束の大き
さの差が零となるように前記第3磁束演算手段に用いる
二次抵抗または二次時定数や前記トルク制御器で用いる
二次抵抗または二次時定数を調整する第4調整手段とを
具備するものである。以下、本発明の一実施例を図面に
基づいて詳述する。
2) A voltage detecting means for detecting or estimating a primary voltage of an induction motor and converting the voltage into a vector, a primary current vector output from the current detecting means and a primary voltage vector output from the voltage detecting means. First reactive power calculating means for calculating instantaneous reactive power by the cross product of the following, a primary current vector and speed of the output of the current and speed detecting means,
A third reactive power calculator for calculating instantaneous reactive power using the mutual inductance of the induction motor; and the third reactive power calculator so that a difference between reactive powers of outputs of the first and third reactive power calculators becomes zero. Third adjusting means for adjusting the value of the mutual inductance used in the reactive power calculating means and the value of the mutual inductance used in the torque controller; a primary current vector output from the current detecting means and a primary voltage output from the voltage detecting means; First magnetic flux calculating means for calculating the secondary magnetic flux of the induction motor by integral calculation using a vector, a primary current vector and speed of the output of the current and speed detecting means,
A third magnetic flux calculating means for calculating a secondary magnetic flux of the electric motor using a secondary resistance or a secondary time constant of the induction motor; and a magnitude of a secondary magnetic flux output from the first and third magnetic flux calculating means. And a fourth adjusting means for adjusting the secondary resistance or the secondary time constant used in the third magnetic flux calculating means or the secondary resistance or the secondary time constant used in the torque controller so that the difference between the second magnetic flux calculating means becomes zero. Things. Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

【0007】[0007]

【発明の実施の形態】図1は本発明の請求項1記載の一
実施例を示すブロック線図、図2は本発明の請求項2記
載の一実施例を示すブロック線図である。図1及び図2
において、電力変換器1と誘導電動機2と速度検出手段
3と電流検出手段4とトルク制御器5との関係は従来技
術と同様である。なお従来技術のトルク制御器5で用い
る誘導電動機2の二次時定数T2と相互インダクタンス
Mは,それぞれ図1においては第1調整手段9と第2調
整手段12の出力を,図2においては第4調整手段16
と第3調整手段14の出力を用いている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing one embodiment of the first aspect of the present invention, and FIG. 2 is a block diagram showing one embodiment of the second aspect of the present invention. 1 and 2
In the above, the relationship among the power converter 1, the induction motor 2, the speed detecting means 3, the current detecting means 4, and the torque controller 5 is the same as in the prior art. The secondary time constant T2 and the mutual inductance M of the induction motor 2 used in the conventional torque controller 5 are the outputs of the first adjusting means 9 and the second adjusting means 12 in FIG. 4 adjustment means 16
And the output of the third adjusting means 14.

【0008】まず図1における残りの部分を以下に説明
する。第1無効電力演算手段7は,電流検出手段4と電
圧検出手段6の出力の一次電流ベクトルiと一次電圧ベ
クトルvを入力して, Q1=id*vq−iq*vd −−−−−−−−−(1) により瞬時無効電力Q1を求める。ここでid,iqは
一次電流ベクトルiの成分であり,vd,vqは一次電
圧ベクトルvの成分である。第2無効電力演算手段8
は,電流検出手段4と速度検出手段3の出力の一次電流
ベクトルiと速度ωmを入力して, f22=(M/T2*i−f22/T2+j*ωm*f22)dtの積分 −−−−(2) により二次磁束ベクトルf22を求める。ここでMは第
2調整手段12の出力であり,T2は第1調整手段9の
出力である。
First, the remaining part in FIG. 1 will be described below. The first reactive power calculating means 7 receives the primary current vector i and the primary voltage vector v output from the current detecting means 4 and the voltage detecting means 6, and obtains Q1 = id * vq-iq * vd. The instantaneous reactive power Q1 is obtained by --- (1). Here, id and iq are components of the primary current vector i, and vd and vq are components of the primary voltage vector v. Second reactive power calculating means 8
Inputs the primary current vector i and the speed ωm of the outputs of the current detecting means 4 and the speed detecting means 3 and integrates f22 = (M / T2 * if22 / T2 + j * ωm * f22) dt ------ (2) The secondary magnetic flux vector f22 is obtained by the following. Here, M is the output of the second adjusting means 12, and T2 is the output of the first adjusting means 9.

