JP5092572B2 - Control device for permanent magnet type synchronous motor - Google Patents

Control device for permanent magnet type synchronous motor Download PDF

Info

Publication number
JP5092572B2
JP5092572B2 JP2007164876A JP2007164876A JP5092572B2 JP 5092572 B2 JP5092572 B2 JP 5092572B2 JP 2007164876 A JP2007164876 A JP 2007164876A JP 2007164876 A JP2007164876 A JP 2007164876A JP 5092572 B2 JP5092572 B2 JP 5092572B2
Authority
JP
Japan
Prior art keywords
current
command value
reactive
voltage
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007164876A
Other languages
Japanese (ja)
Other versions
JP2009005513A (en
Inventor
尚史 野村
康 松本
信夫 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007164876A priority Critical patent/JP5092572B2/en
Publication of JP2009005513A publication Critical patent/JP2009005513A/en
Application granted granted Critical
Publication of JP5092572B2 publication Critical patent/JP5092572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、回転子の磁極位置を検出するための位置検出器を持たない永久磁石形同期電動機の制御装置に関するものであり、詳しくは、低速運転時における効率を向上させる技術に関するものである。   The present invention relates to a control device for a permanent magnet type synchronous motor that does not have a position detector for detecting the magnetic pole position of a rotor, and more particularly to a technique for improving efficiency during low-speed operation.

永久磁石形同期電動機の制御装置のコストを低下させるため、回転子の磁極位置を検出する位置検出器を使用しないで運転する、いわゆるセンサレス制御が実用化されている。センサレス制御は、電動機の端子電圧や電機子電流の情報から回転子の磁極位置及び速度を演算し、これらに基づいて電流制御を行うことでトルク制御や速度制御を実現するものである。センサレス制御の一例は、例えば、非特許文献1に記載されている。
しかしながら、非特許文献1に記載されたセンサレス制御は、低速運転時に電機子抵抗の電圧降下や電力変換器の出力電圧誤差等を生じるため、安定性の面で課題がある。
In order to reduce the cost of the control device for the permanent magnet type synchronous motor, so-called sensorless control that operates without using a position detector that detects the magnetic pole position of the rotor has been put into practical use. In the sensorless control, torque control and speed control are realized by calculating the magnetic pole position and speed of the rotor from information on the terminal voltage and armature current of the motor, and performing current control based on these. An example of sensorless control is described in Non-Patent Document 1, for example.
However, the sensorless control described in Non-Patent Document 1 has a problem in terms of stability because it causes a voltage drop of the armature resistance, an output voltage error of the power converter, and the like during low-speed operation.

このため、電機子抵抗の値に依存することなく高精度に永久磁石形同期電動機をセンサレスにて駆動する駆動システムが、特許文献3に開示されている。
この特許文献3に係る駆動システムは、同期電動機に対する電圧指令値及び電流検出値から演算した無効電力実際値と、インバータの出力角周波数指令値及び電流検出値から演算した無効電力推定値と、の偏差をゼロにするようにインバータの出力角周波数を調整することにより、同期電動機の軸誤差を少なくし、電機子抵抗の温度変化の影響を受けずに同期電動機を高精度にセンサレス駆動するものである。
しかし、この駆動システムでは、零速度時に無効電力が常に零になるため、無効電力から磁極位置の情報を検出することができず、極低速時の安定性に問題がある。
For this reason, Patent Document 3 discloses a drive system that drives a permanent magnet type synchronous motor with high accuracy without depending on the value of the armature resistance.
The drive system according to Patent Document 3 includes a reactive power actual value calculated from a voltage command value and a current detection value for a synchronous motor, and a reactive power estimation value calculated from an output angular frequency command value and a current detection value of an inverter. By adjusting the output angular frequency of the inverter to make the deviation zero, the axial error of the synchronous motor is reduced, and the synchronous motor is driven sensorlessly with high accuracy without being affected by the temperature change of the armature resistance. is there.
However, in this drive system, the reactive power is always zero at zero speed, so that information on the magnetic pole position cannot be detected from the reactive power, and there is a problem in stability at extremely low speed.

