JP5445892B2 - Control device for permanent magnet type synchronous motor - Google Patents

Control device for permanent magnet type synchronous motor Download PDF

Info

Publication number
JP5445892B2
JP5445892B2 JP2007117217A JP2007117217A JP5445892B2 JP 5445892 B2 JP5445892 B2 JP 5445892B2 JP 2007117217 A JP2007117217 A JP 2007117217A JP 2007117217 A JP2007117217 A JP 2007117217A JP 5445892 B2 JP5445892 B2 JP 5445892B2
Authority
JP
Japan
Prior art keywords
magnetic flux
axis
magnetic pole
voltage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007117217A
Other languages
Japanese (ja)
Other versions
JP2008278595A (en
Inventor
尚史 野村
康 松本
信夫 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007117217A priority Critical patent/JP5445892B2/en
Publication of JP2008278595A publication Critical patent/JP2008278595A/en
Application granted granted Critical
Publication of JP5445892B2 publication Critical patent/JP5445892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、回転子の磁極位置を検出するための磁極位置検出器を持たずに、いわゆるセンサレス制御される永久磁石形同期電動機の制御装置に関し、詳しくは、回転子の脱調を速やかに検出可能とした制御装置に関するものである。   The present invention relates to a control device for a so-called sensorless controlled permanent magnet type synchronous motor without having a magnetic pole position detector for detecting the magnetic pole position of a rotor. The present invention relates to a control device that has been made possible.

永久磁石形同期電動機のセンサレス制御は、制御装置の低価格化を目的として広く実用化されている。このセンサレス制御は、電動機の端子電圧や電機子電流の情報から回転子の速度及び磁極位置を演算し、これらに基づいて電流制御を行うことによりトルク制御や速度制御を実現するものである。
以下、後述する特許文献1や非特許文献1,非特許文献2に記載されたセンサレス制御方式について説明する。
Sensorless control of a permanent magnet type synchronous motor is widely put into practical use for the purpose of reducing the price of the control device. This sensorless control realizes torque control and speed control by calculating the rotor speed and magnetic pole position from information on the terminal voltage and armature current of the motor, and performing current control based on these.
Hereinafter, sensorless control methods described in Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2, which will be described later, will be described.

まず、永久磁石形同期電動機は、回転子の磁極方向をd軸、d軸から90度進んだ方向をq軸と定義した回転座標系で電流制御を行うことで、高性能制御を実現することができる。しかしながら、磁極位置検出器を使用しない場合は、dq軸の角度を直接検出することができないので、制御装置内部にdq軸回転座標系に対応するγδ軸回転座標系を推定し、dq軸成分のd軸電流i,q軸電流iをγδ軸成分のγ軸電流iγ,δ軸電流iδに変換して電流制御を行っている。
なお、図3は、上述したdq軸とγδ軸との関係を示しており、θerrはdq軸とγδ軸との角度差である。
First, the permanent magnet synchronous motor realizes high-performance control by performing current control in a rotating coordinate system in which the magnetic pole direction of the rotor is defined as the d axis and the direction advanced 90 degrees from the d axis is defined as the q axis. Can do. However, when the magnetic pole position detector is not used, the angle of the dq axis cannot be directly detected. Therefore, a γδ axis rotation coordinate system corresponding to the dq axis rotation coordinate system is estimated inside the control device, and the dq axis component Current control is performed by converting the d-axis current i d and the q-axis current i q into γ-axis current i γ and δ-axis current i δ of the γδ-axis component.
FIG. 3 shows the relationship between the dq axis and the γδ axis described above, and θ err is the angular difference between the dq axis and the γδ axis.

dq軸の電気角速度ωとγδ軸の電気角速度ωとが等しい場合、γδ軸における永久磁石形同期電動機の電圧方程式は、数式1によって表される。 If the electrical angular velocity omega 1 of the electrical angular velocity omega r and γδ axes of the dq-axis are equal, the voltage equation of the permanent magnet synchronous motor in γδ axes is represented by Equation 1.

Figure 0005445892
Figure 0005445892

数式1において、右辺第1項は電機子抵抗rによる電圧降下、右辺第2項は電流微分値に平行でd軸インダクタンスLに比例する過渡電圧、右辺第3項は電機子反作用による電圧降下である。
右辺第3項の電機子反作用による電圧降下は、電機子電流iとq軸インダクタンスLとの積である電機子反作用磁束によって誘導される電圧であり、電機子反作用磁束を90度進ませたベクトルとγδ軸の電気角速度ωとの積に等しい。
また、右辺第4項が拡張誘起電圧と呼ばれる項(γδ軸成分をそれぞれγ軸拡張誘起電圧Eexγ、δ軸拡張誘起電圧Eexδという)であり、数式2によって表される。
In Equation 1, the first term is the voltage drop due to the armature resistance r a, the second term of the right side transient voltage proportional to the parallel current differential value d-axis inductance L d, the third term on the right side voltage by armature reaction It is a descent.
Voltage drop due to the armature reaction in the third term on the right side is the voltage induced by the armature reaction magnetic flux which is the product of the armature current i a and the q-axis inductance L q, Advances the armature reaction magnetic flux 90 degrees Equal to the product of the vector and the electrical angular velocity ω 1 of the γδ axis.
The fourth term on the right-hand side is a term called an expansion induced voltage (γδ axis components are respectively referred to as a γ-axis expansion induced voltage E exγ and a δ-axis expansion induced voltage E exδ ), and is expressed by Equation 2.

Figure 0005445892
Figure 0005445892

上記の拡張誘起電圧は、後述する非特許文献2にも記載されているように、永久磁石形同期電動機の永久磁石とインダクタンスとに分離した位置情報を一つに集約する作用を果している。   As described in Non-Patent Document 2, which will be described later, the extended induced voltage has an effect of collecting the position information separated into the permanent magnet and the inductance of the permanent magnet type synchronous motor into one.

