JPH08126400A - Vector controller for induction motor - Google Patents

Vector controller for induction motor

Info

Publication number
JPH08126400A
JPH08126400A JP6257230A JP25723094A JPH08126400A JP H08126400 A JPH08126400 A JP H08126400A JP 6257230 A JP6257230 A JP 6257230A JP 25723094 A JP25723094 A JP 25723094A JP H08126400 A JPH08126400 A JP H08126400A
Authority
JP
Japan
Prior art keywords
induction motor
gain
acr
vector
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6257230A
Other languages
Japanese (ja)
Inventor
Masatoshi Koketsu
正寿 纐纈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6257230A priority Critical patent/JPH08126400A/en
Publication of JPH08126400A publication Critical patent/JPH08126400A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a vector controller for operating an induction motor stably without causing any failure under a steep deceleration state within a constant output range. CONSTITUTION: ACR sections 10, 11 for controlling the primary current to a target value in vector control has variable gains. The ACR gain is switched, at a correction coefficient generating section 15 and an ACR gain control section 16, to a high gain under high speed region and to a constant gain under low speed region depending on the detection speed of an induction motor IM. Consequently, when the induction motor IM is decelerating steeply within a constant output range, the response is quickened in a high speed region and hunting is prevented in a low speed region to prevent run-out of vector control thus realizing a good control. Furthermore, a predetermined limit is imposed by the output of a drive/regeneration discriminator 18 to the primary voltage V1 generated from a PWM signal generating section 4 at the time of regeneration. This constitution prevents overcurrent being generated under step-out state thus preventing failure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機に対しイン
バータによるベクトル制御を行い、その回転数をコント
ロールする誘導電動機のベクトル制御装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction motor vector control device for controlling the number of revolutions of an induction motor by vector control by an inverter.

【0002】[0002]

【従来の技術】二次磁束とそれに直交する二次電流を非
干渉に制御するベクトル制御理論に基づいた誘導電動機
のベクトル制御装置が、広く適用されてきている(特開
平3−135388号公報の従来技術参照)。この公報
に記載のベクトル制御は、3相誘導電動機の場合、電流
や磁束を、電源による回転磁界と同速度で回転する直交
2軸のd−q座標系のベクトルとして取り扱い、演算結
果を3相電源の各相の電流指令値に換算して制御する方
法である。
2. Description of the Related Art A vector control device for an induction motor based on a vector control theory for controlling a secondary magnetic flux and a secondary current orthogonal to the secondary magnetic flux in a non-interfering manner has been widely applied (JP-A-3-135388). See the prior art). In the vector control described in this publication, in the case of a three-phase induction motor, currents and magnetic fluxes are treated as vectors of orthogonal biaxial dq coordinate systems that rotate at the same speed as the rotating magnetic field generated by the power supply, and the calculation result is three-phase. This is a method of controlling by converting the current command value of each phase of the power supply.

【0003】なお、この演算結果には一次抵抗と二次抵
抗の変化による電圧変動分が共に含まれている。このた
め、一次抵抗変化による電圧変動を含まない成分を求め
ることにより二次抵抗変化の補償を行えば、一次抵抗変
化に影響されない補償が可能となる。そこで、一次電流
のベクトル上に基準軸γを置いた回転座標γ−δ軸をと
り、このδ軸の一次電圧変動分Δv1δを求めて、Δv1
δを一次抵抗を含まない式で表し、一次抵抗変化の影響
を受けないようにする方法を採用したベクトル制御装置
も提案されている。
It should be noted that this calculation result includes both the voltage fluctuations due to the changes in the primary resistance and the secondary resistance. Therefore, if the secondary resistance change is compensated by obtaining the component that does not include the voltage variation due to the primary resistance change, it is possible to perform the compensation that is not affected by the primary resistance change. Therefore, the rotation coordinate γ-δ axis with the reference axis γ placed on the vector of the primary current is taken, and the primary voltage fluctuation Δv 1 δ of this δ axis is calculated to obtain Δv 1
There is also proposed a vector control device that employs a method of expressing δ by an expression that does not include the primary resistance and preventing the influence of the primary resistance change.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の技術による誘導電動機のベクトル制御装置では、ベ
クトル制御理論を用いてインバータにより誘導電動機の
速度を制御しており、誘導電動機が負荷のエネルギーを
吸収しながら定出力範囲を急速に速度が下がっている場
合、2次時定数の変化、速度検出誤差等の影響により、
インバータ出力電圧演算に誤差を生じる。特に上記の負
荷状態においては、制御が困難となるという問題点があ
った。
However, in the vector control device for the induction motor according to the above-mentioned conventional technique, the speed of the induction motor is controlled by the inverter using the vector control theory, and the induction motor absorbs the energy of the load. However, if the speed is rapidly decreasing in the constant output range, due to changes in the secondary time constant, speed detection error, etc.,
An error occurs in the inverter output voltage calculation. Particularly, in the above-mentioned load state, there is a problem that control becomes difficult.