【0009】次に f1=M/L2*f22+(L1−M*M/L2)*i −−−−−(3) により一次磁束ベクトルf1を求める。ここでL1,L
2はそれぞれ一次,二次自己インダクタンスである。そ
の後(1)式と等価な瞬時無効電力Q2を Q2=id*p(f1q)−iq*p(f1d) −−−−−−−−(4) で求める。ここでp()はかっこ内の時間微分を表す。
またf1d,f1qは一次磁束ベクトルf1の成分であ
る。定常状態において,(4)式の瞬時無効電力Q2
は, Q2=ω*{M/L2*M/(1+ωs*ωs*T2*T2)−L1+M* M/L2}*|i|*|i| −−−−−−−−−−(5) と表される。ここでωは角周波数,ωsはすべり角周波
数である。
Next, a primary magnetic flux vector f1 is obtained by f1 = M / L2 * f22 + (L1-M * M / L2) * i (3). Where L1, L
Reference numeral 2 denotes a primary and secondary self-inductance, respectively. After that, the instantaneous reactive power Q2 equivalent to the equation (1) is obtained by the following equation: Q2 = id * p (f1q) -iq * p (f1d)--------(4) Here, p () represents the time derivative in parentheses.
F1d and f1q are components of the primary magnetic flux vector f1. In the steady state, the instantaneous reactive power Q2 in equation (4)
Q2 = ω * {M / L2 * M / (1 + ωs * ωs * T2 * T2) -L1 + M * M / L2} * | i | * | i | ----------- It is expressed as Here, ω is an angular frequency and ωs is a slip angular frequency.

【0010】また(1)式の瞬時無効電力Q1も Q1=ω*{Mr/L2*Mr/(1+ωs*ωs*T2r*T2r)−L 1+Mr*Mr/L2}*|i|*|i| −−−−−−−−(6) となる。ここでQ1は検出した電圧や電流から求めてい
るので相互インダクタンスや二次時定数には誤差が含ま
れないと考えられるので,それらの実際値としてそれぞ
れMr,T2rと表している。第2調整手段12により
相互インダクタンスMが実際値Mrと一致させられてい
るとすると,ω>0の場合は,(5),(6)式よりT
2<T2rでQ2>Q1,T2>T2rでQ2<Q1の
関係があることが分かる。よって第1調整手段9では,
Q1,Q2を入力してQ2>Q1の場合はT2を大きく
し,Q2<Q1の場合はT2を小さくする操作をしてQ
1=Q2となるようにする。するとT2=T2rとなり
正しい二次時定数を得ることができる。
The instantaneous reactive power Q1 in equation (1) is also Q1 = ω * {Mr / L2 * Mr / (1 + ωs * ωs * T2r * T2r) -L1 + Mr * Mr / L2} * | i | * | i | −−−−−−−− (6) Here, since Q1 is obtained from the detected voltage and current, it is considered that no error is included in the mutual inductance and the secondary time constant. Therefore, their actual values are expressed as Mr and T2r, respectively. Assuming that the mutual inductance M is made equal to the actual value Mr by the second adjusting means 12, when ω> 0, T is obtained from the equations (5) and (6).
It can be seen that there is a relationship of Q2 <Q1 when 2 <T2r and Q2 <Q1 when T2> T2r. Therefore, in the first adjusting means 9,
By inputting Q1 and Q2, if T2> Q1, T2 is increased, and if Q2 <Q1, T2 is reduced to perform Q2.
1 = Q2. Then, T2 = T2r, and a correct secondary time constant can be obtained.

【0011】第1磁束演算手段10では,電流検出手段
4と電圧検出手段6の出力の一次電流ベクトルiと一次
電圧ベクトルvを入力して, f21={L2/M*(v−R*i)}dtの積分−(L1*L2/M−M )*i −−−−−−−−−−−(7) により二次磁束f21を求める。第2磁束演算手段11
では,電流検出手段4と速度検出手段3の出力の一次電
流ベクトルiと速度ωmを入力して,(2)式により二
次磁束ベクトルf22を求める。
In the first magnetic flux calculating means 10, the primary current vector i and the primary voltage vector v output from the current detecting means 4 and the voltage detecting means 6 are inputted, and f21 = {L2 / M * (v-R * i ) The secondary magnetic flux f21 is obtained from the integral of} dt-(L1 * L2 / M-M) * i-----------(7). Second magnetic flux calculation means 11
Then, the primary current vector i and the speed ωm of the outputs of the current detecting means 4 and the speed detecting means 3 are inputted, and the secondary magnetic flux vector f22 is obtained by the equation (2).

