JP2018014809A - Controller of induction motor - Google Patents

Controller of induction motor Download PDF

Info

Publication number
JP2018014809A
JP2018014809A JP2016142253A JP2016142253A JP2018014809A JP 2018014809 A JP2018014809 A JP 2018014809A JP 2016142253 A JP2016142253 A JP 2016142253A JP 2016142253 A JP2016142253 A JP 2016142253A JP 2018014809 A JP2018014809 A JP 2018014809A
Authority
JP
Japan
Prior art keywords
axis current
value
command value
axis
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016142253A
Other languages
Japanese (ja)
Other versions
JP6794693B2 (en
Inventor
崇伸 吉田
Takanobu Yoshida
崇伸 吉田
裕吾 只野
Yugo Tadano
裕吾 只野
野村 昌克
Masakatsu Nomura
昌克 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2016142253A priority Critical patent/JP6794693B2/en
Publication of JP2018014809A publication Critical patent/JP2018014809A/en
Application granted granted Critical
Publication of JP6794693B2 publication Critical patent/JP6794693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To perform stable torque control by reducing error of secondary time constant estimate, respectively, of powering operation and regenerative operation, in the controller of induction motor.SOLUTION: A powering/regeneration discrimination flag Flag, that is 0 when the product of torque command value Tref and number of revolution detection value ωdet is equal to or less than 0 otherwise 1, is calculated. A secondary time constant estimate τrcest is calculated based on the γ-axis current detection value Iγdet, the δ-axis current detection value Iδdet, the γ-axis current error eiγ of the γ-axis current detection value Iγdet and the γ-axis current estimate Iγest, the δ-axis current error eiδ of the δ-axis current detection value Iδdet and the δ-axis current estimate Iδest, and the powering/regeneration discrimination flag Flag.SELECTED DRAWING: Figure 1

Description

本発明は、誘導電動機ベクトル制御時の二次抵抗値の補償方法に係り、特に力行回生の4象限運転をする際の二次抵抗値の補償方法に関する。   The present invention relates to a method for compensating a secondary resistance value during induction motor vector control, and more particularly to a method for compensating a secondary resistance value during four-quadrant operation of power regeneration.

誘導電動機のベクトル制御では、電動機実パラメータである一次抵抗Rs,二次抵抗Rr,一次漏れインダクタンスls,二次漏れインダクタンスlr,相互インダクタンスMが制御設定値である一次抵抗設定値Rsc,二次抵抗設定値Rrc,一次漏れインダクタンス設定値lsc,二次漏れインダクタンス設定値lrc,相互インダクタンス設定値Mcに誤差があると、ベクトル制御性能の悪化が生じる。   In the vector control of the induction motor, the primary resistance Rs, the secondary resistance Rr, the primary leakage inductance ls, the secondary leakage inductance lr, and the mutual resistance M, which are the actual parameters of the motor, are the primary resistance setting value Rsc and the secondary resistance. If there is an error in the set value Rrc, the primary leakage inductance setting value lsc, the secondary leakage inductance setting value lrc, and the mutual inductance setting value Mc, the vector control performance is deteriorated.

ベクトル制御性能が悪化した状態での誘導電動機の運転は、トルク制御を行う用途においてトルク誤差が生じるため好ましくない。特に、二次抵抗Rrの変動はすべり周波数型ベクトル制御を行う際に、ベクトル軸のずれ(軸ずれ)に直結するため望ましくない。しかし、二次抵抗Rrなどの実パラメータは運転温度等により変化するため、計測が困難である。   The operation of the induction motor in a state in which the vector control performance is deteriorated is not preferable because a torque error occurs in an application for performing torque control. In particular, fluctuations in the secondary resistance Rr are undesirable because they are directly linked to vector axis misalignment (axis misalignment) when slip frequency vector control is performed. However, since actual parameters such as the secondary resistance Rr vary depending on the operating temperature or the like, measurement is difficult.

そこで、運転中の二次抵抗補償法が多数提案されている。しかし、補償方式として電流予測値と電流検出値の誤差である電流誤差を用いる場合に、回生運転で二次抵抗補償値が不安定となることが非特許文献1に示されている。実際の誘導電動機の運転では、力行回生の4象限で運転する場合もあるため、回生領域でも安定して二次抵抗補償を行う方式が必要となる。   Thus, many secondary resistance compensation methods during operation have been proposed. However, Non-Patent Document 1 shows that the secondary resistance compensation value becomes unstable in the regenerative operation when a current error that is an error between the current prediction value and the current detection value is used as the compensation method. In actual operation of the induction motor, there is a case where it is operated in four quadrants of power running regeneration, and therefore a method of performing secondary resistance compensation stably even in the regeneration region is required.

下記先行技術文献は、回生時においても安定的な電動機駆動を実現することを目的とする技術である。   The following prior art documents are techniques aimed at realizing stable motor drive even during regeneration.

(特許文献1)
[課題]状態推定器に用いる定数を変化させることなく温度変動や定数設定誤差による制御劣化を抑制し、電動機の回生状態におけるベクトル状態を考慮し、回生時においても安定的な電動機駆動を実現できるようにする。
[解決手段]電流誤差の状態と回転子角速度および電流指令から、電圧指令を補正する。回転子角速度と電流指令(トルク電流指令相当)から力行か回生かを判別し、回生の場合は推定に用いている内積値に−1を乗じる。この値を基にインバータ電圧指令を補償することで、一次抵抗値に誤差が生じても安定した補償が可能である。また、力行回生の閾値は回転数とトルクやすべりから判定し、回生の場合には−1を乗じている。
(Patent Document 1)
[Problem] Stable motor drive can be realized even during regeneration by suppressing control deterioration due to temperature fluctuations and constant setting errors without changing the constant used in the state estimator and taking into account the vector state in the regeneration state of the motor. Like that.
[Solution] The voltage command is corrected from the state of the current error, the rotor angular velocity and the current command. Whether it is power running or regeneration is determined from the rotor angular velocity and current command (corresponding to torque current command), and in the case of regeneration, the inner product value used for estimation is multiplied by -1. Compensating the inverter voltage command based on this value enables stable compensation even if an error occurs in the primary resistance value. Further, the threshold value for power regeneration is determined from the rotational speed and torque and slip, and in the case of regeneration, -1 is multiplied.

(特許文献2)
[課題]モータパラメータの設定誤差に対しロバストな制御を実現する。
[解決手段]電圧指令をd軸電流誤差に基づき、一次電流ベクトルの方向または検出一次電流ベクトルの方向へ比例補償を行う。設定誤差やd軸電流誤差は負荷トルクの状態によって変動するが、負荷トルクの検出は困難であるため、d軸電流誤差を利用した比例項のみの補償としている。
(Patent Document 2)
[Problem] To realize robust control against motor parameter setting error.
[Solution] Based on the d-axis current error, proportional compensation is performed in the direction of the primary current vector or the direction of the detected primary current vector. Although the setting error and the d-axis current error vary depending on the state of the load torque, it is difficult to detect the load torque. Therefore, only the proportional term using the d-axis current error is compensated.

したがって、電圧補正は完全な補正とならないので、別途d軸電流誤差を用いて二次磁束軸とd軸との誤差量も補正している。   Therefore, the voltage correction is not a complete correction, and the error amount between the secondary magnetic flux axis and the d axis is also corrected separately using the d axis current error.

