JP5332305B2 - Control device for permanent magnet type synchronous motor - Google Patents

Control device for permanent magnet type synchronous motor Download PDF

Info

Publication number
JP5332305B2
JP5332305B2 JP2008130791A JP2008130791A JP5332305B2 JP 5332305 B2 JP5332305 B2 JP 5332305B2 JP 2008130791 A JP2008130791 A JP 2008130791A JP 2008130791 A JP2008130791 A JP 2008130791A JP 5332305 B2 JP5332305 B2 JP 5332305B2
Authority
JP
Japan
Prior art keywords
value
current
speed
magnetic flux
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008130791A
Other languages
Japanese (ja)
Other versions
JP2009284557A (en
Inventor
尚史 野村
康 松本
岳志 黒田
信夫 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008130791A priority Critical patent/JP5332305B2/en
Publication of JP2009284557A publication Critical patent/JP2009284557A/en
Application granted granted Critical
Publication of JP5332305B2 publication Critical patent/JP5332305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、磁極位置検出器を持たない永久磁石形同期電動機(以下、PMSMともいう)の制御装置に関し、詳しくは、回転子の磁極位置及び速度を電動機の電流検出値、端子電圧検出値等から高精度に演算し、これらに基づいて電流を制御することにより永久磁石形同期電動機を安定に制御するようにした制御装置に関するものである。   The present invention relates to a control device for a permanent magnet type synchronous motor (hereinafter also referred to as PMSM) that does not have a magnetic pole position detector. Specifically, the magnetic pole position and speed of a rotor are determined based on a current detection value of a motor, a terminal voltage detection value, and the like. The present invention relates to a control device that stably controls a permanent magnet type synchronous motor by calculating with high accuracy from the above and controlling current based on these.

PMSMの制御装置をコストダウンするため、磁極位置検出器を使用しないで運転する、いわゆるセンサレス制御が実用化されている。センサレス制御は、電動機の端子電圧や電流の情報から回転子の磁極位置及び速度を演算し、これらに基づいて電流制御を行うことにより、安定したトルク制御や速度制御を実現するものである。   In order to reduce the cost of the PMSM control device, so-called sensorless control, which is operated without using a magnetic pole position detector, has been put into practical use. In sensorless control, stable torque control and speed control are realized by calculating the magnetic pole position and speed of the rotor from information on the terminal voltage and current of the electric motor, and performing current control based on the calculated position.

例えば、特許文献1では、回転子の磁極方向に対して直交方向に発生する拡張誘起電圧を演算し、拡張誘起電圧の角度から磁極位置の演算誤差を検出し、これを利用して同期電動機の磁極位置と速度とを演算している。この従来技術は、回転子に突極性がある埋込磁石構造永久磁石形同期電動機(以下、IPMSMともいう)の磁極位置及び速度を正確に演算できるという特徴がある。   For example, in Patent Document 1, an expansion induced voltage generated in a direction orthogonal to the magnetic pole direction of a rotor is calculated, a calculation error of the magnetic pole position is detected from the angle of the expansion induced voltage, and this is used to The magnetic pole position and speed are calculated. This conventional technique is characterized in that the magnetic pole position and speed of an embedded magnet structure permanent magnet type synchronous motor (hereinafter also referred to as IPMSM) having saliency in the rotor can be accurately calculated.

また、特許文献2及び非特許文献1では、磁束オブザーバを利用して電流及び磁束を推定し、これらを利用して同期電動機の磁極位置及び速度を演算している。これらの従来技術によれば、低速時にも高精度に磁極位置及び速度を演算できるという特徴がある。   In Patent Document 2 and Non-Patent Document 1, current and magnetic flux are estimated using a magnetic flux observer, and the magnetic pole position and speed of the synchronous motor are calculated using these. According to these conventional techniques, the magnetic pole position and speed can be calculated with high accuracy even at low speed.

このうち、特許文献2に記載された従来技術では、回転座標系における電圧方程式から導出した磁束オブザーバを利用して磁極位置及び速度を演算する。
また、非特許文献1に記載された従来技術では、回転子の磁極方向に直交する方向の電流(q軸電流)との積がトルクに等しく、回転子の磁極方向(d軸方向)に発生する新たな磁束(以下、拡張磁束という)を定義し、この拡張磁束の角度から磁極位置を演算している。ここで、拡張磁束は、固定座標系の電圧方程式から導出した磁束オブザーバを利用して推定する。一方、速度については、非特許文献2に記載された技術を利用し、モデル規範適応システムの理論に基づいて、電流推定誤差と拡張磁束推定値とのベクトル積を増幅して演算する。この従来技術では、回転子に突極性があるIPMSMの磁極位置及び速度を低速時でも正確に演算できるという特徴がある。
Among these, in the prior art described in Patent Document 2, the magnetic pole position and speed are calculated using a magnetic flux observer derived from the voltage equation in the rotating coordinate system.
In the prior art described in Non-Patent Document 1, the product of the current (q-axis current) in the direction orthogonal to the magnetic pole direction of the rotor is equal to the torque and is generated in the magnetic pole direction (d-axis direction) of the rotor. A new magnetic flux (hereinafter referred to as an expanded magnetic flux) is defined, and the magnetic pole position is calculated from the angle of the expanded magnetic flux. Here, the expanded magnetic flux is estimated using a magnetic flux observer derived from a voltage equation of a fixed coordinate system. On the other hand, the speed is calculated by amplifying the vector product of the current estimation error and the expanded magnetic flux estimated value based on the theory of the model reference adaptive system using the technique described in Non-Patent Document 2. This prior art has a feature that the magnetic pole position and speed of the IPMSM having saliency in the rotor can be accurately calculated even at a low speed.