数式2に示すように、γ軸拡張誘起電圧Eexγ及びδ軸拡張誘起電圧Eexδはdq軸とγδ軸との角度差(以下、磁極位置演算誤差ともいう)θerrの関数であり、磁極位置演算誤差θerrはγ軸拡張誘起電圧ベクトルの角度から演算することができる。 As shown in Equation 2, the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ are functions of the angle difference between the dq axis and the γδ axis (hereinafter also referred to as a magnetic pole position calculation error) θ err , The position calculation error θ err can be calculated from the angle of the γ-axis expansion induced voltage vector.

図4は、数式1、数式2による永久磁石形同期電動機の電圧方程式を示すベクトル図である。なお、図4のベクトル図は電動機正転時のものであり、拡張誘起電圧Eexγ,Eexδはq軸方向に発生する。 FIG. 4 is a vector diagram showing voltage equations of the permanent magnet type synchronous motor according to Equations 1 and 2. Note that the vector diagram of FIG. 4 is for normal rotation of the motor, and the expansion induced voltages E exγ and E exδ are generated in the q-axis direction.

次に、γδ軸回転座標系における速度ω及び磁極位置θの演算方法について説明する。
まず、前述した数式1を変形することにより、γ軸拡張誘起電圧Eexγ及びδ軸拡張誘起電圧Eexδについて数式3を得る。
Next, a method for calculating the speed ω 1 and the magnetic pole position θ 1 in the γδ axis rotation coordinate system will be described.
First, Equation 3 is obtained for the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ by modifying Equation 1 described above.

Figure 0005445892
Figure 0005445892

また、数式2に基づき、磁極位置演算誤差θerrを数式4により演算する。 Further, based on Equation 2, the magnetic pole position calculation error θ err is calculated by Equation 4.

Figure 0005445892
Figure 0005445892

速度演算値(=γδ軸電気角速度)ωは、磁極位置演算誤差θerrを入力とするPI(比例積分)調節器により求めることができ、具体的には数式5により演算する。 The speed calculation value (= γδ-axis electrical angular speed) ω 1 can be obtained by a PI (proportional integration) adjuster having the magnetic pole position calculation error θ err as an input.

Figure 0005445892
Figure 0005445892

また、磁極位置演算値θは、数式6に示すように速度演算値ωを積分して求める。 The magnetic pole position calculation value θ 1 is obtained by integrating the speed calculation value ω 1 as shown in Equation 6.

Figure 0005445892
Figure 0005445892

数式5、数式6を用いることにより磁極位置演算誤差θerrを零に収束させることができ、速度ω及び磁極位置θを正確に演算することができる。
このようにして演算した速度ω及び磁極位置θを用いて電流制御や速度制御を行えば、磁極位置検出器を使わなくても高性能に永久磁石形同期電動機を制御することができる。
By using Expressions 5 and 6, the magnetic pole position calculation error θ err can be converged to zero, and the speed ω 1 and the magnetic pole position θ 1 can be accurately calculated.
If current control and speed control are performed using the speed ω 1 and the magnetic pole position θ 1 calculated in this way, the permanent magnet synchronous motor can be controlled with high performance without using a magnetic pole position detector.

次に、特許文献2に記載されたセンサレス制御方式について説明する。
前述したように、特許文献1及び非特許文献1に記載されたセンサレス制御方式は、数式4によってγ軸拡張誘起電圧Eexγ及びδ軸拡張誘起電圧Eexδから磁極位置演算誤差θerrを求めている。ここで、拡張誘起電圧の振幅Eexは、数式2に示した如く速度ωにほぼ比例するため、低速時には磁極位置演算誤差θerrの演算精度が悪くなるのが明らかである。
そこで、特許文献2に係るセンサレス制御方式では、拡張誘起電圧を誘導する磁束を「拡張磁束」として新たに定義する。
Next, the sensorless control method described in Patent Document 2 will be described.
As described above, the sensorless control methods described in Patent Document 1 and Non-Patent Document 1 calculate the magnetic pole position calculation error θ err from the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ using Equation 4. Yes. Here, since the amplitude E ex of the expansion induced voltage is almost proportional to the speed ω 1 as shown in Equation 2, it is apparent that the calculation accuracy of the magnetic pole position calculation error θ err is deteriorated at a low speed.
Therefore, in the sensorless control method according to Patent Document 2, the magnetic flux that induces the expansion induced voltage is newly defined as “expanded magnetic flux”.

磁束によって永久磁石形同期電動機の端子に誘導される電圧が、磁束に対して90度進み、その振幅が速度と磁束との積になることから、拡張誘起電圧を誘導する拡張磁束のベクトル方向をd軸とし、振幅Ψexを数式7により定義する。 The voltage induced by the magnetic flux at the terminal of the permanent magnet synchronous motor advances 90 degrees with respect to the magnetic flux, and its amplitude is the product of the speed and the magnetic flux. The d axis is defined, and the amplitude Ψ ex is defined by Equation 7.

Figure 0005445892
Figure 0005445892

数式2及び数式7より、拡張磁束の振幅Ψexは数式8によって表される。 From Equation 2 and Equation 7, the amplitude Ψ ex of the expanded magnetic flux is expressed by Equation 8.

Figure 0005445892
Figure 0005445892

図5は、拡張誘起電圧と拡張磁束との関係を示すベクトル図である。この図5及び数式7より、γ軸拡張誘起電圧Eexγ、δ軸拡張誘起電圧Eexδとγ軸拡張磁束Ψexγ、δ軸拡張磁束Ψexδとは数式9の関係にある。 FIG. 5 is a vector diagram showing the relationship between the expansion induced voltage and the expansion magnetic flux. From FIG. 5 and Expression 7, the γ-axis expansion induced voltage E exγ , the δ-axis expansion induced voltage E exδ , the γ-axis expansion magnetic flux Ψ exγ , and the δ-axis expansion magnetic flux Ψ exδ are in the relationship of Expression 9.

Figure 0005445892
Figure 0005445892

γ軸拡張磁束Ψexγ及びδ軸拡張磁束Ψexδと磁極位置演算誤差θerrとの関係は、数式2及び数式9より、数式10のようになる。 The relationship between the γ-axis expanded magnetic flux ψ exγ and the δ-axis expanded magnetic flux ψ exδ and the magnetic pole position calculation error θ err is expressed by Equation 10 from Equation 2 and Equation 9.