WO2009/041157WO2009 / 041157 特開2009−195106号公報JP 2009-195106 A

「誘導電動機パラメータ適応二次磁束オブザーバの提案とその安定性」久保田・松瀬,電気学会D部門論文誌,Vol.111,No3,p188(1991)“Proposal and Stability of Induction Motor Parameter Adaptive Secondary Flux Observer”, Kubota and Matsuse, IEEJ Transactions, Vol. 111, No3, p188 (1991) 「適応二次磁束オブザーバを用いたベクトル制御誘導電動機系の安定性に関する一考察」杉本・丁,電気学会D部門論文誌,Vol.119,No10,p1212(1999)“A Study on Stability of Vector Control Induction Motor System Using Adaptive Secondary Flux Observer” Sugimoto and Ding, IEEJ Transactions, Vol. 119, No10, p1212 (1999)

前述した先行技術は両方式共に、誘導電動機を力行回生の4象限運転を行う際における設定誤差や温度変化による誘導電動機パラメータのずれを補償する方式である。特に一次抵抗を補償することで、低速域でも所望の制御精度を得ることができる方式となっている。   Both of the above-described prior arts are systems for compensating for deviations in induction motor parameters due to setting errors and temperature changes when performing four-quadrant operation for power regeneration with an induction motor. In particular, by compensating the primary resistance, a desired control accuracy can be obtained even in a low speed region.

しかし、一般的なすべり周波数型ベクトル制御を行う場合には、すべり周波数をγδ軸電流検出値と誘導電動機の二次時定数τr(=Lr/Rr)から推定する。しかし、二次抵抗の実際の値(Rr)を計測することが困難であるため、実際には設定二次時定数τrc(=Lrc/Rrc)を用いることがほとんどである。   However, when general slip frequency type vector control is performed, the slip frequency is estimated from the γδ axis current detection value and the secondary time constant τr (= Lr / Rr) of the induction motor. However, since it is difficult to measure the actual value (Rr) of the secondary resistance, the set secondary time constant τrc (= Lrc / Rrc) is almost always used in practice.

運転中に誘導電動機の温度変化等が生じる場合には、一次抵抗Rsの変動と合わせて、二次抵抗Rrも同様に変動する。そのような場合には、設定二次時定数τrcが二次時定数τrの真値と誤差を持ってしまい所望の制御性能を得られないことが予測される。   When a temperature change or the like of the induction motor occurs during operation, the secondary resistance Rr varies in the same manner as the primary resistance Rs. In such a case, it is predicted that the set secondary time constant τrc has an error from the true value of the secondary time constant τr and the desired control performance cannot be obtained.

なお、文章中の二次自己インダクタンスLrは漏れインダクタンスlr+相互インダクタンスMで求める。一次自己インダクタンスLsも同様にLs=ls+Mで求める。   The secondary self-inductance Lr in the text is obtained by leakage inductance lr + mutual inductance M. Similarly, the primary self-inductance Ls is obtained by Ls = ls + M.

以上示したように、誘導電動機の制御装置において、力行動作と回生動作のそれぞれについて、二次時定数推定値の誤差を低減し、安定したトルク制御を行うことが課題となる。   As described above, in the control apparatus for an induction motor, it is a problem to perform stable torque control by reducing the error of the secondary time constant estimation value for each of the power running operation and the regenerative operation.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御部と、前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、前記三相電圧指令値に応じた電圧を出力するインバータと、前記インバータが出力した電圧により駆動する誘導電動機と、前記三相のインバータ出力電流を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、前記γ軸電流検出値と、前記δ軸電流検出値と、γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、トルク指令値と回転数検出器との積が0以下の場合は0、0より大きい場合は1とする力行回生判別フラグと、に基づいて、二次時定数推定値を演算する二次時定数推定部と、前記二次時定数推定値に基づいて、すべり角周波数と電気角を演算するすべり演算・電気角演算部と、を備えたことを特徴とする。   The present invention has been devised in view of the above-described conventional problems, and one aspect thereof is the deviation between the γ-axis current command value and the γ-axis current detection value, the δ-axis current command value, and the δ-axis current detection value. A current control unit that outputs a γ-axis voltage command value and a δ-axis voltage command value, and a γ-axis voltage command value and a δ-axis voltage command value that are converted into a three-phase voltage command value. A one-coordinate conversion unit, an inverter that outputs a voltage corresponding to the three-phase voltage command value, an induction motor that is driven by the voltage output from the inverter, and the three-phase inverter output current that is the γ-axis current detection value, Γ which is a difference between the second coordinate conversion unit for converting into the δ-axis current detection value, the γ-axis current detection value, the δ-axis current detection value, the γ-axis current estimation value, and the γ-axis current detection value. Shaft current error, δ-axis current error that is the difference between the estimated value of δ-axis current and the detected value of δ-axis current, and torque Secondary time constant estimation that calculates a secondary time constant estimated value based on a power running regeneration determination flag that is 0 when the product of the instruction value and the rotational speed detector is 0 or less, and 1 when it is greater than 0 And a slip calculation / electrical angle calculation unit for calculating a slip angular frequency and an electrical angle based on the estimated second-order time constant value.

また、その一態様として、前記二次時定数推定部において、以下の(9)式〜(12)式により、一次時定数推定値と前記二次時定数推定値を演算することを特徴とする。   Moreover, as one aspect thereof, the second-order time constant estimation unit calculates a first-order time constant estimated value and the second-order time constant estimated value according to the following expressions (9) to (12): .

Figure 2018014809
Figure 2018014809

また、その一態様として、前記二次時定数推定部において、以下の(5)式〜(6)式により、γ軸電流誤差とδ軸電流誤差を演算することを特徴とする。   As one aspect thereof, the second-order time constant estimation unit calculates a γ-axis current error and a δ-axis current error by the following equations (5) to (6).

Figure 2018014809
Figure 2018014809

Figure 2018014809
Figure 2018014809

また、他の態様として、γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御部と、前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、前記三相電圧指令値に応じた電圧を出力するインバータと、前記インバータが出力した電圧により駆動する誘導電動機と、前記三相のインバータ出力電流を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、予め求めた、回転数検出値とトルク指令値に対する第1の安定範囲と第2の安定範囲と第3の安定範囲を格納し、回転数検出値とトルク指令値が第1の安定範囲内であれば切替フラグを1,第1の安定範囲外で第2の安定範囲内であれば切替フラグを2,第1と第2の安定範囲外で第3の安定範囲内であれば切替フラグを3として切替フラグを出力する時定数推定式切換判別部と、前記切替フラグが1の場合は(14)式、前記切替フラグが2の場合は(15)式、前記切替フラグが3の場合は(16)式を選択し、選択した演算式により、前記γ軸電流検出値と、前記δ軸電流検出値と、γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差に基づいて、二次時定数推定値を演算する二次時定数推定部と、前記二次時定数推定値に基づいて、電気角を演算するすべり演算・電気角演算部と、を備えたことを特徴とする。   As another aspect, based on the deviation between the γ-axis current command value and the detected γ-axis current value, and the difference between the δ-axis current command value and the detected δ-axis current value, the γ-axis voltage command value and the δ-axis voltage command A current control unit that outputs a value, a first coordinate conversion unit that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value, and a voltage corresponding to the three-phase voltage command value An inverter that outputs a voltage output from the inverter, a second coordinate conversion unit that converts the three-phase inverter output current into the γ-axis current detection value and the δ-axis current detection value, The first stable range, the second stable range, and the third stable range with respect to the detected rotational speed value and the torque command value are stored in advance, and the detected rotational speed value and the torque command value are within the first stable range. If there is a switch flag, turn it off if it is outside the first stability range and within the second stability range If the flag is out of the first and second stable ranges and within the third stable range, the time constant estimation formula switching discriminating unit that outputs the switching flag with the switching flag set to 3, and when the switching flag is 1, Formula (14): When the switching flag is 2, the formula (15) is selected. When the switching flag is 3, the formula (16) is selected, and the γ-axis current detection value and the δ are calculated by the selected calculation formula. An axis current detection value, a γ-axis current error that is the difference between the estimated γ-axis current value and the detected γ-axis current value, and a δ-axis current error that is the difference between the estimated δ-axis current value and the detected δ-axis current value A second-order time constant estimation unit that calculates a second-order time constant estimation value, and a slip calculation / electric-angle calculation unit that calculates an electrical angle based on the second-order time constant estimation value. It is characterized by.