そこで、特許文献1に記載されているように、低速運転時には電機子電流の振幅を一定にしながら電機子電流の周波数を周波数指令値に一致させて回転磁界を発生させ、同期引き込み運転を行う技術が適用されることがある。このような運転方式を「電流引き込み制御」と呼ぶ。
ところで、電流引き込み制御は、原理的に零速度まで安定運転が可能である半面、負荷の大きさに応じて電機子電流の大きさを制御するのが困難である。このため、安定性を考慮して、アプリケーションにより規定される最大トルクに基づいて電機子電流の大きさを決める必要があり、軽負荷時には電機子電流が大きくなって効率が低下したり、電動機を駆動するインバータの容量が大きくなったりする問題がある。
Therefore, as described in Patent Document 1, a technique for performing synchronous pull-in operation by generating a rotating magnetic field by making the frequency of the armature current coincide with the frequency command value while keeping the amplitude of the armature current constant during low-speed operation. May apply. Such an operation method is called “current draw control”.
By the way, the current drawing control is capable of stable operation up to zero speed in principle, but it is difficult to control the magnitude of the armature current according to the magnitude of the load. Therefore, considering the stability, it is necessary to determine the magnitude of the armature current based on the maximum torque specified by the application.At light loads, the armature current increases and the efficiency decreases. There is a problem that the capacity of the inverter to be driven increases.

このような背景から、近年では、電流引き込み制御時の電機子電流の大きさを負荷に応じて制御する技術が開発されている。
例えば、非特許文献2には、永久磁石形同期電動機の端子電圧と電機子電流とから無効電力と有効電力とを演算し、両者の比が目標値になるように電機子電流の大きさを最適に制御する制御方法が記載されている。
Against this background, in recent years, a technique has been developed that controls the magnitude of the armature current during current drawing control according to the load.
For example, Non-Patent Document 2 calculates reactive power and active power from the terminal voltage and armature current of a permanent magnet synchronous motor, and sets the magnitude of the armature current so that the ratio between the two becomes a target value. A control method for optimal control is described.

また、特許文献2には、回転子永久磁石のN極の位置(d軸)と電機子電流ベクトルとの角度差が負荷の増加関数になる点に着目し、端子電圧と電機子電流とが入力される永久磁石形同期電動機の電圧方程式のモデルから前記角度差を演算し、電機子電流指令値を前記角度差の増加関数として演算する制御装置が記載されている。   Further, in Patent Document 2, focusing on the fact that the angular difference between the position of the N pole (d-axis) of the rotor permanent magnet and the armature current vector becomes an increasing function of the load, the terminal voltage and the armature current are A control device is described in which the angle difference is calculated from a voltage equation model of an input permanent magnet synchronous motor, and an armature current command value is calculated as an increasing function of the angle difference.

田中康司,三木一郎,「拡張誘起電圧を用いた埋込磁石同期電動機の位置センサレス制御」,電気学会論文誌D,Vol.125,No.9,p.833−p.838(2005年)Koji Tanaka and Ichiro Miki, “Position Sensorless Control of Embedded Magnet Synchronous Motor Using Extended Inductive Voltage”, IEEJ Transactions D, Vol.125, No.9, p.833-p.838 (2005) 新中新二,「永久磁石同期モータのセンサレス起動・駆動のための電流比形ベクトル制御法−ミール法に立脚した有効無効電流のフィードバック制御−」,電気学会論文誌D,Vol.126,No.3,p.225−p.236(2006年)Shinji Shinnaka, “Current-ratio vector control method for sensorless start-up and drive of permanent magnet synchronous motors—Feedback control of effective reactive current based on Mir method”, IEEJ Transactions D, Vol.126, No .3, p.225-p.236 (2006) 特開2001−190093号公報(段落[0007]、図7等)JP 2001-190093 (paragraph [0007], FIG. 7 etc.) 特開2001−136775号公報(段落[0038]〜[0063]等)JP 2001-136775 A (paragraphs [0038] to [0063] etc.) 特開2006−197712号公報(段落[0010]〜[0020]、図1等)Japanese Patent Laying-Open No. 2006-197712 (paragraphs [0010] to [0020], FIG. 1 and the like)