特許第3411878号公報(段落[0132]〜[0141]、図8,図9等)Japanese Patent No. 3411878 (paragraphs [0132] to [0141], FIG. 8, FIG. 9, etc.) 再公表特許2002−91558号公報(第7頁第49行〜第8頁第21行、第1図,第2図等)Re-published Patent No. 2002-91558 (page 7, line 49 to page 8, line 21, FIG. 1, FIG. 2, etc.) 八田 英明,長谷川 勝,松井 景樹,「IPMSMセンサレス制御のための固定子座標上適応磁束オブザーバ」,平成17年電気学会全国大会論文集,第4分冊,p.244−245,2005年Hideaki Hatta, Masaru Hasegawa, Kazuki Matsui, “Adaptive Magnetic Flux Observer on Stator Coordinates for IPMSM Sensorless Control”, 2005 Annual Conference of the Institute of Electrical Engineers of Japan, 4th volume, p. 244-245, 2005 楊 耕,富岡 理知子,中野 求,金 東海,「適応オブザーバによるブラシレスDCモータの位置センサレス制御」,電気学会論文誌D,113巻5号,p.579−586,1993年Takashi Tsuji, Ritsuko Tomioka, Toru Nakano, Tokai Kim, “Position Sensorless Control of Brushless DC Motor Using Adaptive Observer”, IEEJ Transactions D, Vol. 113, No. 5, p. 579-586, 1993

特許文献1において利用している拡張誘起電圧の振幅は、回転子の速度に比例する。このため、低速時には拡張誘起電圧を正確に演算できなくなり、演算精度が低下しやすい。
これに対し、特許文献2に示される磁束オブザーバは、磁極位置の演算誤差が零近傍である場合の状態方程式に基づいて構成している。このため、磁極位置の演算誤差が大きくなった場合に演算精度が低下する問題があり、この問題は、特に回転子に突極性のあるIPMSMを運転する場合に顕在化する。
The amplitude of the expansion induced voltage used in Patent Document 1 is proportional to the speed of the rotor. For this reason, the expansion induced voltage cannot be accurately calculated at a low speed, and the calculation accuracy tends to decrease.
On the other hand, the magnetic flux observer shown in Patent Document 2 is configured based on a state equation when the calculation error of the magnetic pole position is near zero. For this reason, there is a problem that the calculation accuracy decreases when the calculation error of the magnetic pole position becomes large, and this problem becomes apparent particularly when an IPMSM having saliency in the rotor is operated.

また、非特許文献2に示される磁束オブザーバは、回転子に突極性のあるIPMSMを安定に運転することが可能であるが、制御演算を固定座標系で行うため、推定の対象である電流と拡張磁束とが交流量であることに起因して電動機の最高速度が制限される。
以上をまとめると、各従来技術にはそれぞれ一長一短があり、IPMSM等の永久磁石形同期電動機を広い速度範囲で安定に運転することができないという問題があった。
In addition, the magnetic flux observer shown in Non-Patent Document 2 can stably operate an IPMSM having a saliency in the rotor. However, since the control calculation is performed in a fixed coordinate system, the current to be estimated The maximum speed of the electric motor is limited due to the fact that the expansion magnetic flux is an alternating current amount.
To summarize the above, each conventional technique has advantages and disadvantages, and there is a problem that a permanent magnet type synchronous motor such as IPMSM cannot be stably operated in a wide speed range.

そこで、本発明の解決課題は、磁極位置検出器を持たない永久磁石形同期電動機において、広い速度範囲にわたり磁極位置及び速度を高精度に演算して永久磁石形同期電動機の安定的な運転を可能にした制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is that a permanent magnet synchronous motor without a magnetic pole position detector can stably operate the permanent magnet synchronous motor by calculating the magnetic pole position and speed with high accuracy over a wide speed range. An object of the present invention is to provide a control device.

上記課題を解決するため、請求項1に係る発明は、磁極位置検出器を持たない永久磁石形同期電動機の制御装置において、
前記電動機の電流、電圧及び磁束をベクトルとしてとらえ、
前記電動機の電流検出値、端子電圧相当値及び速度推定値から、回転子の磁極方向に発生する拡張磁束を推定する磁束オブザーバと、
前記磁束オブザーバにより推定した拡張磁束推定値の角度を演算する角度演算手段と、
前記拡張磁束推定値の角度を増幅して前記速度推定値を演算する速度推定手段と、
前記速度推定値を増幅して磁極位置推定値を演算する電気角演算手段と、を備えたものである。
In order to solve the above-described problem, the invention according to claim 1 is directed to a control device for a permanent magnet synchronous motor that does not have a magnetic pole position detector.
Taking the current, voltage and magnetic flux of the motor as vectors,
A magnetic flux observer for estimating an expanded magnetic flux generated in the direction of the magnetic pole of the rotor from the current detection value of the electric motor, the terminal voltage equivalent value and the speed estimation value;
Angle calculating means for calculating the angle of the expanded magnetic flux estimated value estimated by the magnetic flux observer;
Speed estimating means for amplifying the angle of the expanded magnetic flux estimated value and calculating the speed estimated value;
Electrical angle calculation means for amplifying the speed estimated value and calculating the magnetic pole position estimated value.