Figure 0005445892
Figure 0005445892

数式8より、拡張磁束の振幅Ψexは、電流微分値が零になる定常状態では、速度ωによらず一定である。このため、数式10によりγ軸拡張磁束Ψexγ及びδ軸拡張磁束Ψexδを用いて磁極位置演算誤差θerrを演算すれば、低速時にも磁極位置演算誤差θerrを高精度に演算することができる。 From Equation 8, the amplitude Ψ ex of the expanded magnetic flux is constant regardless of the speed ω 1 in the steady state where the current differential value is zero. Therefore, be calculated if calculating the magnetic pole position calculation error theta err using γ-axis expansion flux [psi Exganma and δ-axis expansion flux [psi Exderuta by Equation 10, the magnetic pole position calculation error theta err even during low-speed high precision it can.

次いで、特許文献2における磁極位置及び速度の具体的な演算方法について説明する。
まず、拡張磁束のδ軸成分Ψexδを、数式3、数式9より、数式11によって演算する。
Next, a specific calculation method of the magnetic pole position and speed in Patent Document 2 will be described.
First, the δ-axis component Ψ exδ of the expanded magnetic flux is calculated by Expression 11 from Expression 3 and Expression 9.

Figure 0005445892
Figure 0005445892

数式10において、磁極位置演算誤差θerrが零近傍の値である場合、δ軸拡張磁束Ψexδは数式12となる。 In Formula 10, when the magnetic pole position calculation error θ err is a value near zero, the δ-axis expanded magnetic flux Ψ exδ is expressed by Formula 12.

Figure 0005445892
Figure 0005445892

拡張磁束振幅Ψexは、数式8より、d軸電流i及びq軸電流iの関数であるため、δ軸拡張磁束Ψexδを数式13によって線形化した第2のδ軸拡張磁束Ψexδ’を導入する。 Since the expanded magnetic flux amplitude Ψ ex is a function of the d-axis current i d and the q-axis current i q according to Equation 8, the second δ-axis expanded magnetic flux ψ exδ obtained by linearizing the δ-axis expanded magnetic flux ψ exδ with Equation 13. 'Introduce.

Figure 0005445892
Figure 0005445892

速度演算値ωは、第2の拡張磁束Ψexδ’を入力とする速度演算器としてのPI調節器を用いて、数式14により求められる。 The speed calculation value ω 1 is obtained by Expression 14 using a PI controller as a speed calculator having the second extended magnetic flux Ψ exδ ′ as an input.

Figure 0005445892
Figure 0005445892

なお、磁極位置演算値θは、前述の数式6により、速度演算値ωを積分して求める。 The magnetic pole position calculation value θ 1 is obtained by integrating the speed calculation value ω 1 according to Equation 6 described above.

さて、上述したセンサレス制御方式において、回転子の速度及び磁極位置の演算が何らかの原因により不安定になって回転子が脱調した場合、永久磁石形同期電動機を駆動する電力変換器を速やかに停止して電力変換器や負荷の機械系を保護する必要がある。
永久磁石形同期電動機の脱調検出技術として、例えば、特許文献3では、dq軸とγδ軸とがほぼ一致しているという前提のもとで、下記の数式15のγδ軸電圧方程式(非特許文献2に記載された数式(4)に相当する)から導出した外乱オブザーバによってγ軸拡張誘起電圧Eexγ及びδ軸拡張誘起電圧Eexδを演算している。そして、dq軸とγδ軸とが一致している場合には零であるγ軸拡張誘起電圧Eexγが、dq軸とγδ軸との角度差にほぼ比例して大きくなることを利用して、γ軸拡張誘起電圧Eexγとδ軸拡張誘起電圧Eexδとの比が所定範囲を超えた場合に脱調として検出している。
なお、数式15において、Kは誘起電圧定数である。
In the sensorless control method described above, if the rotor speed and magnetic pole position calculation becomes unstable for some reason and the rotor steps out, the power converter that drives the permanent magnet synchronous motor is quickly stopped. Therefore, it is necessary to protect the power converter and the mechanical system of the load.
As a step-out detection technique for a permanent magnet type synchronous motor, for example, in Patent Document 3, a γδ axis voltage equation of the following Expression 15 (non-patent document) on the premise that the dq axis and the γδ axis substantially coincide with each other. The γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ are calculated by a disturbance observer derived from Equation (4) described in Document 2. Then, using the fact that the γ-axis expansion induced voltage E exγ , which is zero when the dq axis and the γδ axis coincide, increases substantially in proportion to the angular difference between the dq axis and the γδ axis, A step-out is detected when the ratio between the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ exceeds a predetermined range.
Note that in Equation 15, K E is the induced voltage constant.

Figure 0005445892
Figure 0005445892

特許第3411878号公報(段落[0026]〜[0083]、図1等)Japanese Patent No. 3411878 (paragraphs [0026] to [0083], FIG. 1, etc.) 特開2006−67656号公報(段落[0023]〜[0044]、図1等)JP 2006-67656 A (paragraphs [0023] to [0044], FIG. 1 and the like) 特許第3797508号公報(請求項2、段落[0013]〜[0015],[0022]〜[0026]、図3,図4等)Japanese Patent No. 3797508 (Claim 2, paragraphs [0013] to [0015], [0022] to [0026], FIG. 3, FIG. 4, etc.) 田中康司,三木一郎,「拡張誘起電圧を用いた埋込磁石同期電動機の位置センサレス制御」,電気学会論文誌D,Vol.125,No.9,p.833-p.838(2005年)Koji Tanaka, Ichiro Miki, “Position Sensorless Control of Embedded Magnet Synchronous Motor Using Extended Inductive Voltage”, IEEJ Transactions D, Vol.125, No.9, p.833-p.838 (2005) 市川真士,陳 志謙,冨田 睦雄,道木 慎二,大熊 繁,「拡張誘起電圧モデルに基づく突極型永久磁石同期モータのセンサレス制御」,電気学会論文誌D,Vol.122,No.12,p.1088-p.1096,2002年Shinji Ichikawa, Shiken Chen, Ikuo Hamada, Shinji Michiki, Shigeru Okuma, “Sensorless Control of Salient-Pole Permanent Magnet Synchronous Motor Based on Extended Induced Voltage Model”, IEEJ Transactions D, Vol.122, No.12 , P.1088-p.1096, 2002