ところで、非特許文献2における有効電力や特許文献2における角度差の演算には、永久磁石形同期電動機の電機子抵抗の値を正確に求めることが要求される。しかし、電機子抵抗は電機子巻線の温度により変化するため、非特許文献2や特許文献2に記載された従来技術では、電動機端子電圧に対して電機子抵抗による電圧降下の影響が大きくなる低速時に制御性能が低下する恐れがある。   By the way, the calculation of the active power in Non-Patent Document 2 and the angle difference in Patent Document 2 requires that the value of the armature resistance of the permanent magnet synchronous motor be accurately determined. However, since the armature resistance changes depending on the temperature of the armature winding, in the conventional techniques described in Non-Patent Document 2 and Patent Document 2, the influence of the voltage drop due to the armature resistance on the motor terminal voltage becomes large. There is a risk that the control performance will decrease at low speeds.

そこで、本発明の解決課題は、低速時においても永久磁石形同期電動機を安定して高効率に運転可能とした制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a control device that can operate a permanent magnet type synchronous motor stably and efficiently even at low speeds.

上記課題を解決するため、請求項1記載の永久磁石形同期電動機の制御装置は、永久磁石形同期電動機の電機子電流の大きさを電流指令値に一致させ、かつ、電機子電流の周波数を周波数指令値に一致させるように、電力変換器により前記電動機の端子電圧を制御するための制御装置において、
前記電流指令値を生成する電流指令演算手段は、
前記電動機の端子電圧と電機子電流とから無効電力を演算する無効電力演算手段と、前記電動機の電機子電流と周波数指令値とから無効電力指令値を演算する無効電力指令演算手段と、前記無効電力指令値と無効電力演算値との偏差を増幅した信号を用いて前記電流指令値を生成する手段と、を備えたものである。
In order to solve the above-mentioned problem, the control device for a permanent magnet type synchronous motor according to claim 1 makes the magnitude of the armature current of the permanent magnet type synchronous motor coincide with the current command value, and sets the frequency of the armature current. In a control device for controlling the terminal voltage of the motor by a power converter so as to match the frequency command value,
Current command calculation means for generating the current command value,
Reactive power calculating means for calculating reactive power from the terminal voltage and armature current of the motor, reactive power command calculating means for calculating reactive power command value from the armature current of the motor and frequency command value, and the reactive power Means for generating the current command value using a signal obtained by amplifying the deviation between the power command value and the reactive power calculation value.

請求項2記載の永久磁石形同期電動機の制御装置は、前記電流指令演算手段の構成が請求項1とは異なっている。
すなわち、本発明の電流指令演算手段は、前記電動機の端子電圧と電機子電流とから電機子電流と直交する電圧成分である無効電圧を演算する無効電圧演算手段と、前記電動機の電機子電流と周波数指令値とから無効電圧指令値を演算する無効電圧指令演算手段と、前記無効電圧指令値と無効電圧演算値との偏差を増幅した信号を用いて前記電流指令値を生成する手段と、を備えたものである。
According to a second aspect of the present invention, there is provided a control device for the permanent magnet type synchronous motor, wherein the configuration of the current command calculating means is different from that of the first aspect.
That is, the current command calculation means of the present invention includes a reactive voltage calculation means for calculating a reactive voltage that is a voltage component orthogonal to the armature current from the terminal voltage and the armature current of the motor, and the armature current of the motor. Reactive voltage command calculation means for calculating a reactive voltage command value from a frequency command value; and means for generating the current command value using a signal obtained by amplifying a deviation between the reactive voltage command value and the reactive voltage calculation value. It is provided.