請求項2に係る発明は、請求項1に記載した永久磁石形同期電動機の制御装置において、
前記磁束オブザーバは、
前記電動機の電流推定値に比例する電機子抵抗電圧降下を演算する手段と、
前記電流推定値を90°回転させたベクトルと前記速度推定値との積に比例する電機子反作用電圧降下を演算する手段と、
前記拡張磁束推定値を90°回転させたベクトルと前記速度推定値との積から拡張誘起電圧を演算する手段と、
前記端子電圧相当値から、前記電機子抵抗電圧降下、前記電機子反作用電圧降下及び前記拡張誘起電圧を減算して過渡電圧を演算する手段と、
前記過渡電圧に比例する電流微分値を演算する手段と、
前記電流推定値と前記電流検出値との偏差を増幅して電流補正値を演算する手段と、
前記電流微分値と前記電流補正値との和を増幅して前記電流推定値を演算する手段と、
前記電流推定値と前記電流検出値との偏差を増幅して前記拡張磁束推定値を演算する手段と、を有するものである。
The invention according to claim 2 is the control device for the permanent magnet type synchronous motor according to claim 1,
The magnetic flux observer is
Means for calculating an armature resistance voltage drop proportional to an estimated current value of the motor;
Means for calculating an armature reaction voltage drop proportional to a product of a vector obtained by rotating the current estimation value by 90 ° and the speed estimation value;
Means for calculating an expansion induced voltage from a product of a vector obtained by rotating the expanded magnetic flux estimated value by 90 ° and the speed estimated value;
Means for subtracting the armature resistance voltage drop, the armature reaction voltage drop and the expansion induced voltage from the terminal voltage equivalent value to calculate a transient voltage;
Means for calculating a current differential value proportional to the transient voltage;
Means for amplifying a deviation between the estimated current value and the detected current value to calculate a current correction value;
Means for amplifying a sum of the current differential value and the current correction value to calculate the current estimated value;
And means for amplifying a deviation between the estimated current value and the detected current value to calculate the expanded magnetic flux estimated value.

請求項3記載の発明は、速度推定値の応答を速くするためのものであり、請求項1または請求項2に係る制御装置において、速度指令値から速度フィードフォワード補償値を演算する手段と、速度フィードフォワード補償値により速度推定値を補償する手段と、を有するものである。   The invention according to claim 3 is for speeding up the response of the speed estimation value. In the control device according to claim 1 or 2, the means for calculating the speed feedforward compensation value from the speed command value; And a means for compensating the speed estimation value by the speed feedforward compensation value.

本発明によれば、磁極位置検出器を持たない永久磁石形同期電動機の制御装置において、磁束オブザーバにより推定した拡張磁束に基づいて、広い速度範囲で磁極位置及び速度を高精度に演算することができる。特に、本発明では、回転座標系における制御演算が可能であるため、制御対象である電動機の最高速度を高くすることができる。
また、本発明は、磁極位置演算誤差(推定誤差)が大きい場合にも拡張磁束を正確に演算可能であり、回転子に突極性を有するIPMSMの安定した運転に効果的である。
According to the present invention, in a control device for a permanent magnet type synchronous motor having no magnetic pole position detector, the magnetic pole position and speed can be calculated with high accuracy in a wide speed range based on the expanded magnetic flux estimated by the magnetic flux observer. it can. In particular, in the present invention, since the control calculation in the rotating coordinate system is possible, the maximum speed of the electric motor to be controlled can be increased.
Further, the present invention can accurately calculate the expanded magnetic flux even when the magnetic pole position calculation error (estimation error) is large, and is effective for stable operation of the IPMSM having a saliency in the rotor.

以下、図に沿って本発明の実施形態を説明する。
まず、PMSMは、回転子のd軸(回転子の磁極方向)とd軸から90度進んだq軸とに従って電流制御を行うことにより、高精度なトルク制御を実現可能である。しかしながら、磁極位置検出器を持たない場合にはd,q軸を直接検出できないので、d,q軸に対応して速度推定値ωで回転する直交回転座標系のγ,δ軸を制御装置側に推定して制御演算を行っている。ここで、d,q軸の角度(磁極位置)をθ、γ,δ軸の角度(磁極位置推定値)をθと定義する。
上記γ,δ軸の定義を図2に示す。図2において、ωはd,q軸の回転角速度、θerrはd,q軸とγ,δ軸との角度差(磁極位置推定誤差)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, PMSM can realize highly accurate torque control by performing current control according to the d-axis of the rotor (the magnetic pole direction of the rotor) and the q-axis advanced 90 degrees from the d-axis. However, if the magnetic pole position detector is not provided, the d and q axes cannot be directly detected, and therefore the γ and δ axes of the orthogonal rotation coordinate system that rotates at the estimated speed value ω 1 corresponding to the d and q axes are controlled. The control calculation is performed by estimating to the side. Here, the angles of the d and q axes (magnetic pole positions) are defined as θ r , and the angles of the γ and δ axes (magnetic pole position estimated values) are defined as θ 1 .
The definition of the γ and δ axes is shown in FIG. In FIG. 2, ω r is the rotational angular velocity of the d and q axes, and θ err is the angular difference (magnetic pole position estimation error) between the d and q axes and the γ and δ axes.