【0005】その理由としては、次のことがあげられ
る。
The reason is as follows.

【0006】(1)速度が急速に下がる場合の回生電流
を抑制するためにインバータは電圧を上げようとする
が、上記の誤差があるため、ベクトル制御からはずれ、
励磁分電流に流れる比率が多くなり、その結果、誘導電
動機の電圧が上昇し、回生電流を制御できなくなる。
(1) The inverter tries to raise the voltage in order to suppress the regenerative current when the speed drops rapidly, but due to the above error, the control deviates from the vector control.
The ratio of the exciting current to the current increases, and as a result, the voltage of the induction motor rises, making it impossible to control the regenerative current.

【0007】(2)上記状態において、インバータの制
御は増磁作用を考慮し運転するが、2次の時定数の誤差
により、その値が適正でなくなる。そのため、(1)の
理由と同様に回生電流を制御できなくなる。
(2) In the above state, the control of the inverter is operated in consideration of the magnetizing effect, but the value becomes improper due to the error of the secondary time constant. Therefore, the regenerative current cannot be controlled for the same reason as (1).

【0008】通常のベクトル制御では、一次電流を検出
して目標値に制御するために、ACR(オート カレン
ト レギュレーション)制御が用いられているが、この
ACR制御はどの状態においても一定のゲインである。
上記の様な問題においては、ACR制御におけるゲイン
を上げる事が有効ではあるが、漏れインダクタンスが周
波数等により変化する事もあり、常時一定の定数では、
ACR制御のハンチング(過補償等)になる。
In normal vector control, ACR (auto current regulation) control is used to detect the primary current and control it to a target value. This ACR control has a constant gain in any state. .
In the above problems, it is effective to increase the gain in ACR control, but the leakage inductance may change depending on the frequency and so on.
ACR control hunting (overcompensation, etc.) will occur.

【0009】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、定出力範囲での急減速
状態において、故障発生することなく安定に運転できる
誘導電動機のベクトル制御装置を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a vector control device for an induction motor capable of stably operating without a failure in a rapid deceleration state in a constant output range. To provide.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の誘導電動機のベクトル制御装置では、誘導
電動機の電源角周波数と同期して回転する回転座標系で
誘導電動機の一次電流を励磁分電流とトルク分電流に分
けてそれらの各目標値を算出し誘導電動機の速度を制御
するベクトル制御装置において、前記一次電流の検出値
を前記目標値と比較して該目標値に制御する制御手段の
ゲインを可変とし、前記誘導電動機の検出速度が大きい
ほど前記制御手段のゲインを高く変化させるか又は切り
換える手段を設けることを特徴とする。
In order to achieve the above object, in the vector controller for an induction motor according to the present invention, the primary current of the induction motor is controlled by a rotating coordinate system which rotates in synchronization with the power source angular frequency of the induction motor. In a vector controller for controlling the speed of an induction motor by calculating respective target values of the excitation current and the torque current, the detected value of the primary current is compared with the target value and controlled to the target value. It is characterized in that the gain of the control means is variable, and means for changing or changing the gain of the control means to be higher as the detection speed of the induction motor is higher is provided.