請求項3記載の永久磁石形同期電動機の制御装置は、前記電流指令演算手段の構成が請求項1,2とは異なっている。
すなわち、本発明の電流指令演算手段は、前記電動機の端子電圧、電機子電流、及び、周波数指令値から電機子電流と平行成分の磁束である無効磁束を演算する無効磁束演算手段と、
前記電動機の電機子電流から無効磁束指令値を演算する無効磁束指令演算手段と、
前記無効磁束指令値と無効磁束演算値との偏差を増幅した信号を用いて前記電流指令値を生成する手段と、を備えたものである。
According to a third aspect of the present invention, there is provided a control device for the permanent magnet type synchronous motor, wherein the configuration of the current command calculation means is different from the first and second aspects.
That is, the current command calculation means of the present invention is a reactive magnetic flux calculation means for calculating a reactive magnetic flux that is a magnetic flux parallel to the armature current from the terminal voltage, armature current, and frequency command value of the motor,
A reactive magnetic flux command calculating means for calculating a reactive magnetic flux command value from the armature current of the motor;
Means for generating the current command value using a signal obtained by amplifying the deviation between the reactive magnetic flux command value and the reactive magnetic flux calculation value.

本発明によれば、無効電力偏差、無効電圧偏差または無効磁束偏差を用いて、原理的に電機子抵抗の影響を受けずに電流指令値を演算することができると共に、軽負荷時の電流増加を防いで効率の低下を防止することができる。
また、低速時にも制御性能が低下しにくく、永久磁石形同期電動機を安定して駆動することが可能である。
According to the present invention, it is possible to calculate a current command value without being influenced by armature resistance in principle using a reactive power deviation, a reactive voltage deviation, or a reactive magnetic flux deviation, and to increase a current at a light load. Can be prevented to prevent the efficiency from decreasing.
In addition, the control performance is hardly deteriorated even at a low speed, and the permanent magnet type synchronous motor can be driven stably.

以下、図に沿って本発明の実施形態を説明する。
まず、図1はこの実施形態に係る制御装置を主回路と共に示したブロック図である。図1の主回路において、50は三相交流電源、60は三相交流電圧を直流電圧に変換する整流回路、70は直流電圧を所定の大きさ及び周波数の交流電圧に変換するインバータ等の電力変換器、80は電力変換器70の出力電圧が供給される永久磁石形同期電動機である。
なお、電動機80は磁極位置検出器を備えていない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a block diagram showing a control device according to this embodiment together with a main circuit. In the main circuit of FIG. 1, 50 is a three-phase AC power source, 60 is a rectifier circuit that converts a three-phase AC voltage into a DC voltage, and 70 is an electric power such as an inverter that converts the DC voltage into an AC voltage of a predetermined magnitude and frequency. A converter 80 is a permanent magnet synchronous motor to which the output voltage of the power converter 70 is supplied.
The electric motor 80 does not include a magnetic pole position detector.

始めに、電動機80の電機子電流の大きさを電流指令値に一致させ、かつ、電機子電流の周波数を周波数指令値に一致させるように電力変換器70を制御する方法について説明する。
まず、制御演算は、角周波数ωで回転する直交座標(γ−δ軸)上で行う。図5は、このγ−δ軸及びd−q軸の定義を示す図であり、θerrはγ−δ軸とd−q軸との角度差である。電動機80の永久磁石回転子による磁束軸と平行な軸をd軸、このd軸に直交する軸をq軸とする。なお、d−q軸すなわち回転子は角周波数ωで回転するものとする。
First, a method for controlling the power converter 70 so that the magnitude of the armature current of the motor 80 matches the current command value and the frequency of the armature current matches the frequency command value will be described.
First, the control calculation is performed on orthogonal coordinates (γ-δ axes) rotating at an angular frequency ω 1 . FIG. 5 is a diagram showing definitions of the γ-δ axis and the dq axis, and θ err is an angle difference between the γ-δ axis and the dq axis. An axis parallel to the magnetic flux axis by the permanent magnet rotor of the electric motor 80 is d-axis, and an axis orthogonal to the d-axis is q-axis. Incidentally, d-q axis or rotor shall be rotated at the angular frequency omega r.