【0012】第2調整手段12では,第1磁束演算手段
10と第2磁束演算手段11の出力の二次磁束ベクトル
f21,f22を入力して,それらの大きさが等しくな
るようにMを調整して出力する。定常状態において,f
22の大きさは |f22|=M*M/(1+ωs*ωs*T2*T2)*|i|*|i| −−−−−−−−(8) で表され,f21の大きさも同様に |f21|=Mr*Mr/(1+ωs*ωs*T2r*T2r)*|i|* |i| −−−−−−−−−−−−−−(9) で表される。ここで,L2=M+Lσと表され,Lσは
Mに比べて非常に小さいのでMに誤差があっても(7)
式において計算誤差は非常に少ないので,相互インダク
タンスや二次時定数には実際値Mr,T2rを用いてい
る。
The second adjusting means 12 inputs the secondary magnetic flux vectors f21 and f22 output from the first magnetic flux calculating means 10 and the second magnetic flux calculating means 11 and adjusts M so that their magnitudes become equal. And output. In the steady state, f
The size of 22 is represented by | f22 | = M * M / (1 + ωs * ωs * T2 * T2) * | i | * | i | −−−−−−− (8) The same applies to the size of f21. | F21 | = Mr * Mr / (1 + ωs * ωs * T2r * T2r) * | i | * | i | −−−−−−−−−−− (9) Here, L2 = M + Lσ is expressed, and Lσ is very small as compared with M. Therefore, even if there is an error in M, (7)
Since the calculation error in the formula is very small, the actual values Mr and T2r are used for the mutual inductance and the secondary time constant.

【0013】第1調整手段9により二次時定数T2が実
際値T2rと一致させられているとすると,(8),
(9)式よりM<Mrで|f22|<|f21|,M>
Mrで|f22|>|f21|の関係があることが分か
る。よって第2調整手段12では,|f22|<|f2
1|の場合はMを大きくし,|f22|>|f21|の
場合はMを小さくする操作をして|f22|=|f21
|となるようにする。するとM=Mrとなり正しい相互
インダクタンスを得ることができる。第1調整手段9と
第2調整手段12より得られた正しい二次時定数T2と
相互インダクタンスMを用いてトルク制御器5によりト
ルクを制御する。
Assuming that the second time constant T2 is made to coincide with the actual value T2r by the first adjusting means 9, (8),
From equation (9), when M <Mr, | f22 | <| f21 |, M>
It can be seen that there is a relationship of | f22 |> | f21 | in Mr. Therefore, in the second adjusting means 12, | f22 | <| f2
In the case of 1 |, M is increased, and in the case of | f22 |> | f21 |, M is decreased to | f22 | = | f21.
| Then, M = Mr, and a correct mutual inductance can be obtained. The torque is controlled by the torque controller 5 using the correct secondary time constant T2 and the mutual inductance M obtained from the first adjusting means 9 and the second adjusting means 12.

【0014】図2の場合において,第3無効電力演算手
段13は第2無効電力演算手段8と同じ演算をしてそれ
をQ3として出力する。第3調整手段14では無効電力
Q1とQ3が等しくなるようにMを調整して出力する。
具体的には,Q1>Q3ならばMを大きくし,Q1<Q
3ならばMを小さくする。第3磁束演算手段15は,第
2磁束演算手段と同じ演算をしてそれをf23として出
力する。第4調整手段16ではf21とf23の大きさ
が等しくなるようにT2を調整して出力する。具体的に
は,|f23|<|f21|の場合はT2を小さくし,
|f23|>|f21|の場合はT2を大きくする。第
3調整手段14と第4調整手段16より得られた正しい
相互インダクタンスMと二次時定数T2を用いてトルク
制御器5によりトルクを制御する。
In the case of FIG. 2, the third reactive power calculating means 13 performs the same calculation as the second reactive power calculating means 8 and outputs it as Q3. The third adjusting means 14 adjusts M so that the reactive powers Q1 and Q3 become equal and outputs the result.
Specifically, if Q1> Q3, M is increased, and Q1 <Q
If 3, M is reduced. The third magnetic flux calculation means 15 performs the same calculation as that of the second magnetic flux calculation means and outputs it as f23. The fourth adjusting means 16 adjusts and outputs T2 such that the magnitudes of f21 and f23 are equal. Specifically, when | f23 | <| f21 |, T2 is reduced,
If | f23 |> | f21 |, T2 is increased. The torque is controlled by the torque controller 5 using the correct mutual inductance M and the secondary time constant T2 obtained from the third adjusting means 14 and the fourth adjusting means 16.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、二
次時定数または二次抵抗が温度などによって変動した
り,相互インダクタンスが磁気飽和などで変動しても,
本発明により,トルク制御器で用いるそれらの値を正し
い値にすることができるので,所定のトルク出力が得ら
れ、実用上、極めて有用性の高いものである。
As described above, according to the present invention, even if the secondary time constant or the secondary resistance fluctuates due to temperature or the like, or the mutual inductance fluctuates due to magnetic saturation or the like,
According to the present invention, since these values used in the torque controller can be set to correct values, a predetermined torque output can be obtained, which is extremely useful in practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の請求項1記載の一実施例のブロック線
図である。
FIG. 1 is a block diagram of one embodiment of the present invention.