Figure 2018014809
Figure 2018014809

Figure 2018014809
Figure 2018014809

また、その一態様として、γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御部と、前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、前記三相電圧指令値に応じた電圧を出力するインバータと、前記インバータが出力した電圧により駆動する誘導電動機と、前記三相のインバータ出力電流を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、予め求めた、すべり角周波数とトルク指令値に対する第1の安定範囲と第2の安定範囲と第3の安定範囲を格納し、すべり角周波数とトルク指令値が第1の安定範囲内であれば切替フラグを1,第1の安定範囲外で第2の安定範囲内であれば切替フラグを2,第1と第2の安定範囲外で第3の安定範囲内であれば切替フラグを3として、切替フラグを出力する時定数推定式切換判別部と、前記切替フラグが1の場合は(14)式、前記切替フラグが2の場合は(15)式、前記切替フラグが3の場合は(16)式を選択し、選択した演算式により、前記γ軸電流検出値と、前記δ軸電流検出値と、γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差に基づいて、二次時定数推定値を演算する二次時定数推定部と、前記二次時定数推定値に基づいて、電気角を演算するすべり演算・電気角演算部と、を備えたことを特徴とする。   Also, as one aspect thereof, based on the deviation between the γ-axis current command value and the detected γ-axis current value, and the difference between the δ-axis current command value and the detected δ-axis current value, the γ-axis voltage command value and the δ-axis voltage command A current control unit that outputs a value, a first coordinate conversion unit that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value, and a voltage corresponding to the three-phase voltage command value An inverter that outputs a voltage output from the inverter, a second coordinate conversion unit that converts the three-phase inverter output current into the γ-axis current detection value and the δ-axis current detection value, The first stable range, the second stable range, and the third stable range with respect to the slip angular frequency and the torque command value obtained in advance are stored, and if the slip angular frequency and the torque command value are within the first stable range. Set the switching flag to 1, outside the first stable range and within the second stable range If the switching flag is 2, out of the first and second stable ranges and within the third stable range, the switching flag is set to 3, and the time constant estimation type switching discriminating unit for outputting the switching flag, and the switching flag is 1 (14), (15) if the switching flag is 2, and (16) if the switching flag is 3, the γ-axis current detection value and The δ-axis current detection value, the γ-axis current error that is the difference between the γ-axis current estimation value and the γ-axis current detection value, and the δ that is the difference between the δ-axis current estimation value and the δ-axis current detection value A second-order time constant estimator that calculates a second-order time constant estimated value based on an axial current error; and a slip operation / electric-angle calculator that calculates an electrical angle based on the second-order time constant estimated value. It is characterized by having.

Figure 2018014809
Figure 2018014809

Figure 2018014809
Figure 2018014809

また、その一態様として、前記二次時定数推定部において、以下の(5)式〜(6)式により、γ軸電流誤差とδ軸電流誤差を演算することを特徴とする。   As one aspect thereof, the second-order time constant estimation unit calculates a γ-axis current error and a δ-axis current error by the following equations (5) to (6).

Figure 2018014809
Figure 2018014809

Figure 2018014809
Figure 2018014809

本発明によれば、誘導電動機の制御装置において、力行動作と回生動作のそれぞれについて、二次時定数推定値の誤差を低減し、安定したトルク制御を行うことが可能となる。   According to the present invention, in the control apparatus for an induction motor, it is possible to perform stable torque control by reducing the error of the estimated second-order time constant for each of the power running operation and the regenerative operation.

実施形態1における誘導電動機の制御装置を示すブロック図。FIG. 2 is a block diagram illustrating a control device for the induction motor according to the first embodiment. 実施形態1における二次時定数推定部を示すブロック図。FIG. 3 is a block diagram illustrating a second-order time constant estimation unit according to the first embodiment. 実施形態1の制御処理を示すフローチャート。5 is a flowchart illustrating control processing according to the first embodiment. 実施形態1におけるトルク波形を示す図。The figure which shows the torque waveform in Embodiment 1. FIG. 実施形態2における誘導電動機の制御装置を示すブロック図。The block diagram which shows the control apparatus of the induction motor in Embodiment 2. FIG. 実施形態2におけるパラメータ推定器を示すブロック図。FIG. 5 is a block diagram showing a parameter estimator in the second embodiment. (8)式で推定を行った場合の安定範囲を示す図。The figure which shows the stable range at the time of estimating by (8) Formula. (9)式で推定を行った場合の安定範囲を示す図。The figure which shows the stable range at the time of estimating by (9) Formula. (10)式で推定を行った場合の安定範囲を示す図。The figure which shows the stable range at the time of estimating by (10) Formula. 従来と実施形態2におけるシミュレーション結果を示す図。The figure which shows the simulation result in the prior art and Embodiment 2. FIG.

本願発明は、設定二次時定数τrcと二次時定数τrの真値との誤差を小さくすることによって、力行回生の4象限運転を安定に動作させることが可能な方式である。力行時の二次抵抗補償値は安定に取得可能であるが、回生時には不安定となる問題があることから、回生時には二次抵抗補償値の取得方法を切り替えるように構成している。回生時の二次抵抗補償は力行時の補償値も反映されるように構成したことで、回生時にも力行時と同等の効果を得ることができる。以下、本願発明の実施形態1〜3を図1〜図10に基づいて説明する。   The present invention is a system capable of stably operating the four-quadrant operation of power regeneration by reducing the error between the set secondary time constant τrc and the true value of the secondary time constant τr. Although the secondary resistance compensation value at the time of power running can be obtained stably, there is a problem that the secondary resistance compensation value becomes unstable at the time of regeneration. Therefore, the method of obtaining the secondary resistance compensation value at the time of regeneration is switched. The secondary resistance compensation at the time of regeneration is configured to reflect the compensation value at the time of power running, so that the same effect as at the time of power running can be obtained even at the time of regeneration. Hereinafter, Embodiments 1 to 3 of the present invention will be described with reference to FIGS.

[実施形態1]
本実施形態1における誘導電動機の制御装置について説明する。図1は本実施形態1における誘導電動機の制御装置を示すブロック図である。まず、電流指令演算部1において、γ軸磁束指令値φγrefとトルク指令値Trefに基づいて、例えば、以下の(1)式,(2)式によりγ軸電流指令値Iγrefとδ軸電流指令値Iδrefを演算する。
[Embodiment 1]
The induction motor control apparatus according to Embodiment 1 will be described. FIG. 1 is a block diagram showing a control device for an induction motor according to the first embodiment. First, in the current command calculation unit 1, based on the γ-axis magnetic flux command value φγref and the torque command value Tref, for example, the following γ-axis current command value Iγref and δ-axis current command value by the following formulas (1) and (2): Iδref is calculated.