図1は請求項1に相当する本発明の第1実施形態の制御ブロック図であり、上述したようにγ,δ軸上の電流、電圧を用いて、電力変換器70により永久磁石形同期電動機80を駆動するための構成を示している。
まず、磁極位置検出器を持たない永久磁石形同期電動機80を駆動する主回路について説明すると、50は三相交流電源であり、整流回路60は電源50の三相交流電圧を整流して直流電圧に変換する。この直流電圧はPWMインバータからなる電力変換器70に供給され、電動機80を駆動するための所定の三相交流電圧に変換される。
FIG. 1 is a control block diagram of a first embodiment of the present invention corresponding to claim 1. As described above, a permanent magnet type synchronous motor is operated by a power converter 70 using current and voltage on the γ and δ axes. The structure for driving 80 is shown.
First, the main circuit for driving the permanent magnet type synchronous motor 80 having no magnetic pole position detector will be described. 50 is a three-phase AC power source, and the rectifier circuit 60 rectifies the three-phase AC voltage of the power source 50 to generate a DC voltage. Convert to This DC voltage is supplied to a power converter 70 composed of a PWM inverter, and is converted into a predetermined three-phase AC voltage for driving the electric motor 80.

次に、磁極位置推定値θと速度推定値ωとを用いて永久磁石形同期電動機80を速度制御する方法を、制御装置の構成と共に説明する。
速度指令値ωと速度推定値ωとの偏差を減算器16により演算し、この偏差を速度調節器17により増幅してトルク指令値τを演算する。電流指令演算器18は、トルク指令値τから所望のトルクを出力するγ,δ軸電流指令値iγ ,iδ を演算する。
電流座標変換器14は、u相電流検出器11u、w相電流検出器11wによってそれぞれ検出した相電流検出値i,iを、磁極位置推定値θを用いてγ,δ軸電流検出値iγ,iδに座標変換する。
Next, a method for controlling the speed of the permanent magnet synchronous motor 80 using the magnetic pole position estimated value θ 1 and the speed estimated value ω 1 will be described together with the configuration of the control device.
The deviation between the speed command value ω * and the estimated speed value ω 1 is calculated by the subtractor 16, and the deviation is amplified by the speed regulator 17 to calculate the torque command value τ * . The current command calculator 18 calculates γ and δ-axis current command values i γ * and i δ * that output a desired torque from the torque command value τ * .
The current coordinate converter 14 detects the phase current detection values i u and i w detected by the u-phase current detector 11u and the w-phase current detector 11w, respectively, and detects the γ and δ-axis currents using the magnetic pole position estimated value θ 1. Coordinates are converted to values i γ and i δ .

減算器19aによりγ軸電流指令値iγ とγ軸電流検出値iγとの偏差を演算し、この偏差をγ軸電流調節器20aにより増幅してγ軸電圧指令値vγ を演算する。一方、減算器19bによりδ軸電流指令値iδ とδ軸電流検出値iδとの偏差を演算し、この偏差をδ軸電流調節器20bにより増幅してδ軸電圧指令値vδ を演算する。
これらのγ,δ軸電圧指令値vγ ,vδ は、電圧座標変換器15によって相電圧指令値v ,v ,v に変換される。
The subtractor 19a calculates the deviation between the γ-axis current command value i γ * and the detected γ-axis current value i γ, and the difference is amplified by the γ-axis current regulator 20a to calculate the γ-axis voltage command value v γ * . To do. On the other hand, the subtractor 19b calculates a deviation between the δ-axis current command value i δ * and the δ-axis current detection value i δ, and the δ-axis current regulator 20b amplifies the deviation to obtain the δ-axis voltage command value v δ *. Is calculated.
These γ and δ-axis voltage command values v γ * and v δ * are converted into phase voltage command values v u * , v v * and v w * by the voltage coordinate converter 15.

PWM回路13は、相電圧指令値v ,v ,v と電圧検出器12により検出した直流電圧検出値Edcとからゲート信号を生成する。電力変換器70は、ゲート信号に基づいて内部の半導体スイッチング素子を制御することで、永久磁石形同期電動機80の端子電圧を前記相電圧指令値v ,v ,v に制御する。 The PWM circuit 13 generates a gate signal from the phase voltage command values v u * , v v * , v w * and the DC voltage detection value E dc detected by the voltage detector 12. The power converter 70 controls the internal semiconductor switching element based on the gate signal, thereby controlling the terminal voltage of the permanent magnet type synchronous motor 80 to the phase voltage command values v u * , v v * , v w * . To do.

次に、拡張磁束を利用した速度と磁極位置との演算原理について説明する。
まず、拡張磁束の振幅Ψexを数式1により定義する。
Next, the calculation principle of the speed and magnetic pole position using the expanded magnetic flux will be described.
First, the amplitude Ψ ex of the expanded magnetic flux is defined by Equation 1.

Figure 0005332305
Figure 0005332305

拡張磁束Ψexγδの方向を回転子の磁極方向(d軸方向)に定義すると、γ,δ軸拡張磁束Ψexγ,Ψexδと角度差θerrとの間には数式2の関係がある。 When the direction of the expanded magnetic flux Ψ exγδ is defined as the magnetic pole direction (d-axis direction) of the rotor, the relationship of Mathematical Formula 2 is established between the γ and δ-axis expanded magnetic fluxes Ψ exγ and Ψ exδ and the angle difference θ err .