電流指令演算器18は、周波数指令値ω(=ω)、γ軸,δ軸電流検出値iγ,iδ、及び、γ軸,δ軸電圧指令値vγ ,vδ から、γ軸,δ軸電流指令値iγ ,iδ を演算する。電流指令演算器18による演算の詳細については、後述する。 The current command calculator 18 calculates the frequency command value ω * (= ω 1 ), the γ-axis and δ-axis current detection values i γ and i δ , and the γ-axis and δ-axis voltage command values v γ * and v δ *. , Γ-axis, δ-axis current command values i γ * , i δ * are calculated. Details of the calculation by the current command calculator 18 will be described later.

電気角演算器12は、周波数指令値ωを積分して電気角指令値θを演算する。
電動機80の入力側のu相電流検出器11u及びw相電流検出器11wによってそれぞれ検出した相電流検出値i,iは、電流座標変換器14により、電気角指令値θを用いてγ軸,δ軸電流検出値iγ,iδにそれぞれ座標変換される。
The electrical angle calculator 12 calculates the electrical angle command value θ 1 by integrating the frequency command value ω 1 .
The phase current detection values i u and i w detected by the u-phase current detector 11 u and the w-phase current detector 11 w on the input side of the electric motor 80 are obtained by the current coordinate converter 14 using the electrical angle command value θ 1. Coordinates are converted to γ-axis and δ-axis current detection values i γ and i δ , respectively.

電流指令演算器18から出力されたγ軸電流指令値iγ とγ軸電流検出値iγとの偏差が減算器19aにより演算され、この偏差をγ軸電流調節器20aにより増幅してγ軸電圧指令値vγ を演算する。一方、δ軸電流指令値iδ とδ軸電流検出値iδとの偏差が減算器19bにより演算され、この偏差をδ軸電流調節器20bにより増幅してδ軸電圧指令値vδ が演算される。
これらのγ軸,δ軸電圧指令値vγ ,vδ は、電圧座標変換器15により、電気角指令値θを用いて相電圧指令値v ,v ,v に変換される。
The deviation between the γ-axis current command value i γ * output from the current command calculator 18 and the detected γ-axis current value i γ is calculated by the subtractor 19a, and this deviation is amplified by the γ-axis current regulator 20a to be γ The shaft voltage command value * is calculated. On the other hand, the deviation between the δ-axis current command value i δ * and the detected δ-axis current value i δ is calculated by the subtractor 19b, and this deviation is amplified by the δ-axis current regulator 20b to be amplified by the δ-axis voltage command value v δ *. Is calculated.
These γ-axis and δ-axis voltage command values v γ * and v δ * are converted into phase voltage command values v u * , v v * and v w * by the voltage coordinate converter 15 using the electrical angle command value θ 1 . Is converted to

PWM回路13は、電力変換器70の出力電圧を前記相電圧指令値v ,v ,v に制御するためのゲート信号を生成する。
電力変換器70はゲート信号に基づいて内部の半導体スイッチング素子をオンオフし、電動機80の端子電圧を相電圧指令値v ,v ,v に制御する。
The PWM circuit 13 generates a gate signal for controlling the output voltage of the power converter 70 to the phase voltage command values v u * , v v * , v w * .
The power converter 70 turns on and off the internal semiconductor switching element based on the gate signal, and controls the terminal voltage of the electric motor 80 to the phase voltage command values v u * , v v * , v w * .

次に、前記電流指令演算器18の詳細な構成及び動作を説明する。
まず、δ軸電流iδを零に制御した場合、無効電力Qは数式1によって表される。すなわち、無効電力Qは、角度差θerr及びγ軸電流iγの関数である。
Next, the detailed configuration and operation of the current command calculator 18 will be described.
First, when the δ-axis current i δ is controlled to zero, the reactive power Q is expressed by Equation 1. That is, the reactive power Q is a function of the angle difference θ err and the γ-axis current i γ .