特許文献3に記載された外乱オブザーバは、dq軸とγδ軸との角度差、すなわち磁極位置演算誤差θerrを零近似できる場合にのみ適用可能である。特に、回転子に突極性のある埋込磁石構造の永久磁石形同期電動機では、上記数式15におけるインダクタンスLγ,Lδが磁極位置演算誤差θerrの関数であることから、この誤差θerrが大きく、しかも電機子電流が大きい場合には、数式15によるγ軸拡張誘起電圧Eexγ,δ軸拡張誘起電圧Eexδの演算誤差が大きくなる。
このため、特許文献3に記載された脱調検出技術を埋込磁石構造の永久磁石形同期電動機に適用した場合には、脱調を正確に検出できなかったり脱調を誤検出してしまうという問題があった。
The disturbance observer described in Patent Document 3 can be applied only when the angle difference between the dq axis and the γδ axis, that is, the magnetic pole position calculation error θ err can be approximated to zero. In particular, in a permanent magnet synchronous motor having an embedded magnet structure with saliency on the rotor, since the inductances L γ and L δ in Equation 15 are functions of the magnetic pole position calculation error θ err , the error θ err is When the armature current is large, the calculation error of the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ according to Equation 15 increases.
For this reason, when the step-out detection technique described in Patent Document 3 is applied to a permanent magnet type synchronous motor having an embedded magnet structure, step-out cannot be accurately detected or step-out is erroneously detected. There was a problem.

そこで、本発明の解決課題は、磁極位置演算誤差が大きい場合や低速運転時にも、脱調を正確に検出可能とした永久磁石形同期電動機の制御装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for a permanent magnet synchronous motor that can accurately detect step-out even when a magnetic pole position calculation error is large or during low-speed operation.

上記課題を解決するため、請求項1に係る永久磁石形同期電動機の制御装置は、磁極位置検出器を用いずに演算により求めた回転子の磁極位置に基づいて、電力変換器により永久磁石形同期電動機の電機子電流を制御し、前記電動機のトルク及び速度を制御する制御装置において、
前記電動機の電機子電流、端子電圧及び磁束をベクトルとしてとらえ、
前記電動機の端子電圧相当値、電機子抵抗電圧降下演算値、前記電機子電流の時間微分値に比例する過渡電圧演算値、及び電機子反作用磁束を90度進ませたベクトルと前記電動機の速度演算値との積を用いて拡張磁束を演算する拡張磁束演算手段と、
前記拡張磁束の回転子磁極と並行する成分、及び、前記拡張磁束の回転子磁極と直交する成分から前記拡張磁束の角度を演算する角度演算手段と、
前記拡張磁束の角度から前記電動機の脱調を検出する脱調検出手段と、を備えたものである。
In order to solve the above-mentioned problems, a control device for a permanent magnet type synchronous motor according to claim 1 is based on a permanent magnet type by a power converter based on a magnetic pole position of a rotor obtained by calculation without using a magnetic pole position detector. In the control device for controlling the armature current of the synchronous motor and controlling the torque and speed of the motor,
Taking the armature current, terminal voltage and magnetic flux of the motor as vectors,
Terminal voltage equivalent value of the motor, the armature resistance voltage drop calculation value, the speed of the previous SL transient voltage calculation value proportional to the time differential value of the armature current, and a vector which is advanced the armature reaction magnetic flux 90 degrees the motor An expanded magnetic flux calculating means for calculating an expanded magnetic flux using a product with the calculated value ;
An angle calculating means for calculating an angle of the expansion magnetic flux from a component parallel to the rotor magnetic pole of the expansion magnetic flux and a component orthogonal to the rotor magnetic pole of the expansion magnetic flux;
And step-out detecting means for detecting step-out of the electric motor from the angle of the expanded magnetic flux.

請求項2に係る永久磁石形同期電動機の制御装置は、請求項1に記載した永久磁石形同期電動機の制御装置において、
前記拡張磁束から求めた磁極位置を用いて、前記電機子電流の検出値を回転座標系の二軸成分に変換する電流座標変換手段と、
前記二軸成分を前記電機子電流の指令値の二軸成分に一致させるような電圧指令値を生成する電流調節手段と、
前記電圧指令値から前記電力変換器の半導体スイッチング素子に対する駆動信号を生成する手段と、を備えたものである
The control device for a permanent magnet type synchronous motor according to claim 2 is the control device for a permanent magnet type synchronous motor according to claim 1 ,
Current coordinate conversion means for converting the detected value of the armature current into a biaxial component of a rotating coordinate system using the magnetic pole position obtained from the expanded magnetic flux,
Current adjusting means for generating a voltage command value that matches the biaxial component with the biaxial component of the armature current command value;
Means for generating a drive signal for the semiconductor switching element of the power converter from the voltage command value .

本発明に係る永久磁石同期電動機の制御装置によれば、永久磁石形同期電動機をセンサレス制御するための制御装置において、磁極位置演算誤差が大きい場合や電動機の低速運転時時における脱調を従来技術よりも高精度に演算することができ、電力変換器や負荷の機械系を確実に保護することができる。   According to the control device for a permanent magnet synchronous motor according to the present invention, in the control device for sensorless control of the permanent magnet synchronous motor, the step-out in the case where the magnetic pole position calculation error is large or during the low speed operation of the motor is known. Therefore, the power converter and the load mechanical system can be reliably protected.

以下、図に沿って本発明の実施形態を説明する。まず、図1は本発明の参考形態に係る制御装置を主回路と共に示したブロック図である
図1に示す主回路において、50は三相交流電源、60は三相交流電圧を整流して直流電圧に変換する整流回路、70はインバータ等の電力変換器、80は永久磁石同期電動機である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 is a block diagram of the control device shown in conjunction with a main circuit according to a reference embodiment of the present invention.
In the main circuit shown in FIG. 1, 50 is a three-phase AC power source, 60 is a rectifier circuit that rectifies and converts a three-phase AC voltage into a DC voltage, 70 is a power converter such as an inverter, and 80 is a permanent magnet synchronous motor. .