【0011】上記の誘導電動機のベクトル制御装置にお
いては、誘導電動機の回生時に一次電流を制限するリミ
ット手段を設けるのが、ベクトル制御において同期はず
れが発生した場合に過電流を防止する上で好適である。
In the vector control device for the induction motor described above, it is preferable to provide limit means for limiting the primary current when the induction motor is regenerated, which is suitable for preventing overcurrent in the event of loss of synchronization in vector control. is there.

【0012】[0012]

【作用】本発明の誘導電動機のベクトル制御装置では、
誘導電動機が負荷のエネルギーを吸収しながら、定出力
範囲を急速に速度を下げている場合、検出速度に対応し
て一次電流を目標値に制御する制御手段のゲインを適正
な値に変化もしくは切り換えることにより、高速域では
ゲインを上げて応答を早め、低速域ではゲインを下げて
ハンチング(過補償等)を防止することで、ベクトル制
御はずれを防止し良好な制御を実現する。
In the vector controller for the induction motor of the present invention,
When the induction motor is absorbing the energy of the load and rapidly lowering the speed in the constant output range, the gain of the control means for controlling the primary current to the target value is changed or switched to an appropriate value according to the detected speed. As a result, the gain is increased in the high speed range to speed up the response, and the gain is decreased in the low speed range to prevent hunting (overcompensation, etc.), thereby preventing deviation of the vector control and realizing good control.

【0013】また、回生時に一次電流に一定のリミット
を与えることにより、ベクトル制御の同期はずれ状態に
おいて発生する過電流を防止し、過電流による事故発生
を防止する。
Further, by giving a fixed limit to the primary current at the time of regeneration, the overcurrent that occurs in the out-of-synchronization state of the vector control is prevented, and the accident caused by the overcurrent is prevented.

【0014】[0014]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0015】図1は本発明の一実施例の構成を示すブロ
ック図である。図中、1はdq軸−γδ軸座標変換部
(以下第1の座標変換部と記す)、2はγδ軸非干渉制
御部、3は極座標変換部、4はPWM(パルス幅制御)
信号生成部、5はベース信号発生部、6はパワートラン
ジスタを用いたインバータ、HCTは電流センサ、IM
は3相誘導電動機、ppは回転速度検出センサ、7は電
流検出部、8は速度検出部、9は3φ(3相)−γδ軸
座標変換部(以下、第2の座標変換部と記す)、10は
γ軸ACR(オート カレント レギュレーション)
部、11はδ軸ACR部、12は定出力励磁制御部、1
3は界磁一次進み回路、14は積分器である。以上まで
の構成が従来とほぼ同様の構成である。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In the figure, 1 is a dq axis-γδ axis coordinate conversion unit (hereinafter referred to as a first coordinate conversion unit), 2 is a γδ axis non-interference control unit, 3 is a polar coordinate conversion unit, and 4 is PWM (pulse width control).
A signal generator, 5 is a base signal generator, 6 is an inverter using a power transistor, HCT is a current sensor, IM
Is a three-phase induction motor, pp is a rotation speed detection sensor, 7 is a current detection unit, 8 is a speed detection unit, and 9 is a 3φ (3 phase) -γδ axis coordinate conversion unit (hereinafter referred to as a second coordinate conversion unit). 10 is the γ-axis ACR (auto current regulation)
Section, 11 is a δ-axis ACR section, 12 is a constant output excitation control section, 1
3 is a field primary advance circuit, and 14 is an integrator. The above configuration is almost the same as the conventional configuration.

【0016】まず、上記の構成による基本的な動作を説
明する。
First, the basic operation of the above configuration will be described.