Figure 2018014809
Figure 2018014809

減算器2は、γ軸電流指令値Iγrefとγ軸電流検出値Iγdetとの偏差であるγ軸電流偏差を計算する。γ軸電流偏差は電流制御部4へ出力する。同様に、減算器3は、δ軸電流指令値Iδrefとδ軸電流検出値Iδdetとの偏差であるδ軸電流偏差を計算する。δ軸電流偏差は電流制御部4へ出力する。   The subtractor 2 calculates a γ-axis current deviation that is a deviation between the γ-axis current command value Iγref and the γ-axis current detection value Iγdet. The γ-axis current deviation is output to the current control unit 4. Similarly, the subtractor 3 calculates a δ-axis current deviation which is a deviation between the δ-axis current command value Iδref and the δ-axis current detection value Iδdet. The δ-axis current deviation is output to the current control unit 4.

電流制御部4では、γ軸電流偏差とδ軸電流偏差に基づいて、例えば、PI制御により、γ軸電流偏差,δ軸電流偏差がゼロとなるγ軸電圧指令値Vγref,δ軸電圧指令値Vδrefを算出する。座標変換部5は、電流制御部4が出力したγ軸電圧指令値Vγrefとδ軸電圧指令値Vδrefを電気角基準位相θeに基づいて、三相電圧指令値であるu相電圧指令値vuref,v相電圧指令値vvref,w相電圧指令値vwrefに変換する。PWMインバータ6等の電力変換器は前記三相電圧指令値vuref,vvref,vwrefに応じた電圧を誘導電動機IMに出力して誘導電動機IMを運転する。   In the current control unit 4, based on the γ-axis current deviation and the δ-axis current deviation, for example, the γ-axis current deviation and the δ-axis current deviation become zero by the PI control. Vδref is calculated. The coordinate conversion unit 5 uses the γ-axis voltage command value Vγref and the δ-axis voltage command value Vδref output from the current control unit 4 based on the electrical angle reference phase θe, the u-phase voltage command value vrefef, v-phase voltage command value vvref and w-phase voltage command value vwref are converted. A power converter such as the PWM inverter 6 outputs the voltage corresponding to the three-phase voltage command values vrefef, vvref, vwref to the induction motor IM to operate the induction motor IM.

三相電流検出値iudet,ivdet,iwdetは座標変換部7においてγ軸電流検出値Iγdetとδ軸電流検出値Iδdetに変換される。   The three-phase current detection values iudet, ivdet, iwdet are converted into a γ-axis current detection value Iγdet and a δ-axis current detection value Iδdet in the coordinate conversion unit 7.

本実施形態1において、座標変換部5,7では、以下の(3)式,(4)式の回転行列と3相2相変換行列を用いて行っている。   In the first embodiment, the coordinate conversion units 5 and 7 use the rotation matrix and the three-phase two-phase conversion matrix of the following equations (3) and (4).

Figure 2018014809
Figure 2018014809

二次時定数推定部8には、γ軸電圧指令値Vγref,δ軸電圧指令値Vδref,γ軸電流検出値Iγdet,δ軸電流検出値Iδdet,回転数検出値ωdet,電気角(電気角演算値)ωe,トルク指令値Trefが入力される。   The secondary time constant estimation unit 8 includes a γ-axis voltage command value Vγref, a δ-axis voltage command value Vδref, a γ-axis current detection value Iγdet, a δ-axis current detection value Iδdet, a rotation speed detection value ωdet, an electrical angle (electrical angle calculation). Value) ωe and torque command value Tref are input.

二次時定数推定部8の詳細を図2に示す。 二次時定数推定部8では、γ軸電圧指令値Vγref,δ軸電圧指令値Vδref,電気角ωe,回転数検出値ωdet,γ軸電流検出値Iγdet,δ軸電流検出値Iδdetと、後述する時定数推定部8dの出力である二次時定数推定値τrcest,一次時定数推定値τscest(Lsc/Rsc)を電流オブザーバ8aに入力する。電流オブザーバ8aでは、以下の(5)式によりγ軸電流推定値Iγestとδ軸電流推定値Iδestを計算する。   Details of the secondary time constant estimation unit 8 are shown in FIG. In the secondary time constant estimation unit 8, a γ-axis voltage command value Vγref, a δ-axis voltage command value Vδref, an electrical angle ωe, a rotation speed detection value ωdet, a γ-axis current detection value Iγdet, a δ-axis current detection value Iδdet, which will be described later. The secondary time constant estimated value τrcest and the primary time constant estimated value τsest (Lsc / Rsc), which are the outputs of the time constant estimating unit 8d, are input to the current observer 8a. The current observer 8a calculates the estimated γ-axis current value Iγest and the estimated δ-axis current value Iδest by the following equation (5).

Figure 2018014809
Figure 2018014809

電流誤差演算部8bでは、γ軸電流推定値Iγestとδ軸電流推定値Iδest、そして、γ軸電流検出値Iγdetとδ軸電流検出値Iδdetに基づいて、以下の(6)式により、γ軸電流検出値Iγdetとγ軸電流推定値Iγestとの差分、および、δ軸電流検出値Iδdetとδ軸電流推定値Iδestとの差分をとって、γ軸電流誤差eiγ,δ軸電流誤差eiδを演算する。   In the current error calculation unit 8b, based on the γ-axis current estimated value Iγest, the δ-axis current estimated value Iδest, and the γ-axis current detected value Iγdet and the δ-axis current detected value Iδdet, the following equation (6) is used to calculate the γ-axis The difference between the detected current value Iγdet and the estimated γ-axis current value Iγest and the difference between the detected δ-axis current value Iδdet and the estimated δ-axis current value Iδest are calculated to calculate the γ-axis current error eiγ and the δ-axis current error eiδ. To do.

Figure 2018014809
Figure 2018014809

また、力行回生判別部8cでは、トルク指令値Trefと回転数検出値ωdetに基づいて、以下の(7)式,(8)式により力行回生判別フラグFlagを演算する。   Further, the power running regeneration determination unit 8c calculates a power running regeneration determination flag Flag by the following equations (7) and (8) based on the torque command value Tref and the rotation speed detection value ωdet.

Figure 2018014809
Figure 2018014809

時定数推定部8dは、γ軸電流誤差eiγ,δ軸電流誤差eiδ,力行回生判別フラグFlag,γ軸電流検出値Iγdet,δ軸電流検出値Iδdetに基づいて、以下の(9)式〜(12)式により一次時定数推定値τscestと二次時定数推定値τrcestを演算する。   Based on the γ-axis current error eiγ, the δ-axis current error eiδ, the power running regeneration determination flag Flag, the γ-axis current detection value Iγdet, and the δ-axis current detection value Iδdet, the time constant estimation unit 8d The first-order time constant estimated value τsest and the second-order time constant estimated value τrcest are calculated from the equation (12).

Figure 2018014809
Figure 2018014809

σ=1−M2/(LsLr) Mc=相互インダクタンス
Ls=一次自己インダクタンス Lr:二次自己インダクタンス
図1に示すように、二次時定数推定部8で推定した二次時定数推定値τrcestとγ軸電流指令値Iγref,δ軸電流指令値Iδref,回転数検出値ωdetを、すべり演算・電気角演算部9に出力し、すべり演算・電気角演算部9において、(13)式により電気角ωeを求める。
σ = 1−M2 / (LsLr) Mc = mutual inductance Ls = primary self-inductance Lr: secondary self-inductance As shown in FIG. 1, the secondary time constant estimated value τrcest and γ estimated by the secondary time constant estimator 8 The shaft current command value Iγref, the δ-axis current command value Iδref, and the rotation speed detection value ωdet are output to the slip calculation / electrical angle calculation unit 9, and in the slip calculation / electrical angle calculation unit 9, the electrical angle ωe is obtained by the equation (13). Ask for.