以下、制御装置の構成及び動作を説明する。
まず、回転子の速度演算値ωと磁極位置演算値θとを用いて永久磁石形同期電動機80を速度制御する方法について説明する。
速度指令値ωと速度演算値ωとの偏差を減算器16により演算し、この偏差を速度調節器17により増幅してトルク指令値τを演算する。電流指令演算器18は、トルク指令値τから所望のトルクを出力するγ軸電流指令値iγ ,δ軸電流指令値iδ を演算する。
Hereinafter, the configuration and operation of the control device will be described.
First, a method for controlling the speed of the permanent magnet synchronous motor 80 using the rotor speed calculation value ω 1 and the magnetic pole position calculation value θ 1 will be described.
A deviation between the speed command value ω * and the speed calculation value ω 1 is calculated by the subtractor 16, and the deviation is amplified by the speed controller 17 to calculate the torque command value τ * . The current command calculator 18 calculates a γ-axis current command value i γ * and a δ-axis current command value i δ * that output a desired torque from the torque command value τ * .

一方、u相電流検出器11u、w相電流検出器11wによりそれぞれ検出した相電流検出値i,iを、磁極位置演算値θを用いて電流座標変換器14によりγ軸電流検出値iγ,δ軸電流検出値iδに座標変換する。
前記γ軸電流指令値iγ とγ軸電流検出値iγとの偏差を減算器19aにより求め、この偏差をγ軸電流調節器20aにより増幅してγ軸電圧指令値vγ を演算する。また、δ軸電流指令値iδ とδ軸電流検出値iδとの偏差を減算器19bにより求め、この偏差をδ軸電流調節器20bにより増幅してδ軸電圧指令値vδ を演算する。
上記電圧指令値vγ ,vδ は、電圧座標変換器15によって相電圧指令値v ,v ,v に変換される。
On the other hand, u-phase current detector 11u, w-phase current detector phase current detection value i u detected respectively by 11 w, and i w, gamma-axis current detection value by the current coordinate converter 14 by using the magnetic pole position calculation value theta 1 Coordinates are converted to i γ and δ-axis current detection values i δ .
A deviation between the γ-axis current command value i γ * and the detected γ-axis current value i γ is obtained by a subtractor 19a, and this deviation is amplified by a γ-axis current regulator 20a to calculate a γ-axis voltage command value v γ * . To do. Further, the deviation between the δ-axis current command value i δ * and the δ-axis current detection value i δ is obtained by the subtractor 19b, and this deviation is amplified by the δ-axis current regulator 20b to obtain the δ-axis voltage command value v δ * . Calculate.
The voltage command values v γ * and v δ * are converted into phase voltage command values v u * , v v * and v w * by the voltage coordinate converter 15.

PWM回路13は、上記相電圧指令値v ,v ,v と入力電圧検出回路12により検出した入力電圧検出値Edcとから、電力変換器70内部の半導体スイッチング素子をオン・オフ制御するためのゲート信号を生成する。電力変換器70は、上記ゲート信号に基づいて半導体スイッチング素子をオン・オフし、永久磁石形同期電動機80の端子電圧を相電圧指令値v ,v ,v に制御する。 The PWM circuit 13 turns on the semiconductor switching element in the power converter 70 from the phase voltage command values v u * , v v * , v w * and the input voltage detection value E dc detected by the input voltage detection circuit 12. Generate a gate signal for off control. The power converter 70 turns on and off the semiconductor switching element based on the gate signal, and controls the terminal voltage of the permanent magnet type synchronous motor 80 to the phase voltage command values v u * , v v * , and v w * .

次に、この参考形態において、回転子の速度ω及び磁極位置θを演算するための構成及び動作を説明する。
前記拡張誘起電圧演算器30は、数式3のγ軸電圧vγ,δ軸電圧vδをγ軸電圧指令値vγ ,δ軸電圧指令値vδ に置き換えた以下の数式16により、γ軸電圧指令値vγ ,δ軸電圧指令値vδ ,γ軸電流検出値iγ,δ軸電流検出値iδ,速度ω、及び、電機子抵抗r、d軸インダクタンスL,q軸インダクタンスL等の電動機定数を用いて、γ軸拡張誘起電圧Eexγ,δ軸拡張誘起電圧Eexδを演算する。
Next, in this reference embodiment, the configuration and operation for calculating the rotor speed ω 1 and the magnetic pole position θ 1 will be described.
The expansion induced voltage calculator 30 is expressed by the following equation 16 in which the γ-axis voltage v γ and the δ-axis voltage v δ in Equation 3 are replaced with the γ-axis voltage command value v γ * and the δ-axis voltage command value v δ * . gamma-axis voltage value v gamma *, [delta] -axis voltage value v [delta] *, gamma-axis current detection value i gamma, [delta]-axis current detection value i [delta], velocity omega 1 and an armature resistance r a, d-axis inductance L The γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ are calculated using motor constants such as d and q-axis inductance L q .

Figure 0005445892
Figure 0005445892

数式16における各インダクタンスL,Lは前述の数式15におけるLγ,Lδと異なって磁極位置演算誤差θerrの関数ではないため、数式16によれば、磁極位置演算誤差θerrが零近傍でない場合にも、γ軸拡張誘起電圧Eexγ,δ軸拡張誘起電圧Eexδを正確に演算することができる。 Since the inductances L d and L q in Expression 16 are not functions of the magnetic pole position calculation error θ err unlike L γ and L δ in Expression 15, the magnetic pole position calculation error θ err is zero according to Expression 16. Even when it is not in the vicinity, the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ can be accurately calculated.