【0017】第1の座標変換部1に対して2次磁束を基
準軸としたd−q軸座標系における一次電流ベクトルの
励磁分電流指令値I1d*とトルク分電流指令値I1q*
が投入されると、第1の座標変換部1では一次電流の指
令値を一次電流を基準軸としたγ−δ軸座標系に座標変
換してI1,sinφ,cosφを出力する。なお、I1
d*は回転速度検出センサppと速度検出部8とで検出
した回転速度を定出力励磁制御部12、界磁一次進み回
路13を介して与えられる。
For the first coordinate conversion unit 1, the excitation current component command value I 1 d * and the torque component current command value I 1 q of the primary current vector in the dq axis coordinate system with the secondary magnetic flux as the reference axis. *
When is input, the first coordinate conversion unit 1 performs coordinate conversion of the command value of the primary current into a γ-δ axis coordinate system with the primary current as a reference axis and outputs I 1 , sin φ, cos φ. Note that I 1
d * is given the rotation speed detected by the rotation speed detection sensor pp and the speed detection unit 8 via the constant output excitation control unit 12 and the field primary advance circuit 13.

【0018】第1の座標変換部1からの出力を受けてγ
−δ軸非干渉制御部2は、一次電流を流すための理想一
次電圧V1γ*,V1δ*を演算で求めて出力する。一
方、電流センサHCT、電流検出部7によって検出され
た誘導電動機IMに流れる3相電流は、第2の座標変換
部9によりγ−δ軸座標系の各軸成分i1γ,i1δに変
換され、それぞれ目標値i1γ*(=I1),i1δ*
(=0)と比較され、その偏差分がγ軸ACR部10、
δ軸ACR部11のそれぞれに入力される。
When the output from the first coordinate conversion unit 1 is received, γ
The −δ axis non-interference control unit 2 calculates and outputs ideal primary voltages V 1 γ * and V 1 δ * for flowing the primary current. On the other hand, the three-phase current flowing in the induction motor IM detected by the current sensor HCT and the current detection unit 7 is converted into each axis component i 1 γ, i 1 δ of the γ-δ axis coordinate system by the second coordinate conversion unit 9. Target values i 1 γ * (= I 1 ) and i 1 δ * are converted, respectively.
(= 0) and the deviation is compared with the γ-axis ACR unit 10,
It is input to each of the δ-axis ACR units 11.

【0019】γ軸ACR部10、δ軸ACR部11は、
入力された偏差分に基づいて出力にそれぞれ一次電圧変
動分ΔV1γ,ΔV1δを得る。得られたΔV1γ,ΔV1
δは目標値V1γ*,V1δ*にそれぞれ加算されて、V
1γ,V1δが極座標変換部3へ入力される。
The γ-axis ACR unit 10 and the δ-axis ACR unit 11 are
Based on the input deviations, primary voltage fluctuations ΔV 1 γ and ΔV 1 δ are obtained at the outputs. Obtained ΔV 1 γ, ΔV 1
δ is added to the target values V 1 γ * and V 1 δ *, respectively, to obtain V
1 γ and V 1 δ are input to the polar coordinate conversion unit 3.

【0020】座標変換部3はV1γとV1δから出力に一
次電圧のベクトルの大きさV1と、γ軸との位相角φと
を出力する。この位相角φは後記するθと加算され、こ
れら加算値とV1とがPWM信号生成部4に入力されて
3相のU、V、W相に対応する一次電圧指令値に変換さ
れる。これによりインバータ6のベース信号がベース信
号発生部5で生成されて、インバータ6が制御され、誘
導電動機IMが速度制御される。
The coordinate transformation unit 3 outputs the magnitude V 1 of the vector of the primary voltage and the phase angle φ with the γ axis from the outputs of V 1 γ and V 1 δ. This phase angle φ is added to θ described later, and the added value and V 1 are input to the PWM signal generation unit 4 and converted into primary voltage command values corresponding to the three phases U, V, and W phases. As a result, the base signal of the inverter 6 is generated by the base signal generator 5, the inverter 6 is controlled, and the speed of the induction motor IM is controlled.