Figure 2018014809
Figure 2018014809

(13)式は誘導電動機IMでδ軸磁束指令値φδref=0とするベクトル制御で導出可能な一般的な式であるため説明は省略する。   Since the equation (13) is a general equation that can be derived by vector control in which the induction motor IM sets the δ-axis magnetic flux command value φδref = 0, description thereof is omitted.

積分器10において、(13)式で求めた電気角ωeにより電気角基準位相θeを求め、電気角基準位相θeを座標変換時の基準軸として利用する。   In the integrator 10, the electrical angle reference phase θe is obtained from the electrical angle ωe obtained by the equation (13), and the electrical angle reference phase θe is used as a reference axis at the time of coordinate conversion.

本実施形態1は、運転前の実際の二次抵抗Rrと二次抵抗設定値Rrcに誤差がある場合や、運転中の温度変化により実際の二次抵抗Rrと二次抵抗設定値Rrcに誤差が生じ、軸ずれが生じてしまう条件でも、運転中に逐次推定される二次時定数推定値τrcestを用いてすべり角周波数ωslipを推定することで軸ずれを防ぎ、所望の制御性能を得ることができる。   In the first embodiment, when there is an error between the actual secondary resistance Rr and the secondary resistance set value Rrc before the operation or due to a temperature change during the operation, there is an error between the actual secondary resistance Rr and the secondary resistance set value Rrc. In this case, the slip angular frequency ωslip is estimated by using the second-order time constant estimated value τrcest that is sequentially estimated during operation, and the desired control performance can be obtained even under the condition that the shaft misalignment occurs. Can do.

加えて、力行もしくは回生の運転状態によって二次時定数推定値τrcestの演算式を変えているため、従来制御では困難であった力行回生の4象限運転においても、その効果を得ることができる方式である。   In addition, since the calculation formula of the second-order time constant estimated value τrcest is changed according to the power running or the regenerative operation state, a method capable of obtaining the effect even in the four-quadrant operation of the power regeneration that is difficult in the conventional control. It is.

本実施形態1の動作処理を図3のフローチャートに基づいて説明する。   The operation process of the first embodiment will be described based on the flowchart of FIG.

S1:力行回生判別部8cにより、トルク指令値Trefと回転数検出値ωdetに基づいて(7)式,(8)式により力行回生判別フラグFlagを演算する。   S1: The power running regeneration determination unit 8c calculates the power running regeneration determination flag Flag using the equations (7) and (8) based on the torque command value Tref and the rotation speed detection value ωdet.

S2:力行回生判別フラグFlagが0か1かを判定する。力行回生判別フラグFlag=0(力行)の場合S3へ移行し、力行回生判別フラグFlag=1(回生)の場合S4へ移行する。   S2: It is determined whether the power running regeneration determination flag Flag is 0 or 1. When the power running regeneration determination flag Flag = 0 (power running), the process proceeds to S3, and when the power running regeneration determination flag Flag = 1 (regeneration), the process proceeds to S4.

S3:時定数推定部8dにおいて、力行回生判別フラグFlag=0の場合には、(11)式の演算を行う。   S3: In the time constant estimation unit 8d, when the power running regeneration determination flag Flag = 0, the calculation of the expression (11) is performed.

S4:時定数推定部8dにおいて、力行回生判別フラグFlag=1の場合には、(12)式の演算を行う。   S4: In the time constant estimation unit 8d, when the power running regeneration determination flag Flag = 1, the calculation of Expression (12) is performed.

S5:このとき、Flag=0の場合に用いる(9)式,(11)式では、新たな積分処理は行わず、前回値を保持する。   S5: At this time, in Formulas (9) and (11) used when Flag = 0, new integration processing is not performed and the previous value is held.

S6:推定した二次時定数推定値τrcestを用いて、すべり角演算・電気角演算部9において、すべり角周波数ωslipの演算を行う。   S6: Using the estimated second-order time constant estimated value τrcest, the slip angle calculation / electrical angle calculation unit 9 calculates the slip angular frequency ωslip.

実際の二次抵抗Rrと二次抵抗設定値Rrcに誤差がある条件で、力行(トルク指令値+50%)から回生(トルク指令値−50%)そして力行(トルク指令値+50%)と運転モードを切り替えた際のシミュレーション結果を図4に示す。図4の横軸は時間,縦軸はトルクである。なお、インダクタンス設定誤差はない条件でシミュレーションを行っている。   Operation mode with power running (torque command value + 50%), regenerative (torque command value-50%), power running (torque command value + 50%), and operating mode under the condition that there is an error in actual secondary resistance Rr and secondary resistance set value Rrc FIG. 4 shows the simulation result when switching between. The horizontal axis in FIG. 4 is time, and the vertical axis is torque. The simulation is performed under the condition that there is no inductance setting error.

図4には比較のため、適応制御なしでの運転波形も併せて表示している。本実施形態1の適応制御は5秒から開始する条件である。   For comparison, FIG. 4 also shows an operation waveform without adaptive control. The adaptive control of the first embodiment is a condition that starts from 5 seconds.

まず、適応制御なし(図4の「適応なし」)では,実際の二次抵抗Rrと二次抵抗設定値Rrcの誤差があるため、軸ずれが生じている。この影響でトルク出力値が指令値通りに出力できていない。それに対して、本実施形態1(図4の「提案」)では適応制御開始から二次抵抗値の誤差を補正するため軸ずれが小さくなりトルク出力値が指令値と一致していることが確認できる。   First, in the absence of adaptive control (“no adaptation” in FIG. 4), there is an error between the actual secondary resistance Rr and the secondary resistance set value Rrc, resulting in an axis shift. As a result, the torque output value cannot be output as commanded. On the other hand, in the first embodiment ("Proposal" in FIG. 4), since the error of the secondary resistance value is corrected from the start of the adaptive control, it is confirmed that the axis deviation becomes small and the torque output value matches the command value. it can.

本実施形態1では、誘導電動機IMの力行動作と回生動作のそれぞれについて、二次時定数推定値τrcestの誤差を低減できる。したがって、誘導電動機IMの力行動作と回生動作を含む4象限運転で、力行動作時および回生動作時にそれぞれにおいて、安定したトルク制御を行うことが可能となる。   In the first embodiment, it is possible to reduce the error of the secondary time constant estimated value τrcest for each of the power running operation and the regenerative operation of the induction motor IM. Therefore, in the four-quadrant operation including the power running operation and the regenerative operation of the induction motor IM, it is possible to perform stable torque control in each of the power running operation and the regenerative operation.

[実施形態2]
本実施形態2は、実施形態1では対応困難であった回生時のパラメータ変化にも対応可能であり、回生時により精度の高い制御の実現を可能とする発明である。
[Embodiment 2]
The second embodiment is an invention that can cope with a parameter change during regeneration, which is difficult to cope with in the first embodiment, and can realize highly accurate control during regeneration.