数式16において、右辺第2項は電機子抵抗rによる電圧降下、右辺第3項は電流微分値に平行でd軸インダクタンスLに比例する過渡電圧、右辺第4項は電機子反作用による電圧降下である。
右辺第4項の電機子反作用による電圧降下は、電機子電流iとq軸インダクタンスLとの積である電機子反作用磁束によって誘導される電圧であり、電機子反作用磁束を90度進ませたベクトルとγδ軸の電気角速度ωとの積に等しい。
In Equation 16, the second term on the right side is the voltage drop due to the armature resistance r a, the third term on the right side transient voltage proportional to the parallel current differential value d-axis inductance L d, fourth term on the right-hand side is the voltage due to armature reaction It is a descent.
Voltage drop due to the armature reaction of the fourth term on the right-hand side is a voltage induced by the armature reaction magnetic flux which is the product of the armature current i a and the q-axis inductance L q, Advances the armature reaction magnetic flux 90 degrees Equal to the product of the vector and the electrical angular velocity ω 1 of the γδ axis.

ここで、前述した数式2によれば、γ軸拡張誘起電圧Eexγ、δ軸拡張誘起電圧Eexδから磁極位置演算誤差θerrを求めることができる。また、拡張誘起電圧Eexの角度δeexは数式17により求めることができ、数式2によれば、拡張誘起電圧Eexの角度δeexは数式18に示すように磁極位置演算誤差θerrに等しい(前述の図4におけるδ軸と拡張誘起電圧ベクトルEexとの間の角度θerrが、δeexに等しい)。 Here, according to Equation 2 described above, the magnetic pole position calculation error θ err can be obtained from the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ . Further, the angle δ eex of the expansion induced voltage E ex can be obtained by Expression 17, and according to Expression 2, the angle δ eex of the expansion induced voltage E ex is equal to the magnetic pole position calculation error θ err as shown in Expression 18. (An angle θ err between the δ axis in FIG. 4 and the extended induced voltage vector E ex is equal to δ eex ).

Figure 0005445892
Figure 0005445892

Figure 0005445892
Figure 0005445892

従って、図1における角度演算器32は、数式17の演算により拡張誘起電圧Eexの角度δeexを演算し、この角度δeexは速度演算器33及び脱調検出器35に入力される。
速度演算器33はPI調節器によって構成されており、数式19を用いて拡張誘起電圧Eexの角度δeexを増幅して速度演算値ωを求める。
Accordingly, the angle calculator 32 in FIG. 1 calculates the angle δ eex of the extended induced voltage E ex by the calculation of Expression 17, and this angle δ eex is input to the speed calculator 33 and the step-out detector 35.
The speed calculator 33 is constituted by a PI controller, and a speed calculation value ω 1 is obtained by amplifying the angle δ eex of the expansion induced voltage E ex using Expression 19.

Figure 0005445892
Figure 0005445892

磁極位置演算器34は積分器によって構成されており、前述の数式6を用いて速度演算値ωを積分することにより磁極位置演算値θを求める。
また、脱調検出器35は、拡張誘起電圧Eexの角度δeexが所定のしきい値を超えた場合に脱調を検出し、脱調検出信号をアクティブとする。
数式18に示したように上記角度δeexと磁極位置演算誤差θerrとは大きさが等しいことから、脱調検出器35により角度δeexの大きさから脱調を検出できることが明らかである。
The magnetic pole position calculator 34 is configured by an integrator, and the magnetic pole position calculation value θ 1 is obtained by integrating the speed calculation value ω 1 using the above-described Expression 6.
The step-out detector 35 detects step-out when the angle δ eex of the expansion induced voltage E ex exceeds a predetermined threshold value, and activates the step-out detection signal.
As shown in Equation 18, since the angle δ eex and the magnetic pole position calculation error θ err are equal in size, it is clear that the step-out detector 35 can detect the step-out from the size of the angle δ eex .

この参考形態によれば、特許文献3のように磁極位置演算誤差θerrを零近似していないため、この誤差θerrが大きい場合にも脱調を正確に検出することが可能である。
According to this reference mode, the magnetic pole position calculation error θ err is not approximated to zero as in Patent Document 3, so that even when the error θ err is large, step-out can be accurately detected.

次に、本発明の実施形態を図2に基づいて説明する。この実施形態は請求項1,2に係る発明に相当するものである。
この実施形態が参考形態と異なるのは、図2に示す如く、図1における拡張誘起電圧演算器30に代えて拡張磁束演算器31を設け、速度ω及び磁極位置θを拡張誘起電圧ではなく拡張磁束から演算するようにして演算精度を向上させ、同時に脱調検出精度を向上させた点である。
なお、速度ω及び磁極位置θを用いた永久磁石形同期電動機80の速度制御方法は参考形態と同様であるため説明を省略し、以下では速度ω及び磁極位置θの演算方法及び脱調検出方法について説明する。
Next, the implementation form of the present invention will be described with reference to FIG. This embodiment corresponds to the inventions according to claims 1 and 2 .
As shown in FIG. 2, this embodiment is different from the reference embodiment in that an extended magnetic flux calculator 31 is provided instead of the extended induced voltage calculator 30 in FIG. 1, and the speed ω 1 and the magnetic pole position θ 1 are set as the extended induced voltage. The calculation accuracy is improved by calculating from the expanded magnetic flux, and the step-out detection accuracy is improved at the same time.
Note that the speed control method of the permanent magnet type synchronous motor 80 using the speed ω 1 and the magnetic pole position θ 1 is the same as that in the reference embodiment, and thus the description thereof will be omitted. Hereinafter, the calculation method of the speed ω 1 and the magnetic pole position θ 1 and A step-out detection method will be described.

まず、図2の拡張磁束演算器31では、数式16により求めたγ軸拡張誘起電圧Eexγ,δ軸拡張誘起電圧Eexδを用いて、数式20によりγ軸拡張磁束Ψexγ,δ軸拡張磁束Ψexδを演算する。 2 uses the γ-axis expansion induced voltage E exγ and the δ-axis expansion induced voltage E exδ obtained by Expression 16, and the γ-axis expansion magnetic flux Ψ exγ and δ-axis expansion magnetic flux by Expression 20. Ψ exδ is calculated.