【0021】上記におけるθは、γ−δ軸非干渉制御部
2で得られたφと速度検出部8で検出された角速度を積
分器14で積分して得られた信号を加算したものであ
る。
In the above, θ is the sum of φ obtained by the γ-δ axis non-interference control unit 2 and the signal obtained by integrating the angular velocity detected by the velocity detection unit 8 by the integrator 14. .

【0022】以上の構成に対し、本実施例では、各AC
R部10,11を構成するアンプに可変ゲインアンプを
用い、ACRゲイン補正係数発生部15と、ACRゲイ
ン制御部16を付加してACRゲインを検出速度状態に
より切り換える。すなわち、ACRゲイン補正係数発生
部15は、速度検出部8の検出速度(角速度)を例えば
図2のグラフに示される補正係数関数を用いて補正係数
を出力し、この補正係数に従ってACRゲイン制御部1
6は、リニアにもしくは複数のしきい値で段階的にAC
Rゲインを変化させ又は切り換える。図2の例では、低
速域ではACRゲインを一定として過補償が発生しない
ようにし、高速域においては高速なほどACRゲインを
高めに変化させ又は切り換えて応答を速めることで、ベ
クトル制御はずれを防止する。このように、常に、周波
数による漏れインダクタンスの変化に応じた適正なゲイ
ンをもたせるために、ACRゲインを検出速度状態によ
り切り換えることにより、良好な制御となる。
In contrast to the above configuration, in this embodiment, each AC
A variable gain amplifier is used as an amplifier forming the R units 10 and 11, and an ACR gain correction coefficient generating unit 15 and an ACR gain control unit 16 are added to switch the ACR gain according to the detected speed state. That is, the ACR gain correction coefficient generation unit 15 outputs a correction coefficient for the detected speed (angular speed) of the speed detection unit 8 using, for example, the correction coefficient function shown in the graph of FIG. 2, and the ACR gain control unit according to this correction coefficient. 1
6 is AC linearly or in multiple thresholds stepwise
Change or switch R gain. In the example of FIG. 2, the ACR gain is kept constant in the low speed range so that overcompensation does not occur, and in the high speed range, the ACR gain is changed to a higher value or switched at a higher speed to speed up the response, thereby preventing deviation of vector control. To do. Thus, in order to always have an appropriate gain according to the change in the leakage inductance depending on the frequency, the ACR gain is switched depending on the detection speed state, so that good control is performed.

【0023】また、上記のようなベクトル制御では、何
らかの理由でベクトル制御状態から同期はずれが生じる
と、回生状態では過電流が発生する。これを抑制するた
めに、回生時に一次電流をリミットする手段を設けるの
が好適である。本実施例では、このリミット手段とし
て、回生時リミット回路17を極座標変換部3からPW
M信号生成部4に出力されるV1の信号線に介設する。
そして、トルク分電流指令値I1q*等から回生時を判
別する駆動/回生判別器18の回生時判別出力で回生時
のみV1にリミットをかける。それ以外の駆動時には、
リミットがかけられることなくそのまま出力されるよう
にする。
In the vector control as described above, if the vector control state is out of synchronization for some reason, an overcurrent is generated in the regenerative state. In order to suppress this, it is preferable to provide means for limiting the primary current during regeneration. In the present embodiment, the limit circuit at the time of regeneration is the PW from the polar coordinate conversion unit 3 as the limit means.
The signal line of V 1 output to the M signal generation unit 4 is provided.
Then, the drive / regeneration discriminator 18 discriminating the regeneration time from the torque current command value I 1 q * etc. limits the V 1 only at the regeneration time by the regeneration time discrimination output. When driving other than that,
It is output as it is without any limit.

【0024】これにより、本発明が解決しようとする課
題で述べた様な問題の場合において、結果的にインバー
タ電圧を過補償にならない値にリミットすることにより
励磁分電流をリミットして、過電流の発生を抑制する。
As a result, in the case of the problem described in the problem to be solved by the present invention, as a result, the excitation voltage is limited by limiting the inverter voltage to a value that does not cause overcompensation, and the overcurrent is reduced. Suppress the occurrence of.