本実施形態2は、回生時に時定数推定部で単純に力行回生条件での推定式切り替えではなく、安定性判別結果に基づきその時々の運転状態から最適な時定数推定を行うことでパラメータ推定が不安定となることを防ぐ。この機能が実施形態1にはない内容である。   In the second embodiment, the time constant estimation unit does not simply switch the estimation formula under the power running regeneration condition at the time of regeneration, but performs parameter estimation by performing optimal time constant estimation from the current driving state based on the stability determination result. Prevent instability. This function is not in the first embodiment.

電流指令演算部1、減算器2,3,電流制御部4,座標変換部5,PWMインバータ6,座標変換部7,すべり演算・電気角演算部9,積分器10は実施形態1と同様である。また、実施形態1の電流オブザーバ8a,電流誤差演算部8bと、本実施形態2の電流オブザーバ11a,電流誤差演算部11cの動作は同じである。本実施形態2では、パラメータ推定器11bの時定数推定部11eで、γ軸電流誤差eiγ,δ軸電流誤差eiδ,γ軸電流検出値iγdet,δ軸電流検出値iδdetに基づいて、以下の(14)式で一次時定数推定値τscest,二次時定数推定値τrcestを推定する。   The current command calculation unit 1, subtractor 2, 3, current control unit 4, coordinate conversion unit 5, PWM inverter 6, coordinate conversion unit 7, slip calculation / electrical angle calculation unit 9, and integrator 10 are the same as those in the first embodiment. is there. The operations of the current observer 8a and current error calculation unit 8b of the first embodiment and the current observer 11a and current error calculation unit 11c of the second embodiment are the same. In the second embodiment, the time constant estimation unit 11e of the parameter estimator 11b performs the following (based on the γ-axis current error eiγ, δ-axis current error eiδ, γ-axis current detection value iγdet, and δ-axis current detection value iδdet: 14) Estimate the first-order time constant estimated value τsest and the second-order time constant estimated value τrcest by the equation (14).

Figure 2018014809
Figure 2018014809

(14)式で時定数推定を行った場合の適応制御を含めた安定範囲を図7に示す。図7は、一次時定数推定ゲインλs,二次時定数ゲインλrは同じ値としている。灰色が制御系の安定範囲であり、白色が不安定範囲である。図7に示すように(14)式で時定数推定を行った場合には回生運転領域のほぼ全てで不安定となってしまうため、推定則の切り替えが必要となる。   FIG. 7 shows a stable range including adaptive control when the time constant is estimated using equation (14). In FIG. 7, the primary time constant estimated gain λs and the secondary time constant gain λr have the same value. Gray is the stable range of the control system, and white is the unstable range. As shown in FIG. 7, when the time constant is estimated using the equation (14), the entire regenerative operation region becomes unstable, and thus the estimation rule needs to be switched.

次に、(15)式,(16)式で時定数推定を行った場合の安定範囲をそれぞれ図8と図9に示す。   Next, FIGS. 8 and 9 show the stable ranges when the time constant is estimated using the equations (15) and (16), respectively.

Figure 2018014809
Figure 2018014809

(15)式と(16)式の推定則では一次時定数推定値τscestの推定を行わない。推定を行わないため、逐次推定はできないが、初期設定値のまま制御を行う。図8と図9より、図7で不安定な範囲を制御設定値を変更することで安定とすることが確認できる。   The estimation rule of the equations (15) and (16) does not estimate the first-order time constant estimated value τsest. Since estimation is not performed, sequential estimation cannot be performed, but control is performed with the initial setting value. 8 and 9, it can be confirmed that the unstable range in FIG. 7 can be stabilized by changing the control set value.

本実施形態2では図7〜図9の安定範囲を予め求めておき、図6の時定数推定式切替判別部11dに格納しておく。なお、安定範囲を求める手法は、非特許文献2に記載されている手法(非特許文献2内の(29)式,(30)式を用いてフィルビッツの安定判別法によって安定範囲を求める方法)を用いる。   In the second embodiment, the stable ranges of FIGS. 7 to 9 are obtained in advance and stored in the time constant estimation expression switching determination unit 11d of FIG. The method for obtaining the stable range is a method described in Non-Patent Document 2 (a method for obtaining the stable range by the Philbitz stability discrimination method using Equations (29) and (30) in Non-Patent Document 2). ) Is used.

次に、図6の時定数推定式切替判別部11dで、時定数推定式切替判別部11dに入力される回転数検出値ωdetとトルク指令値Trefが、図7〜図9の安定範囲内か否かの判定を行う。   Next, in the time constant estimation formula switching discriminating unit 11d of FIG. 6, whether the rotation speed detection value ωdet and the torque command value Tref input to the time constant estimation formula switching discriminating unit 11d are within the stable range of FIGS. Determine whether or not.

切替フラグFlag2は、例えば、運転領域が図7で安定となる範囲(すなわち、回転数検出値ωdetとトルク指令値Trefが灰色の範囲内)であれば切替フラグFlag2を1に、図7で安定となる範囲外で、かつ、図8で安定となる範囲であれば切替フラグFlag2を2に、図7,図8で安定となる範囲外で、かつ、図9で安定となる範囲であれば切替フラグFlag2を3とし、その切替フラグFlag2を基に時定数推定部11eでは推定式を切替えて、一時時定数推定値τscestと二次時定数推定値τrcestを演算して出力する。すなわち、切替フラグFlag2が1の場合は(14)式、切替フラグFlag2が2の場合は(15)式、切替フラグFlag2が3の場合は(16)式を選択して、一時時定数推定値τscestと二次時定数推定値τrcestを演算する。   For example, the switching flag Flag2 is set to 1 if the operation region is in a stable range in FIG. 7 (that is, the rotation speed detection value ωdet and the torque command value Tref are in a gray range), and the switching flag Flag2 is stable in FIG. 8 and if it is a stable range in FIG. 8, the switching flag Flag2 is set to 2. If it is outside the stable range in FIGS. 7 and 8, and is stable in FIG. The switching flag Flag2 is set to 3, and the time constant estimator 11e switches the estimation formula based on the switching flag Flag2, and calculates and outputs the temporary time constant estimated value τsest and the secondary time constant estimated value τrcest. That is, when the switching flag Flag2 is 1, the expression (14) is selected, when the switching flag Flag2 is 2, the expression (15) is selected, and when the switching flag Flag2 is 3, the expression (16) is selected. τquest and second-order time constant estimated value τrcest are calculated.

以下の動作は、実施形態1と同様である。   The following operations are the same as those in the first embodiment.

本実施形態2で運転した場合と、切り替えを行わずに(14)式でのみ時定数推定を行い、回生領域まで運転した場合のシミュレーション結果を図10に示す。回転数(速度)を+10%とし、トルク指令値Trefを+10%→−10%→−40%と変化させた条件でのシミュレーション結果である。   FIG. 10 shows a simulation result when the operation is performed in the second embodiment and when the time constant is estimated only by the equation (14) without switching and the operation is performed up to the regeneration region. This is a simulation result under the condition that the rotation speed (speed) is + 10% and the torque command value Tref is changed from + 10% → −10% → −40%.

図10のシミュレーションで示すように、従来法では回生領域(100s〜200s)で推定がうまくできないため、指令値(点線)に対してトルク誤差が生じている。   As shown in the simulation of FIG. 10, the conventional method cannot estimate well in the regenerative region (100 s to 200 s), so that a torque error occurs with respect to the command value (dotted line).

それに対し、本実施形態2では回生領域でも良好に推定することができていることが確認できる。   On the other hand, in this Embodiment 2, it can confirm that it can estimate favorably also in a regeneration area | region.