Figure 0005332305
Figure 0005332305

数式1,数式2より、永久磁石形同期電動機80のγ,δ軸電圧方程式は、拡張磁束を用いて数式3のように導出できる。   From Equations 1 and 2, the γ and δ-axis voltage equations of the permanent magnet type synchronous motor 80 can be derived as Equation 3 using the extended magnetic flux.

Figure 0005332305
Figure 0005332305

数式3において、右辺第1項は電機子抵抗による電圧降下、右辺第2項は電流微分値と平行でd軸インダクタンスに比例する過渡電圧、右辺第3項は電機子反作用による電圧降下である。行列Jは90度の回転座標変換であることから、電機子反作用による電圧降下は、電流を90度進ませたベクトル、q軸インダクタンス、及び、γ,δ軸の角速度ωの積に等しい。また、数式3の右辺第4項は拡張誘起電圧であり、拡張磁束を90度進ませたベクトルとd,q軸の角速度ωとの積に等しい。 In Equation 3, the first term on the right side is the voltage drop due to the armature resistance, the second term on the right side is a transient voltage that is parallel to the current differential value and proportional to the d-axis inductance, and the third term on the right side is the voltage drop due to the armature reaction. Since the matrix J is a 90-degree rotation coordinate transformation, the voltage drop due to the armature reaction is equal to the product of the vector obtained by advancing the current by 90 degrees, the q-axis inductance, and the angular velocity ω 1 of the γ and δ axes. The fourth term on the right side of Equation 3 is the expansion induced voltage, which is equal to the product of the vector obtained by advancing the expansion magnetic flux by 90 degrees and the angular velocity ω r of the d and q axes.

図3は、数式3のγ,δ軸電圧方程式の関係を表すベクトル図である。なお、図3のベクトル図は、電流微分値が零であり、速度推定値ωが速度実際値ωに一致している場合について示している。
拡張磁束Ψexγδはd軸方向に発生することから、図3より、γ,δ軸で観測した拡張磁束Ψexγδの角度δΨexから角度差θerrを検出することができる。ここで、拡張磁束Ψexγδは、後述するようにγ,δ軸電圧指令値vγ ,vδ 、γ,δ軸電流検出値iγ,iδ及び速度推定値ωから、図3のベクトル関係を利用して演算可能である。
FIG. 3 is a vector diagram showing the relationship between the γ- and δ-axis voltage equations of Equation 3. The vector diagram of FIG. 3 shows a case where the current differential value is zero and the speed estimated value ω 1 matches the actual speed value ω r .
Since the expanded magnetic flux Ψ exγδ is generated in the d-axis direction, the angle difference θ err can be detected from the angle δ Ψex of the expanded magnetic flux Ψ exγδ observed on the γ and δ axes from FIG. Here, the expanded magnetic flux Ψ exγδ is obtained from γ, δ-axis voltage command values v γ * , v δ * , γ, δ-axis current detection values i γ , i δ, and the estimated speed value ω 1 as shown in FIG. It is possible to calculate using the vector relationship.

次に、γ,δ軸拡張磁束を推定するための磁束オブザーバについて説明する。この磁束オブザーバの構成及び作用は、請求項2に係る発明に相当するものである。
前記数式3より、拡張磁束を含むγ,δ軸電流iγ,iδの状態方程式は数式4、数式5となる。
Next, a magnetic flux observer for estimating the γ and δ axis expanded magnetic flux will be described. The configuration and operation of the magnetic flux observer correspond to the invention according to claim 2.
From Equation 3, the state equations of γ and δ-axis currents i γ and i δ including the expanded magnetic flux are Equation 4 and Equation 5, respectively.

Figure 0005332305
Figure 0005332305

Figure 0005332305
Figure 0005332305

数式4、数式5において、d,q軸電流微分値pi,piを零に近似すると共に、速度推定値ωが速度実際値ωに一致していると近似し、更に、γ,δ軸端子電圧vγ,vδがそれぞれγ,δ軸電圧指令値vγ ,vδ に制御できていると近似することにより、磁束オブザーバを数式6、数式7により構成する。 In Equations 4 and 5, d and q-axis current differential values pi d and pi q are approximated to zero, and the estimated speed value ω 1 is approximated to the actual velocity value ω r , and γ, By approximating that the δ-axis terminal voltages v γ and v δ can be controlled to γ and δ-axis voltage command values v γ * and v δ * , respectively, the magnetic flux observer is configured by Equations 6 and 7.