Figure 0005445892
Figure 0005445892

角度演算器32は、γ軸拡張磁束Ψexγ,δ軸拡張磁束Ψexδを用いて、拡張磁束Ψexの角度δΨexを数式21により演算する。 The angle calculator 32 calculates the angle δ Ψex of the expanded magnetic flux Ψ ex using Equation 21 using the γ-axis expanded magnetic flux Ψ exγ and the δ-axis expanded magnetic flux Ψ exδ .

Figure 0005445892
Figure 0005445892

前述した図5から、拡張磁束の角度δΨexと磁極位置演算誤差θerrとの間には数式22の関係がある。 From FIG. 5 described above, there is a relationship of Formula 22 between the angle δ Ψex of the expanded magnetic flux and the magnetic pole position calculation error θ err .

Figure 0005445892
Figure 0005445892

速度演算器33はPI調節器によって構成されており、数式23を用いて拡張磁束の角度δΨexを増幅することにより速度演算値ωを求める。 The speed calculator 33 is configured by a PI controller, and a speed calculation value ω 1 is obtained by amplifying the expansion magnetic flux angle δ Ψex using Expression 23.

Figure 0005445892
Figure 0005445892

磁極位置演算器34は積分器によって構成されており、前述の数式6を用いて速度演算値ωを積分することにより磁極位置演算値θを求める。 The magnetic pole position calculator 34 is configured by an integrator, and the magnetic pole position calculation value θ 1 is obtained by integrating the speed calculation value ω 1 using the above-described Expression 6.

脱調検出器35は、拡張磁束の角度δΨexが所定のしきい値を超えた場合に脱調を検出し、脱調検出信号をアクティブとする。
数式22に示したように上記角度δΨexと磁極位置演算誤差θerrとは大きさが等しいことから、脱調検出器35により角度δΨexの大きさから脱調を検出できることが明らかである。
The step-out detector 35 detects step-out when the angle δ Ψex of the expanded magnetic flux exceeds a predetermined threshold, and activates the step-out detection signal.
As shown in Expression 22, the angle δ Ψex and the magnetic pole position calculation error θ err are equal in magnitude, so it is clear that the step-out detector 35 can detect the step-out from the magnitude of the angle δ Ψex .

前述した参考形態における脱調検出は、数式2により、振幅が回転子の速度ωにほぼ比例する拡張誘起電圧を用いているため、低速運転時における検出精度は低くなるおそれがある。これに対し、本発明の実施形態では、振幅が回転子の速度によらず一定である拡張磁束を用いているので、低速時にも高精度に脱調を検出することが可能である。
The step-out detection in the reference embodiment described above uses the expansion induced voltage whose amplitude is approximately proportional to the rotor speed ω 1 according to Equation 2, so that the detection accuracy during low-speed operation may be low. On the other hand, in the embodiment of the present invention , since the extended magnetic flux whose amplitude is constant irrespective of the speed of the rotor is used, it is possible to detect the step-out with high accuracy even at a low speed.

本発明の参考形態を示すブロック図である。It is a block diagram which shows the reference form of this invention. 本発明の実施形態を示すブロック図である。Is a block diagram showing an implementation form of the present invention. dq軸とγδ軸との関係を示す図である。It is a figure which shows the relationship between a dq axis | shaft and a (gamma) delta axis | shaft. 数式1、数式2による永久磁石形同期電動機の電圧方程式を示すベクトル図である。It is a vector diagram which shows the voltage equation of the permanent magnet type synchronous motor by Numerical formula 1 and Numerical formula 2. 拡張誘起電圧と拡張磁束との関係を示すベクトル図である。It is a vector diagram which shows the relationship between an expansion induced voltage and an expansion magnetic flux.

符号の説明Explanation of symbols

50:三相交流電源
60:整流回路
70:電力変換器
80:永久磁石形同期電動機
11u:u相電流検出回路
11w:w相電流検出回路
12:入力電圧検出回路
13:PWM回路
14:電流座標変換器
15:電圧座標変換器
16,19a,19b:減算器
17:速度調節器
18:電流指令演算器
20a:γ軸電流調節器
20b:δ軸電流調節器
30:拡張誘起電圧演算器
31:拡張磁束演算器
32:角度演算器
33:速度演算器
34:磁極位置演算器
35:脱調検出器
50: Three-phase AC power supply 60: Rectifier circuit 70: Power converter 80: Permanent magnet synchronous motor 11u: u-phase current detection circuit 11w: w-phase current detection circuit 12: input voltage detection circuit 13: PWM circuit 14: current coordinates Converter 15: Voltage coordinate converters 16, 19a, 19b: Subtractor 17: Speed controller 18: Current command calculator 20a: γ-axis current controller 20b: δ-axis current controller 30: Extended induced voltage calculator 31: Expanded magnetic flux calculator 32: Angle calculator 33: Speed calculator 34: Magnetic pole position calculator 35: Step-out detector

Claims (2)