【0025】[0025]

【発明の効果】以上の説明で明らかなように、本発明の
誘導電動機のベクトル制御装置によれば、定出力範囲で
の急減速状態においても、適正なACRゲインにして応
答を早めることで、ベクトル制御における同期はずれを
防止することができるとともに、低速時には対応した適
正なACRゲインとしてハンチングを防止することがで
き、安定なベクトル制御が実現できる。
As is clear from the above description, according to the vector control device for an induction motor of the present invention, even in the rapid deceleration state in the constant output range, an appropriate ACR gain is set to accelerate the response, Out-of-synchronization in vector control can be prevented, and hunting can be prevented as an appropriate ACR gain corresponding to low speed, and stable vector control can be realized.

【0026】また、回生時に一次電圧を一定の値に制限
する場合では、何らかの原因でベクトル制御時に同期は
ずれが生じたとき、過電流が発生するのを防止すること
ができ、過電流による事故発生を防止することができ
る。
Further, when the primary voltage is limited to a constant value during regeneration, it is possible to prevent an overcurrent from being generated when synchronization is lost during vector control for some reason, and an accident due to an overcurrent occurs. Can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】上記実施例においてACRゲインの変化または
切り換えを行う際の補正係数関数の一例を示す図
FIG. 2 is a diagram showing an example of a correction coefficient function when changing or switching the ACR gain in the above embodiment.

【符号の説明】[Explanation of symbols]

1…dg軸−γδ軸座標変換部(第1の座標変換部) 2…γδ軸非干渉制御部 3…極座標変換部 4…PWM信号生成部 6…インバータ 7…電流検出部 8…速度検出部 9…3相−γδ軸座標変換部(第2の座標変換部) 10…γ軸ACR部 11…δ軸ACR部 15…ACRゲイン補正係数発生部 16…ACRゲイン制御部 17…回生時リミット回路 18…駆動/回生判別器 IM…誘導電動機 DESCRIPTION OF SYMBOLS 1 ... dg axis-γδ axis coordinate conversion unit (first coordinate conversion unit) 2 ... γδ axis non-interference control unit 3 ... polar coordinate conversion unit 4 ... PWM signal generation unit 6 ... inverter 7 ... current detection unit 8 ... speed detection unit 9 ... 3-phase-γ-delta axis coordinate conversion section (second coordinate conversion section) 10 ... γ-axis ACR section 11 ... δ-axis ACR section 15 ... ACR gain correction coefficient generation section 16 ... ACR gain control section 17 ... Regenerative limit circuit 18 ... Drive / regeneration discriminator IM ... Induction motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機の電源角周波数と同期して回
転する回転座標系で誘導電動機の一次電流を励磁分電流
とトルク分電流に分けてそれらの各目標値を算出し誘導
電動機の速度を制御するベクトル制御装置において、 前記一次電流の検出値を前記目標値と比較して該目標値
に制御する制御手段のゲインを可変とし、 前記誘導電動機の検出速度が大きいほど前記制御手段の
ゲインを高く変化させるか又は切り換える手段を設ける
ことを特徴とする誘導電動機のベクトル制御装置。
1. A speed of an induction motor is calculated by dividing a primary current of the induction motor into an excitation current and a torque current by a rotating coordinate system that rotates in synchronization with a power source angular frequency of the induction motor and calculating respective target values thereof. In a vector control device for controlling, the gain of control means for comparing the detected value of the primary current with the target value and controlling to the target value is made variable, and the gain of the control means increases as the detection speed of the induction motor increases. A vector control device for an induction motor, characterized in that means for changing or switching to a high value is provided.
【請求項2】 請求項1記載の誘導電動機のベクトル制
御装置において、誘導電動機の回生時に一次電流を制限
するリミット手段を設けることを特徴とする誘導電動機
のベクトル制御装置。
2. The vector controller for an induction motor according to claim 1, further comprising limit means for limiting a primary current during regeneration of the induction motor.
JP6257230A 1994-10-24 1994-10-24 Vector controller for induction motor Pending JPH08126400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6257230A JPH08126400A (en) 1994-10-24 1994-10-24 Vector controller for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6257230A JPH08126400A (en) 1994-10-24 1994-10-24 Vector controller for induction motor