Figure 0005332305
Figure 0005332305

Figure 0005332305
Figure 0005332305

数式3の関係式より、数式6の右辺1行目は、物理的にγ,δ軸電流微分値に相当し、このうち、括弧内の演算結果は過渡電圧に相当する。すなわち、数式6の右辺1行目は、具体的には、γ,δ軸電圧指令値(ここでは、γ,δ軸電圧検出値に等しい)から電機子抵抗電圧降下、電機子反作用電圧降下及び拡張誘起電圧を減算して過渡電圧を求め、求めた過渡電圧にd軸インダクタンスLの逆数を乗算してγ,δ軸電流微分値を演算している。
また、数式6の右辺2行目は、電流推定値iγδestと電流検出値iγδとの偏差を増幅して演算される電流補正値に相当しており、数式6の右辺1行目のγ,δ軸電流微分値と前記電流補正値との加算結果に基づいて電流推定値iγδestが演算されると共に、数式7により、電流推定値iγδestと電流検出値iγδとの偏差を増幅することで拡張磁束推定値Ψexγδestが演算されることを示している。
From the relational expression of Expression 3, the first line on the right side of Expression 6 physically corresponds to the γ and δ axis current differential values, and among these, the calculation result in parentheses corresponds to the transient voltage. That is, the first line on the right side of Equation 6 specifically includes an armature resistance voltage drop, an armature reaction voltage drop, and an armature reaction voltage drop from a γ and δ axis voltage command value (here, equal to γ and δ axis voltage detection values). extended electromotive force by subtracting the calculated transient voltage, the transient voltage obtained by multiplying the inverse of d-axis inductance L d gamma, and calculates the δ-axis current differential value.
The second line on the right side of Equation 6 corresponds to a current correction value calculated by amplifying the deviation between the current estimated value i γδest and the detected current value i γδ, and γ on the first line on the right side of Equation 6 The current estimated value i γδest is calculated based on the addition result of the δ-axis current differential value and the current correction value, and the deviation between the current estimated value i γδest and the detected current value i γδ is amplified by Equation 7. This indicates that the expanded magnetic flux estimated value Ψ exγδest is calculated.

前述した特許文献2に係る従来技術も、磁束オブザーバを用いて回転子磁束を推定し、この磁束に基づいて速度を推定している。しかし、本実施形態と特許文献2に係る従来技術との大きな相違点は、本実施形態では、数式6に示したように、電機子反作用電圧降下を、電流推定値iγδestを90度進ませたベクトル、q軸インダクタンスL及び速度推定値ωの積から演算する点、並びに、γ,δ軸電流微分値を、過渡電圧演算値とd軸インダクタンスLの逆数との積から演算する点である。
また、特許文献2に係る従来技術は、磁極位置演算誤差が零近傍であることを条件としているが、数式6、数式7に示した本実施形態の磁束オブザーバでは、拡張磁束の導出過程において磁極位置推定誤差θerrに関する近似を行っていないので、磁極位置推定誤差θerrが大きい場合にも拡張磁束を正確に演算できる等の特徴がある。
The above-described prior art related to Patent Document 2 also estimates the rotor magnetic flux using a magnetic flux observer and estimates the speed based on this magnetic flux. However, the major difference between this embodiment and the prior art according to Patent Document 2 is that in this embodiment, as shown in Equation 6, the armature reaction voltage drop is advanced by 90 degrees in the current estimated value i γδest. Further, the point calculated from the product of the vector, the q-axis inductance L d and the speed estimated value ω 1 , and the γ and δ-axis current differential values are calculated from the product of the transient voltage calculated value and the inverse of the d-axis inductance L d. Is a point.
The prior art according to Patent Document 2 is based on the condition that the magnetic pole position calculation error is near zero. However, in the magnetic flux observer according to the present embodiment shown in Equations 6 and 7, the magnetic pole in the process of deriving the expanded magnetic flux Since no approximation is performed on the position estimation error θ err , the magnetic flux position estimation error θ err can be accurately calculated even when the magnetic pole position estimation error θ err is large.

次に、上記の磁束オブザーバを用いた速度推定値ω及び磁極位置推定値θの演算について、図1のブロック図を参照しつつ説明する。
図1において、磁束オブザーバ31は、数式6、数式7に示した磁束オブザーバによりγ,δ軸拡張磁束推定値Ψexγest,Ψexδestを演算する。角度演算器32は、γ,δ軸拡張磁束推定値Ψexγest,Ψexδestの角度δΨexestを数式8により演算する。
Next, calculation of the speed estimated value ω 1 and the magnetic pole position estimated value θ 1 using the magnetic flux observer will be described with reference to the block diagram of FIG.
In FIG. 1, the magnetic flux observer 31 calculates γ and δ-axis expanded magnetic flux estimated values ψ exγest and ψ exδest using the magnetic flux observer shown in Equations 6 and 7. Angle calculator 32, gamma, [delta] axis extended flux estimate Ψ exγest, the angle [delta] Pusaiexest of [psi Exderutaest be calculated by Equation 8.

Figure 0005332305
Figure 0005332305

速度推定器33は、拡張磁束推定値の角度δΨexestを増幅して速度推定値ωを演算する。なお、速度推定器33はPI調節器により構成されており、数式9により速度推定値ωを求める。 The speed estimator 33 calculates the speed estimated value ω 1 by amplifying the angle δ Ψexest of the expanded magnetic flux estimated value. The speed estimator 33 is composed of a PI controller, and obtains a speed estimated value ω 1 by Equation 9.

Figure 0005332305
Figure 0005332305

電気角演算器34は、速度推定値ωを増幅して磁極位置推定値θを演算する。なお、電気角演算器34は積分器からなり、数式10により磁極位置推定値θを求める。 Electrical angle calculator 34 amplifies the speed estimation value omega 1 calculates the magnetic pole position estimation value theta 1. The electrical angle calculator 34 is composed of an integrator, and the magnetic pole position estimated value θ 1 is obtained by Equation 10.

Figure 0005332305
Figure 0005332305

図3に示したように、γ,δ軸から観測した拡張磁束の角度δΨexによって位置推定誤差θerrを検出できるため、数式7、数式8によって位置推定誤差θerrを零に制御するPLL回路を構成することにより、速度推定値ω及び磁極位置推定値θを正確に演算することができる。 As shown in FIG. 3, since the position estimation error θ err can be detected by the expanded magnetic flux angle δ Ψex observed from the γ and δ axes, the PLL circuit that controls the position estimation error θ err to zero using Expression 7 and Expression 8 Thus, the speed estimated value ω 1 and the magnetic pole position estimated value θ 1 can be accurately calculated.