【図2】本発明の請求項2記載の一実施例のブロック線
図である。
FIG. 2 is a block diagram of an embodiment according to the second aspect of the present invention.

【図3】従来技術の一例のブロック線図である。FIG. 3 is a block diagram of an example of the related art.

【符号の説明】[Explanation of symbols]

1 電力変換器 2 誘導電動機 3 速度検出手段 4 電流検出手段 5 トルク制御器 6 電圧検出手段 7 第1無効電力演算手段 8 第2無効電力演算手段 9 第1調整手段 10 第1磁束演算手段 11 第2磁束演算手段 12 第2調整手段 13 第3無効電力演算手段 14 第3調整手段 15 第3磁束演算手段 16 第4調整手段 DESCRIPTION OF SYMBOLS 1 Power converter 2 Induction motor 3 Speed detecting means 4 Current detecting means 5 Torque controller 6 Voltage detecting means 7 First reactive power calculating means 8 Second reactive power calculating means 9 First adjusting means 10 First magnetic flux calculating means 11 2 magnetic flux calculating means 12 second adjusting means 13 third reactive power calculating means 14 third adjusting means 15 third magnetic flux calculating means 16 fourth adjusting means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可変周波数・可変電圧の交流を出力する
電力変換器と,該電力変換器によって駆動される誘導電
動機と,該誘導電動機の速度を検出する速度検出手段
と,前記誘導電動機の一次電流を検出してベクトル変換
する電流検出手段と,前記速度検出手段の出力の速度と
前記電流検出手段の出力の一次電流ベクトルを入力して
前記誘導電動機の出力トルクを制御するための前記電力
変換器を制御する信号を該電力変換器に出力するトルク
制御器とからなる誘導電動機の制御装置において,該誘
導電動機の一次電圧を検出または推定してベクトル変換
する電圧検出手段と,前記電流検出手段の出力の一次電
流ベクトルと前記電圧検出手段の出力の一次電圧ベクト
ルとの外積で瞬時無効電力を演算する第1無効電力演算
手段と,前記電流,速度検出手段の出力の一次電流ベク
トルと速度と,前記誘導電動機の二次抵抗または二次時
定数を用いて瞬時無効電力を演算する第2無効電力演算
手段と,前記第1および第2の無効電力演算手段の出力
の無効電力の差が零となるように前記第2無効電力演算
手段に用いる二次抵抗または二次時定数や前記トルク制
御器で用いる二次抵抗または二次時定数を調整する第1
調整手段と,前記電流検出手段の出力の一次電流ベクト
ルと前記電圧検出手段の出力の一次電圧ベクトルとを用
いて積分演算で前記誘導電動機の二次磁束を演算する第
1磁束演算手段と,前記電流,速度検出手段の出力の一
次電流ベクトルと速度と,前記誘導電動機の相互インダ
クタンスを用いて該誘導電動機の二次磁束を演算する第
2磁束演算手段と,前記第1および第2の磁束演算手段
の出力の二次磁束の大きさの差が零となるように前記第
2磁束演算手段に用いる相互インダクタンスの値や前記
トルク制御器で用いる相互インダクタンスの値を調整す
る第2調整手段とを具備することを特徴とする誘導電動
機の制御装置。
1. A power converter for outputting a variable frequency / variable voltage alternating current, an induction motor driven by the power converter, speed detection means for detecting the speed of the induction motor, and a primary motor for the induction motor. A current detecting means for detecting a current and converting the vector, and a power converter for controlling an output torque of the induction motor by inputting a speed of an output of the speed detecting means and a primary current vector of an output of the current detecting means. A control device for an induction motor, comprising: a torque controller for outputting a signal for controlling a motor to the power converter; a voltage detection means for detecting or estimating a primary voltage of the induction motor and converting the voltage into a vector; First reactive power calculating means for calculating an instantaneous reactive power by a cross product of a primary current vector of the output of the voltage detecting means and a primary voltage vector of the output of the voltage detecting means; Second reactive power calculating means for calculating instantaneous reactive power using the primary current vector and speed of the output of the degree detecting means, and the secondary resistance or secondary time constant of the induction motor; and the first and second reactive power calculating means. The secondary resistance or the secondary time constant used in the second reactive power calculating means or the secondary resistance or the secondary time constant used in the torque controller is adjusted so that the difference in the reactive power of the output of the power calculating means becomes zero. First
Adjusting means; first magnetic flux calculating means for calculating a secondary magnetic flux of the induction motor by integral calculation using a primary current vector output from the current detecting means and a primary voltage vector output from the voltage detecting means; A second magnetic flux calculating means for calculating a secondary magnetic flux of the induction motor using a primary current vector and a speed of an output of the current and speed detecting means and a mutual inductance of the induction motor; and the first and second magnetic flux calculating means A second adjusting means for adjusting the value of the mutual inductance used in the second magnetic flux calculating means and the value of the mutual inductance used in the torque controller so that the difference in the magnitude of the secondary magnetic flux output from the means becomes zero. A control device for an induction motor, comprising:
【請求項2】 可変周波数・可変電圧の交流を出力する
電力変換器と,該電力変換器によって駆動される誘導電
動機と,該誘導電動機の速度を検出する速度検出手段
と,前記誘導電動機の一次電流を検出してベクトル変換
する電流検出手段と,前記速度検出手段の出力の速度と
前記電流検出手段の出力の一次電流ベクトルを入力して
前記誘導電動機の出力トルクを制御するための前記電力
変換器を制御する信号を該電力変換器に出力するトルク
制御器とからなる誘導電動機の制御装置において,該誘
導電動機の一次電圧を検出または推定してベクトル変換
する電圧検出手段と,前記電流検出手段の出力の一次電
流ベクトルと前記電圧検出手段の出力の一次電圧ベクト
ルとの外積で瞬時無効電力を演算する第1無効電力演算
手段と,前記電流,速度検出手段の出力の一次電流ベク
トルと速度と,前記誘導電動機の相互インダクタンスを
用いて瞬時無効電力を演算する第3無効電力演算手段
と,前記第1および第3の無効電力演算手段の出力の無
効電力の差が零となるように前記第3無効電力演算手段
に用いる相互インダクタンスの値や前記トルク制御器で
用いる相互インダクタンスの値を調整する第3調整手段
と,前記電流検出手段の出力の一次電流ベクトルと前記
電圧検出手段の出力の一次電圧ベクトルとを用いて積分
演算で前記誘導電動機の二次磁束を演算する第1磁束演
算手段と,前記電流,速度検出手段の出力の一次電流ベ
クトルと速度と,前記誘導電動機の二次抵抗または二次
時定数を用いて該電動機の二次磁束を演算する第3磁束
演算手段と,前記第1および第3の磁束演算手段の出力
の二次磁束の大きさの差が零となるように前記第3磁束
演算手段に用いる二次抵抗または二次時定数や前記トル
ク制御器で用いる二次抵抗または二次時定数を調整する
第4調整手段とを具備することを特徴とする誘導電動機
の制御装置。
2. A power converter for outputting a variable frequency / variable voltage alternating current, an induction motor driven by the power converter, speed detection means for detecting the speed of the induction motor, and a primary motor for the induction motor. A current detecting means for detecting a current and converting the vector, and a power converter for controlling an output torque of the induction motor by inputting a speed of an output of the speed detecting means and a primary current vector of an output of the current detecting means. A control device for an induction motor, comprising: a torque controller for outputting a signal for controlling a motor to the power converter; a voltage detection means for detecting or estimating a primary voltage of the induction motor and converting the voltage into a vector; First reactive power calculating means for calculating an instantaneous reactive power by a cross product of a primary current vector of the output of the voltage detecting means and a primary voltage vector of the output of the voltage detecting means; Third reactive power calculating means for calculating the instantaneous reactive power using the primary current vector and speed of the output of the degree detecting means and the mutual inductance of the induction motor, and the output of the first and third reactive power calculating means. Third adjusting means for adjusting the value of the mutual inductance used in the third reactive power calculating means or the value of the mutual inductance used in the torque controller so that the difference in the reactive power becomes zero, and the output of the current detecting means. First magnetic flux calculating means for calculating a secondary magnetic flux of the induction motor by integral calculation using a primary current vector and a primary voltage vector output from the voltage detecting means, and a primary current vector output from the current and speed detecting means Magnetic flux calculating means for calculating a secondary magnetic flux of the induction motor using a secondary resistance or a secondary time constant of the induction motor; The secondary resistance or the secondary time constant used in the third magnetic flux calculating means or the secondary resistance or the secondary time constant used in the torque controller is set so that the difference in the magnitude of the secondary magnetic flux output from the means becomes zero. A control device for an induction motor, comprising: a fourth adjusting means for adjusting.
JP33129897A 1997-11-14 1997-11-14 Induction motor control device Expired - Lifetime JP3454409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33129897A JP3454409B2 (en) 1997-11-14 1997-11-14 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33129897A JP3454409B2 (en) 1997-11-14 1997-11-14 Induction motor control device