Publications (1)

Publication Number Publication Date
JPH08126400A true JPH08126400A (en) 1996-05-17

Family

ID=17303488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6257230A Pending JPH08126400A (en) 1994-10-24 1994-10-24 Vector controller for induction motor

Country Status (1)

Country Link
JP (1) JPH08126400A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064902A (en) * 2002-07-30 2004-02-26 Hitachi Ltd Controller for synchronous motor, and apparatus using it
WO2007097183A1 (en) * 2006-02-24 2007-08-30 Kabushiki Kaisha Yaskawa Denki Electric motor control apparatus
JP2007282496A (en) * 2007-05-16 2007-10-25 Hitachi Ltd Synchronous motor control device and apparatus using it
JP2011093676A (en) * 2009-10-30 2011-05-12 Murata Machinery Ltd Traveling vehicle and travel control method thereof
JP2018014809A (en) * 2016-07-20 2018-01-25 株式会社明電舎 Controller of induction motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064902A (en) * 2002-07-30 2004-02-26 Hitachi Ltd Controller for synchronous motor, and apparatus using it
WO2007097183A1 (en) * 2006-02-24 2007-08-30 Kabushiki Kaisha Yaskawa Denki Electric motor control apparatus
JPWO2007097183A1 (en) * 2006-02-24 2009-07-09 株式会社安川電機 Electric motor control device
JP4671181B2 (en) * 2006-02-24 2011-04-13 株式会社安川電機 Electric motor control device
US7977901B2 (en) 2006-02-24 2011-07-12 Kabushiki Kaisha Yaskawa Denki Electromechanical machine control system
JP2007282496A (en) * 2007-05-16 2007-10-25 Hitachi Ltd Synchronous motor control device and apparatus using it
JP4512611B2 (en) * 2007-05-16 2010-07-28 株式会社日立製作所 Synchronous motor control device and equipment using the same
JP2011093676A (en) * 2009-10-30 2011-05-12 Murata Machinery Ltd Traveling vehicle and travel control method thereof
JP2018014809A (en) * 2016-07-20 2018-01-25 株式会社明電舎 Controller of induction motor

Similar Documents

Publication Publication Date Title
US4767976A (en) Control system for PWM inverter
US5656911A (en) Circuit for driving permanent-magnet synchronous motor using proportional controller
JP3396440B2 (en) Control device for synchronous motor
KR900007111B1 (en) Method of controlling a three-phase induction motor
US4019105A (en) Controlled current induction motor drive
JP3684793B2 (en) Inverter device
CN110943665B (en) Control method and system of direct-current magnetic modulation memory motor with out-of-control power generation fault protection
JP4529113B2 (en) Voltage source inverter and control method thereof
US8134316B2 (en) Method for braking an AC motor
US4766360A (en) Induction generator/motor system
JP3674323B2 (en) Power converter control device
JP2002233180A (en) Power converter
JPH08126400A (en) Vector controller for induction motor
EP2243214B1 (en) Method and system for braking an ac motor
JP3468123B2 (en) Servo motor controller
JPH0880098A (en) Vector controller of motor
Cervone et al. A constrained optimal model predictive control for mono inverter dual parallel pmsm drives
JPH06261585A (en) Inverter device
JP3982091B2 (en) Control device for synchronous motor
JP4224740B2 (en) Control device for synchronous motor
JP2004320853A (en) Power converter
JP4655405B2 (en) Vector control method and vector control apparatus for induction motor
JP3752804B2 (en) AC machine control device
US20240120842A1 (en) Drive equipment and control method
JP3824206B2 (en) Linear induction motor electric vehicle control device