次に、請求項3に相当する本発明の第2実施形態を図4のブロック図に基づいて説明する。
この実施形態は、速度推定値の応答を改善したものであり、図4のブロック図は、図1における速度推定値ωの演算方法を改良したものに相当する。以下では、図4における図1との相違点を中心に説明する。
Next, a second embodiment of the present invention corresponding to claim 3 will be described based on the block diagram of FIG.
In this embodiment, the response of the speed estimated value is improved, and the block diagram of FIG. 4 corresponds to an improved method of calculating the speed estimated value ω 1 in FIG. Below, it demonstrates centering on the difference with FIG. 1 in FIG.

速度フィードフォワード補償器41は、速度指令値ωの一次遅れフィルタ出力から速度フィードフォワード補償値ω1FFを演算する。
速度推定器33は、拡張磁束推定値の角度δΨexestを増幅して速度補正値ω1compを演算する。ここで、速度推定器33はPI調節器から構成されており、速度補正値ω1compを数式11により演算する。
The speed feedforward compensator 41 calculates a speed feedforward compensation value ω 1FF from the first order lag filter output of the speed command value ω * .
The speed estimator 33 calculates the speed correction value ω 1comp by amplifying the angle δ Ψexest of the expanded magnetic flux estimated value. Here, the speed estimator 33 is composed of a PI controller, and calculates a speed correction value ω 1comp according to Equation 11.

Figure 0005332305
Figure 0005332305

加算器42は、速度フィードフォワード補償値ω1FFと速度補正値ω1compとを加算して速度推定値ωを演算し、この速度推定値ωが磁極位置推定値θの演算に用いられる。
本実施形態によれば、速度フィードフォワード補償を行うことで速度推定値ωの応答を速くし、過渡特性を改善することができる。
The adder 42 adds the speed feedforward compensation value ω 1FF and the speed correction value ω 1comp to calculate the speed estimated value ω 1 , and this speed estimated value ω 1 is used to calculate the magnetic pole position estimated value θ 1. .
According to this embodiment, by performing speed feedforward compensation, the response of the speed estimated value ω 1 can be made faster, and the transient characteristics can be improved.

本発明の第1実施形態を示すブロック図である。1 is a block diagram showing a first embodiment of the present invention. d,q軸及びγ,δ軸の定義を示す図である。It is a figure which shows the definition of d, q axis | shaft and (gamma), (delta) axis. 永久磁石形同期電動機の電流、端子電圧、拡張磁束の関係を示すベクトル図である。It is a vector diagram which shows the relationship between the electric current of a permanent magnet type synchronous motor, a terminal voltage, and an extended magnetic flux. 本発明の第2実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of this invention.

符号の説明Explanation of symbols

11u u相電流検出器
11w w相電流検出器
12 電圧検出器
13 PWM回路
14 電流座標変換器
15 電圧座標変換器
16 減算器
17 速度調節器
18 電流指令演算器
19a 減算器
19b 減算器
20a γ軸電流調節器
20b δ軸電流調節器
31 磁束オブザーバ
32 角度演算器
33 速度推定器
34 電気角演算器
41 速度フィードフォワード補償器
42 加算器
50 三相交流電源
60 整流回路
70 電力変換器
80 永久磁石形同期電動機
11u u-phase current detector 11w w-phase current detector 12 voltage detector 13 PWM circuit 14 current coordinate converter 15 voltage coordinate converter 16 subtractor 17 speed controller 18 current command calculator 19a subtractor 19b subtractor 20a γ-axis Current regulator 20b δ-axis current regulator 31 Magnetic flux observer 32 Angle calculator 33 Speed estimator 34 Electrical angle calculator 41 Speed feedforward compensator 42 Adder 50 Three-phase AC power supply 60 Rectifier circuit 70 Power converter 80 Permanent magnet type Synchronous motor

Claims (3)