以上示したように、本実施形態2(図10の「提案」)では、誘導電動機IMの力行動作と回生動作のそれぞれについて、二次時定数推定値τrcestの誤差を低減できる。   As described above, in the second embodiment (“proposition” in FIG. 10), it is possible to reduce the error of the secondary time constant estimated value τrcest for each of the power running operation and the regenerative operation of the induction motor IM.

したがって、誘導電動機IMの力行動作と回生動作を含む4象限運転で、力行動作時および回生動作時にそれぞれにおいて、安定したトルク制御を行えるようになる。   Therefore, in the four-quadrant operation including the power running operation and the regenerative operation of the induction motor IM, stable torque control can be performed during the power running operation and the regenerative operation.

さらに、実施形態1と比較しても、より精度の高いトルク制御が実現できる。   Further, even more accurate torque control can be realized as compared with the first embodiment.

[実施形態3]
本実施形態3の構成は、実施形態2と同様である。本実施形態3では、図6の時定数推定式切替判別部11dに、回転数検出値ωdetを入力せず、図5のすべり演算・電気角演算部9で演算したすべり角周波数ωslipを代わりに入力 し、すべり角周波数ωslip,トルク指令値Trefに基づいた判別を行う。その結果、実施形態2と同様の作用効果を奏する。なお、すべり角周波数ωslipの演算式は、(13)式に記載している。
[Embodiment 3]
The configuration of the third embodiment is the same as that of the second embodiment. In the third embodiment, the detected rotational speed value ωdet is not input to the time constant estimation formula switching discriminating unit 11d in FIG. 6, and the slip angular frequency ωslip calculated by the slip calculation / electrical angle calculation unit 9 in FIG. Then, the discrimination is made based on the slip angular frequency ωslip and the torque command value Tref. As a result, the same effects as those of the second embodiment are obtained. Note that the equation for calculating the slip angular frequency ωslip is described in equation (13).

実施形態3では、図7〜図9において、横軸をすべり角周波数ωslipとした安定範囲を予め求めておいて、図6の時定数推定式切替判別部11dに格納しておく。以下の動作は、実施形態2と同様である。   In the third embodiment, in FIG. 7 to FIG. 9, a stable range in which the horizontal axis is the slip angular frequency ωslip is obtained in advance and stored in the time constant estimation formula switching discriminating unit 11d in FIG. The following operations are the same as those in the second embodiment.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

1…電流指令演算部
2,3…減算部
4…電流制御部
5,7…座標変換部
6…PWMインバータ
8…二次時定数推定部
9…すべり演算・電気角演算部
IM…誘導電動機
DESCRIPTION OF SYMBOLS 1 ... Current command calculating part 2, 3 ... Subtraction part 4 ... Current control part 5, 7 ... Coordinate conversion part 6 ... PWM inverter 8 ... Secondary time constant estimation part 9 ... Slip calculation and electrical angle calculation part IM ... Induction motor

Claims (6)

γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御部と、
前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、
前記三相電圧指令値に応じた電圧を出力するインバータと、
前記インバータが出力した電圧により駆動する誘導電動機と、
前記三相のインバータ出力電流を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、
前記γ軸電流検出値と、前記δ軸電流検出値と、γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差と、トルク指令値と回転数検出器との積が0以下の場合は0、0より大きい場合は1とする力行回生判別フラグと、に基づいて、二次時定数推定値を演算する二次時定数推定部と、
前記二次時定数推定値に基づいて、すべり角周波数と電気角を演算するすべり演算・電気角演算部と、
を備えたことを特徴とする誘導電動機の制御装置。
Current control that outputs a γ-axis voltage command value and a δ-axis voltage command value based on a deviation between the γ-axis current command value and the γ-axis current detection value and a deviation between the δ-axis current command value and the δ-axis current detection value And
A first coordinate converter that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value;
An inverter that outputs a voltage corresponding to the three-phase voltage command value;
An induction motor driven by the voltage output by the inverter;
A second coordinate conversion unit that converts the three-phase inverter output current into the γ-axis current detection value and the δ-axis current detection value;
The γ-axis current detection value, the δ-axis current detection value, the γ-axis current error that is the difference between the γ-axis current estimation value and the γ-axis current detection value, the δ-axis current estimation value, and the δ-axis current detection Based on a δ-axis current error that is a difference between the value and a power running regeneration determination flag that is 0 when the product of the torque command value and the rotational speed detector is 0 or less, and 1 when the product is greater than 0. A secondary time constant estimator for calculating a next time constant estimate;
A slip calculation / electrical angle calculation unit for calculating a slip angular frequency and an electrical angle based on the estimated second-order time constant;
An induction motor control apparatus comprising:
前記二次時定数推定部において、
以下の(9)式〜(12)式により、一次時定数推定値と前記二次時定数推定値を演算することを特徴とする請求項1記載の誘導電動機の制御装置。
Figure 2018014809
In the second-order time constant estimation unit,
The induction motor control device according to claim 1, wherein the primary time constant estimated value and the secondary time constant estimated value are calculated by the following equations (9) to (12).
Figure 2018014809
前記二次時定数推定部において、
以下の(5)式〜(6)式により、γ軸電流誤差とδ軸電流誤差を演算することを特徴とする請求項1または2記載の誘導電動機の制御装置。
Figure 2018014809
Figure 2018014809
In the second-order time constant estimation unit,
3. The induction motor control device according to claim 1, wherein the γ-axis current error and the δ-axis current error are calculated by the following equations (5) to (6).
Figure 2018014809
Figure 2018014809
γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御部と、
前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、
前記三相電圧指令値に応じた電圧を出力するインバータと、
前記インバータが出力した電圧により駆動する誘導電動機と、
前記三相のインバータ出力電流を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、
予め求めた、回転数検出値とトルク指令値に対する第1の安定範囲と第2の安定範囲と第3の安定範囲を格納し、回転数検出値とトルク指令値が第1の安定範囲内であれば切替フラグを1,第1の安定範囲外で第2の安定範囲内であれば切替フラグを2,第1と第2の安定範囲外で第3の安定範囲内であれば切替フラグを3として切替フラグを出力する時定数推定式切換判別部と、
前記切替フラグが1の場合は(14)式、前記切替フラグが2の場合は(15)式、前記切替フラグが3の場合は(16)式を選択し、選択した演算式により、前記γ軸電流検出値と、前記δ軸電流検出値と、γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差に基づいて、二次時定数推定値を演算する二次時定数推定部と、
前記二次時定数推定値に基づいて、電気角を演算するすべり演算・電気角演算部と、
を備えたことを特徴とする誘導電動機の制御装置。
Figure 2018014809
Figure 2018014809
Current control that outputs a γ-axis voltage command value and a δ-axis voltage command value based on a deviation between the γ-axis current command value and the γ-axis current detection value and a deviation between the δ-axis current command value and the δ-axis current detection value And
A first coordinate converter that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value;
An inverter that outputs a voltage corresponding to the three-phase voltage command value;
An induction motor driven by the voltage output by the inverter;
A second coordinate conversion unit that converts the three-phase inverter output current into the γ-axis current detection value and the δ-axis current detection value;
The first stable range, the second stable range, and the third stable range with respect to the detected rotational speed value and the torque command value are stored in advance, and the detected rotational speed value and the torque command value are within the first stable range. If there is, the switch flag is 1, if it is outside the first stable range and within the second stable range, the switch flag is 2, and if it is outside the first and second stable ranges and within the third stable range, the switch flag is set. 3, a time constant estimation formula switching discriminating unit that outputs a switching flag as 3,
When the switching flag is 1, the equation (14) is selected, when the switching flag is 2, the equation (15) is selected, and when the switching flag is 3, the equation (16) is selected. An axis current detection value, the δ axis current detection value, a γ axis current error that is a difference between the γ axis current estimation value and the γ axis current detection value, a δ axis current estimation value, and the δ axis current detection value, A second-order time constant estimator that calculates a second-order time constant estimated value based on a δ-axis current error that is a difference between
Based on the second-order time constant estimated value, a slip calculation / electric angle calculation unit for calculating an electrical angle,
An induction motor control apparatus comprising:
Figure 2018014809
Figure 2018014809
γ軸電流指令値とγ軸電流検出値との偏差,δ軸電流指令値とδ軸電流検出値との偏差に基づいて、γ軸電圧指令値とδ軸電圧指令値とを出力する電流制御部と、
前記γ軸電圧指令値と前記δ軸電圧指令値とを三相電圧指令値に変換する第1座標変換部と、
前記三相電圧指令値に応じた電圧を出力するインバータと、
前記インバータが出力した電圧により駆動する誘導電動機と、
前記三相のインバータ出力電流を前記γ軸電流検出値,前記δ軸電流検出値に変換する第2座標変換部と、
予め求めた、すべり角周波数とトルク指令値に対する第1の安定範囲と第2の安定範囲と第3の安定範囲を格納し、すべり角周波数とトルク指令値が第1の安定範囲内であれば切替フラグを1,第1の安定範囲外で第2の安定範囲内であれば切替フラグを2,第1と第2の安定範囲外で第3の安定範囲内であれば切替フラグを3として、切替フラグを出力する時定数推定式切換判別部と、
前記切替フラグが1の場合は(14)式、前記切替フラグが2の場合は(15)式、前記切替フラグが3の場合は(16)式を選択し、選択した演算式により、前記γ軸電流検出値と、前記δ軸電流検出値と、γ軸電流推定値と前記γ軸電流検出値との差分であるγ軸電流誤差と、δ軸電流推定値と前記δ軸電流検出値との差分であるδ軸電流誤差に基づいて、二次時定数推定値を演算する二次時定数推定部と、
前記二次時定数推定値に基づいて、電気角を演算するすべり演算・電気角演算部と、
を備えたことを特徴とする誘導電動機の制御装置。
Figure 2018014809
Figure 2018014809
Current control that outputs a γ-axis voltage command value and a δ-axis voltage command value based on a deviation between the γ-axis current command value and the γ-axis current detection value and a deviation between the δ-axis current command value and the δ-axis current detection value And
A first coordinate converter that converts the γ-axis voltage command value and the δ-axis voltage command value into a three-phase voltage command value;
An inverter that outputs a voltage corresponding to the three-phase voltage command value;
An induction motor driven by the voltage output by the inverter;
A second coordinate conversion unit that converts the three-phase inverter output current into the γ-axis current detection value and the δ-axis current detection value;
The first stable range, the second stable range, and the third stable range with respect to the slip angular frequency and the torque command value obtained in advance are stored, and if the slip angular frequency and the torque command value are within the first stable range. If the switching flag is 1, outside the first stable range and within the second stable range, the switching flag is 2, and if outside the first and second stable ranges and within the third stable range, the switching flag is set to 3. , A time constant estimation formula switching discriminating section for outputting a switching flag;
When the switching flag is 1, the equation (14) is selected, when the switching flag is 2, the equation (15) is selected, and when the switching flag is 3, the equation (16) is selected. An axis current detection value, the δ axis current detection value, a γ axis current error that is a difference between the γ axis current estimation value and the γ axis current detection value, a δ axis current estimation value, and the δ axis current detection value, A second-order time constant estimator that calculates a second-order time constant estimated value based on a δ-axis current error that is a difference between
Based on the second-order time constant estimated value, a slip calculation / electric angle calculation unit for calculating an electrical angle,
An induction motor control apparatus comprising:
Figure 2018014809
Figure 2018014809
前記二次時定数推定部において、
以下の(5)式〜(6)式により、γ軸電流誤差とδ軸電流誤差を演算することを特徴とする請求項4または5記載の誘導電動機の制御装置。
Figure 2018014809
Figure 2018014809
In the second-order time constant estimation unit,
6. The induction motor control device according to claim 4, wherein the γ-axis current error and the δ-axis current error are calculated by the following equations (5) to (6).
Figure 2018014809
Figure 2018014809
JP2016142253A 2016-07-20 2016-07-20 Induction motor control device Active JP6794693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016142253A JP6794693B2 (en) 2016-07-20 2016-07-20 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016142253A JP6794693B2 (en) 2016-07-20 2016-07-20 Induction motor control device

Publications (2)

Publication Number Publication Date
JP2018014809A true JP2018014809A (en) 2018-01-25
JP6794693B2 JP6794693B2 (en) 2020-12-02

Family

ID=61020529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016142253A Active JP6794693B2 (en) 2016-07-20 2016-07-20 Induction motor control device

Country Status (1)

Country Link
JP (1) JP6794693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048652A (en) * 2019-05-13 2019-07-23 上海应用技术大学 Method for controlling permanent magnet synchronous motor based on rotation high frequency injection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638574A (en) * 1992-07-22 1994-02-10 Meidensha Corp Motor controller for induction motor
JPH08126400A (en) * 1994-10-24 1996-05-17 Meidensha Corp Vector controller for induction motor
WO2009041157A1 (en) * 2007-09-27 2009-04-02 Kabushiki Kaisha Yaskawa Denki Inverter control device and its control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638574A (en) * 1992-07-22 1994-02-10 Meidensha Corp Motor controller for induction motor
JPH08126400A (en) * 1994-10-24 1996-05-17 Meidensha Corp Vector controller for induction motor
WO2009041157A1 (en) * 2007-09-27 2009-04-02 Kabushiki Kaisha Yaskawa Denki Inverter control device and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048652A (en) * 2019-05-13 2019-07-23 上海应用技术大学 Method for controlling permanent magnet synchronous motor based on rotation high frequency injection

Also Published As

Publication number Publication date
JP6794693B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP4730073B2 (en) Permanent magnet synchronous motor vector controller, inverter module, and permanent magnet synchronous motor motor constant display system
JP5637042B2 (en) Electric motor pulsation suppressing device and electric motor pulsation suppressing method
JP2009136085A (en) Controller of ac motor
JP6361450B2 (en) Induction motor control device
JP6059285B2 (en) Induction motor controller
WO2006033180A1 (en) Vector controller of induction motor
JP2001309697A (en) Electric motor control device
TWI427916B (en) Inverter control device and control method thereof
JP2006094601A5 (en)
JP5731355B2 (en) Control device for induction motor for vehicle drive
JP6519149B2 (en) Motor controller
JP2017216807A (en) Vector control compensation method for induction motor, and vector control device
JP2000037098A (en) Power conversion apparatus using speed sensor-less vector control
JP2014168335A (en) Inverter device, construction machine, and motor control method
JP6626309B2 (en) Control device for compensating iron loss of AC motor
JP2010035396A (en) Battery current suppression method and battery current suppression controller
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP6794693B2 (en) Induction motor control device
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP6675579B2 (en) Control device for permanent magnet synchronous motor
JP7251424B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP2013188074A (en) Induction motor control device and method for controlling induction motor
JP5862690B2 (en) Control device for motor drive device and motor drive system
JP2020058231A (en) Control method for power converter and power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6794693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150