Publications (2)

Publication Number Publication Date
JPH11151000A true JPH11151000A (en) 1999-06-02
JP3454409B2 JP3454409B2 (en) 2003-10-06

Family

ID=18242130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33129897A Expired - Lifetime JP3454409B2 (en) 1997-11-14 1997-11-14 Induction motor control device

Country Status (1)

Country Link
JP (1) JP3454409B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070118A (en) * 2015-09-30 2017-04-06 株式会社日立産機システム Power conversion device and auto-tuning method therefor
JP2021090313A (en) * 2019-12-05 2021-06-10 株式会社日立産機システム Power conversion device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070118A (en) * 2015-09-30 2017-04-06 株式会社日立産機システム Power conversion device and auto-tuning method therefor
WO2017056649A1 (en) * 2015-09-30 2017-04-06 株式会社日立産機システム Power conversion device and auto-tuning method therefor
JP2021090313A (en) * 2019-12-05 2021-06-10 株式会社日立産機システム Power conversion device
WO2021111695A1 (en) * 2019-12-05 2021-06-10 株式会社日立産機システム Power conversion device
CN114008912A (en) * 2019-12-05 2022-02-01 株式会社日立产机系统 Power conversion device
CN114008912B (en) * 2019-12-05 2023-10-24 株式会社日立产机系统 Power conversion device
EP4072005A4 (en) * 2019-12-05 2023-12-06 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion device

Also Published As

Publication number Publication date
JP3454409B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
JP3152058B2 (en) Variable speed control device for induction motor
EP1014558A1 (en) Method for estimating induced electromotive force and speed of induction motor, method for correcting misalignment of shaft thereof, and induction motor controller
JPH09219999A (en) Variable speed drive device
US6359415B1 (en) Apparatus for controlling synchronous motor
JPH0334313B2 (en)
JP2943377B2 (en) Vector controller for induction motor
JP3454409B2 (en) Induction motor control device
JPH09191699A (en) Method for controlling induction motor
JPH0638574A (en) Motor controller for induction motor
US5734251A (en) Control apparatus for AC motor
JP3337039B2 (en) Tuning method of vector control inverter for induction motor
JP3161904B2 (en) Vector control method and device for induction motor
KR0148832B1 (en) Vector controller for induction motor
JP4839552B2 (en) Induction motor control method
JP2935962B2 (en) Speed sensorless control inverter
JP2713857B2 (en) Sensorless inverter device with resistance fluctuation compensation
JP2940167B2 (en) Controlling device for vector of induction motor
JP3123235B2 (en) Induction motor vector control device
JP2953044B2 (en) Vector controller for induction motor
JPH11136999A (en) Variable speed driver for induction machine
JPH04322191A (en) Controller for synchronous motor
JPH08196100A (en) Speed sensorless vector controller
JP3123304B2 (en) Induction motor vector control device
JPH0226289A (en) Control method for induction motor
JPH07303398A (en) Secondary resistance compensating method of induction motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

EXPY Cancellation because of completion of term