磁極位置検出器を持たない永久磁石形同期電動機の制御装置において、
前記電動機の電流、電圧及び磁束をベクトルとしてとらえ、
前記電動機の電流検出値、端子電圧相当値及び速度推定値から、回転子の磁極方向に発生する拡張磁束を推定する磁束オブザーバと、
前記磁束オブザーバにより推定した拡張磁束推定値の角度を演算する角度演算手段と、
前記拡張磁束推定値の角度を増幅して前記速度推定値を演算する速度推定手段と、
前記速度推定値を増幅して磁極位置推定値を演算する電気角演算手段と、
を備えたことを特徴とする、永久磁石形同期電動機の制御装置。
In a control device for a permanent magnet type synchronous motor having no magnetic pole position detector,
Taking the current, voltage and magnetic flux of the motor as vectors,
A magnetic flux observer for estimating an expanded magnetic flux generated in the direction of the magnetic pole of the rotor from the current detection value of the electric motor, the terminal voltage equivalent value and the speed estimation value;
Angle calculating means for calculating the angle of the expanded magnetic flux estimated value estimated by the magnetic flux observer;
Speed estimating means for amplifying the angle of the expanded magnetic flux estimated value and calculating the speed estimated value;
An electrical angle calculating means for amplifying the speed estimated value to calculate a magnetic pole position estimated value;
A control device for a permanent magnet type synchronous motor, comprising:
請求項1に記載した永久磁石形同期電動機の制御装置において、
前記磁束オブザーバは、
前記電動機の電流推定値に比例する電機子抵抗電圧降下を演算する手段と、
前記電流推定値を90°回転させたベクトルと前記速度推定値との積に比例する電機子反作用電圧降下を演算する手段と、
前記拡張磁束推定値を90°回転させたベクトルと前記速度推定値との積から拡張誘起電圧を演算する手段と、
前記端子電圧相当値から、前記電機子抵抗電圧降下、前記電機子反作用電圧降下及び前記拡張誘起電圧を減算して過渡電圧を演算する手段と、
前記過渡電圧に比例する電流微分値を演算する手段と、
前記電流推定値と前記電流検出値との偏差を増幅して電流補正値を演算する手段と、
前記電流微分値と前記電流補正値との和を増幅して前記電流推定値を演算する手段と、
前記電流推定値と前記電流検出値との偏差を増幅して前記拡張磁束推定値を演算する手段と、
を有することを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 1,
The magnetic flux observer is
Means for calculating an armature resistance voltage drop proportional to an estimated current value of the motor;
Means for calculating an armature reaction voltage drop proportional to a product of a vector obtained by rotating the current estimation value by 90 ° and the speed estimation value;
Means for calculating an expansion induced voltage from a product of a vector obtained by rotating the expanded magnetic flux estimated value by 90 ° and the speed estimated value;
Means for subtracting the armature resistance voltage drop, the armature reaction voltage drop and the expansion induced voltage from the terminal voltage equivalent value to calculate a transient voltage;
Means for calculating a current differential value proportional to the transient voltage;
Means for amplifying a deviation between the estimated current value and the detected current value to calculate a current correction value;
Means for amplifying a sum of the current differential value and the current correction value to calculate the current estimated value;
Means for amplifying a deviation between the current estimated value and the current detected value to calculate the expanded magnetic flux estimated value;
A control device for a permanent magnet type synchronous motor.
請求項1または請求項2に記載した永久磁石形同期電動機の制御装置において、
前記速度指令値から速度フィードフォワード補償値を演算する手段と、
前記速度フィードフォワード補償値により前記速度推定値を補償する手段と、
を有することを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 1 or 2,
Means for calculating a speed feedforward compensation value from the speed command value;
Means for compensating the speed estimate by the speed feedforward compensation value;
A control device for a permanent magnet type synchronous motor.
JP2008130791A 2008-05-19 2008-05-19 Control device for permanent magnet type synchronous motor Active JP5332305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130791A JP5332305B2 (en) 2008-05-19 2008-05-19 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130791A JP5332305B2 (en) 2008-05-19 2008-05-19 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2009284557A JP2009284557A (en) 2009-12-03
JP5332305B2 true JP5332305B2 (en) 2013-11-06

Family

ID=41454420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130791A Active JP5332305B2 (en) 2008-05-19 2008-05-19 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP5332305B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622030B2 (en) * 2010-06-03 2014-11-12 富士電機株式会社 Power conversion system
FR2984637B1 (en) * 2011-12-20 2013-11-29 IFP Energies Nouvelles METHOD FOR DETERMINING THE POSITION AND SPEED OF A ROTOR OF A SYNCHRONOUS ELECTRIC MACHINE
CN110957953B (en) * 2018-09-25 2022-12-20 欧姆龙(上海)有限公司 Control device and control method for alternating current motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1303035B1 (en) * 2001-04-24 2016-08-17 Mitsubishi Denki Kabushiki Kaisha System for controlling synchronous motor
JP4032845B2 (en) * 2002-06-26 2008-01-16 株式会社明電舎 Control device for synchronous motor
JP4425091B2 (en) * 2004-08-25 2010-03-03 三洋電機株式会社 Motor position sensorless control circuit
JP4992323B2 (en) * 2006-05-18 2012-08-08 パナソニック株式会社 Servo motor control device

Also Published As

Publication number Publication date
JP2009284557A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5445892B2 (en) Control device for permanent magnet type synchronous motor
JP5104239B2 (en) Control device for permanent magnet type synchronous motor
JP5223109B2 (en) Control device for permanent magnet type synchronous motor
JP5428202B2 (en) Control device for permanent magnet type synchronous motor
JP5277724B2 (en) Control device for permanent magnet type synchronous motor
JP2009290929A (en) Controller for permanent magnet type synchronous motor
JP2010035363A (en) Controller for permanent magnet type synchronous motor
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP5618854B2 (en) Synchronous motor drive system
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP5471156B2 (en) Control device for permanent magnet type synchronous motor
JP2009278691A (en) Controller for permanent magnet type synchronous motor
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP5726273B2 (en) Synchronous machine control device having permanent magnet state estimation function and method thereof
JP5332301B2 (en) Control device for permanent magnet type synchronous motor
JP6590196B2 (en) Power converter
JP6573213B2 (en) Control device for permanent magnet type synchronous motor
JP4984057B2 (en) Control device for permanent magnet type synchronous motor
JP6621052B2 (en) Control device for permanent magnet type synchronous motor
JP6497584B2 (en) Control device for permanent magnet type synchronous motor
JP5333716B2 (en) Control device for permanent magnet type synchronous motor
JP5387899B2 (en) Control device for permanent magnet type synchronous motor
JP5040605B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5332305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250