磁極位置検出器を用いずに演算により求めた回転子の磁極位置に基づいて、電力変換器により永久磁石形同期電動機の電機子電流を制御し、前記電動機のトルク及び速度を制御する制御装置において、
前記電動機の電機子電流、端子電圧及び磁束をベクトルとしてとらえ、
前記電動機の端子電圧相当値、電機子抵抗電圧降下演算値、前記電機子電流の時間微分値に比例する過渡電圧演算値、及び電機子反作用磁束を90度進ませたベクトルと前記電動機の速度演算値との積を用いて拡張磁束を演算する拡張磁束演算手段と、
前記拡張磁束の回転子磁極と並行する成分、及び、前記拡張磁束の回転子磁極と直交する成分から前記拡張磁束の角度を演算する角度演算手段と、
前記拡張磁束の角度から前記電動機の脱調を検出する脱調検出手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In a control device for controlling an armature current of a permanent magnet type synchronous motor by a power converter based on a magnetic pole position of a rotor obtained by calculation without using a magnetic pole position detector, and controlling a torque and a speed of the motor ,
Taking the armature current, terminal voltage and magnetic flux of the motor as vectors,
Terminal voltage equivalent value of the motor, the armature resistance voltage drop calculation value, the speed of the previous SL transient voltage calculation value proportional to the time differential value of the armature current, and a vector which is advanced the armature reaction magnetic flux 90 degrees the motor An expanded magnetic flux calculating means for calculating an expanded magnetic flux using a product with the calculated value ;
An angle calculating means for calculating an angle of the expansion magnetic flux from a component parallel to the rotor magnetic pole of the expansion magnetic flux and a component orthogonal to the rotor magnetic pole of the expansion magnetic flux;
Step-out detection means for detecting step-out of the electric motor from the angle of the expanded magnetic flux;
A control device for a permanent magnet type synchronous motor.
請求項1に記載した永久磁石形同期電動機の制御装置において、
前記拡張磁束から求めた磁極位置を用いて、前記電機子電流の検出値を回転座標系の二軸成分に変換する電流座標変換手段と、
前記二軸成分を前記電機子電流の指令値の二軸成分に一致させるような電圧指令値を生成する電流調節手段と、
前記電圧指令値から前記電力変換器の半導体スイッチング素子に対する駆動信号を生成する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 1,
Current coordinate conversion means for converting the detected value of the armature current into a biaxial component of a rotating coordinate system using the magnetic pole position obtained from the expanded magnetic flux,
Current adjusting means for generating a voltage command value that matches the biaxial component with the biaxial component of the armature current command value;
Means for generating a drive signal for the semiconductor switching element of the power converter from the voltage command value;
A control device for a permanent magnet type synchronous motor.
JP2007117217A 2007-04-26 2007-04-26 Control device for permanent magnet type synchronous motor Active JP5445892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117217A JP5445892B2 (en) 2007-04-26 2007-04-26 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117217A JP5445892B2 (en) 2007-04-26 2007-04-26 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2008278595A JP2008278595A (en) 2008-11-13
JP5445892B2 true JP5445892B2 (en) 2014-03-19

Family

ID=40055907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117217A Active JP5445892B2 (en) 2007-04-26 2007-04-26 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP5445892B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701377B (en) * 2012-09-27 2017-05-31 比亚迪股份有限公司 A kind of step failing out detecting method of synchronous motor
CN103701372B (en) 2012-09-27 2017-07-04 比亚迪股份有限公司 A kind of step failing out detecting method of synchronous motor
JP6082606B2 (en) 2013-01-30 2017-02-15 株式会社日立産機システム Step-out detection method and power conversion device
JP6680183B2 (en) * 2016-03-28 2020-04-15 株式会社豊田自動織機 Inverter control device and vehicle fluid machine
US10277152B2 (en) 2016-03-30 2019-04-30 Canon Kabushiki Kaisha Motor control apparatus, sheet conveying apparatus, image forming apparatus
JP6498227B2 (en) * 2016-03-30 2019-04-10 キヤノン株式会社 Sheet conveying apparatus and image forming apparatus
JP6341950B2 (en) 2016-04-08 2018-06-13 キヤノン株式会社 Sheet conveying apparatus and image forming apparatus
JP6328172B2 (en) 2016-05-31 2018-05-23 キヤノン株式会社 Motor control apparatus, sheet conveying apparatus, and image forming apparatus
JP6838352B2 (en) * 2016-10-28 2021-03-03 コニカミノルタ株式会社 Permanent magnet synchronous motor control device, control method, and image forming device
JP6900444B2 (en) * 2018-04-13 2021-07-07 キヤノン株式会社 Motor control device, sheet transfer device, and image forming device
JP6801065B2 (en) * 2019-09-13 2020-12-16 キヤノン株式会社 Motor control device, sheet transfer device, document reader and image forming device
JP7404040B2 (en) 2019-11-22 2023-12-25 キヤノン株式会社 Motor control device and control method for motor control device
JP7005733B2 (en) * 2020-12-17 2022-01-24 キヤノン株式会社 Motor control device, sheet transfer device, and image forming device
JP7208351B2 (en) * 2020-12-17 2023-01-18 キヤノン株式会社 MOTOR CONTROL DEVICE, SHEET CONVEYING DEVICE, AND IMAGE FORMING APPARATUS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797508B2 (en) * 1997-06-24 2006-07-19 株式会社安川電機 Sensorless speed control method of permanent magnet type synchronous motor and step-out detection method thereof
JP3411878B2 (en) * 2000-03-06 2003-06-03 株式会社日立製作所 Method for estimating rotor position of synchronous motor, control method without position sensor, and control device
JP2003079200A (en) * 2001-09-04 2003-03-14 Hitachi Ltd Motor drive system
JP4425091B2 (en) * 2004-08-25 2010-03-03 三洋電機株式会社 Motor position sensorless control circuit

Also Published As

Publication number Publication date
JP2008278595A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5445892B2 (en) Control device for permanent magnet type synchronous motor
JP5104239B2 (en) Control device for permanent magnet type synchronous motor
KR102108911B1 (en) Drive system and inverter device
JP5223109B2 (en) Control device for permanent magnet type synchronous motor
JP2009142116A (en) Position sensorless controller of permanent magnetic motor
JP5428202B2 (en) Control device for permanent magnet type synchronous motor
JP2014225993A (en) Synchronous machine controller
JP2018007473A (en) Control device for permanent magnet type synchronous motor
JP6473992B2 (en) Motor control device and generator control device
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP2011045185A (en) Control unit of permanent-magnet type synchronous motor
JP5332301B2 (en) Control device for permanent magnet type synchronous motor
JP4984057B2 (en) Control device for permanent magnet type synchronous motor
JP6108109B2 (en) Control device for permanent magnet type synchronous motor
JP6848680B2 (en) Synchronous motor control device
JP6573213B2 (en) Control device for permanent magnet type synchronous motor
JP6497584B2 (en) Control device for permanent magnet type synchronous motor
JP5040605B2 (en) Control device for permanent magnet type synchronous motor
JP5092572B2 (en) Control device for permanent magnet type synchronous motor
JP5456873B1 (en) Synchronous machine controller
JP5333716B2 (en) Control device for permanent magnet type synchronous motor
JP5104217B2 (en) Control device for permanent magnet type synchronous motor
JP5387899B2 (en) Control device for permanent magnet type synchronous motor
JP2011067067A (en) Controller for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5445892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250