Figure 0005092572
Figure 0005092572

表面磁石構造の永久磁石形同期電動機の場合、角度差θerrを90〔deg〕に制御すればγ軸電流を最小化することができる。一方、埋込磁石構造の永久磁石形同期電動機の場合には、角度差θerrを90〜135〔deg〕の所定の動作点に制御すれば、γ軸電流を最小化することができる。 In the case of a permanent magnet type synchronous motor having a surface magnet structure, the γ-axis current can be minimized by controlling the angle difference θ err to 90 [deg]. On the other hand, in the case of a permanent magnet type synchronous motor having an embedded magnet structure, the γ-axis current can be minimized by controlling the angle difference θ err to a predetermined operating point of 90 to 135 [deg].

このため、永久磁石形同期電動機の構造に応じて、無効電力Qを、γ軸電流が最小となる角度差θerrの値を数式1に代入して求めた値に制御すれば、γ軸電流は最小になり、電機子抵抗による影響を低減することができる。ただし、実際には、安定性を考慮して、無効電力Qが前述した電流最小条件時の値よりもやや大きい値になるようにγ軸電流を制御するのがよい。
なお、数式1には電機子抵抗の値が含まれていない。すなわち、本実施形態によれば電機子抵抗の影響を受けることがなく、低速時においても性能が低下するおそれはない。
For this reason, if the reactive power Q is controlled to a value obtained by substituting the value of the angle difference θ err that minimizes the γ-axis current into Equation 1, according to the structure of the permanent magnet synchronous motor, the γ-axis current Can be minimized and the influence of the armature resistance can be reduced. However, in practice, in consideration of stability, it is preferable to control the γ-axis current so that the reactive power Q is slightly larger than the value under the aforementioned minimum current condition.
Note that Formula 1 does not include the value of the armature resistance. That is, according to the present embodiment, there is no influence of the armature resistance, and there is no possibility that the performance is deteriorated even at a low speed.

図2は、図1における電流指令演算器18の第1実施例を示すブロック図である。なお、図2では、電流指令演算器を符号181にて示している。
図2において、無効電力指令演算器101は、数式2により無効電力指令値Qを演算する。
FIG. 2 is a block diagram showing a first embodiment of the current command calculator 18 in FIG. In FIG. 2, the current command calculator is indicated by reference numeral 181.
In FIG. 2, the reactive power command calculator 101 calculates the reactive power command value Q * according to Equation 2.

Figure 0005092572
Figure 0005092572

この数式2は、iδを零とすれば前記数式1に相当しており、数式2における無効電力指令演算係数KQ1,KQ2は、KQ1=ψcosθerr,KQ2=L+(L−L)cosθerrである。
一方、無効電力演算器102は、数式3により無効電力Qを演算する。
This equation 2 corresponds to the equation 1 when i δ is zero, and the reactive power command calculation coefficients K Q1 and K Q2 in the equation 2 are K Q1 = ψ m cos θ err , K Q2 = L q + (L d −L q ) cos 2 θ err .
On the other hand, the reactive power calculator 102 calculates the reactive power Q using Equation 3.

Figure 0005092572
Figure 0005092572

無効電力指令値Qと無効電力演算値Qとの偏差が減算器103により演算され、この偏差は積分調節器104により増幅される。また、もとの電流指令値Ia0 と積分調節器104の出力とが加算器105により加算され、その結果がγ軸電流指令値iγ として図1の減算器19aに与えられる。なお、δ軸電流指令値iδ は零に制御される。 The deviation between the reactive power command value Q * and the reactive power calculation value Q is calculated by the subtractor 103, and this deviation is amplified by the integral controller 104. Further, the original current command value I a0 * and the output of the integral controller 104 are added by the adder 105, and the result is given to the subtracter 19a in FIG. 1 as the γ-axis current command value i γ * . The δ-axis current command value i δ * is controlled to zero.

これにより、電流指令演算器181では、電動機80の電機子電流と周波数指令値とから演算した無効電力指令値Qに無効電力Qが一致するようにγ軸電流指令値iγ が演算されることになり、原理的に電機子抵抗の影響を受けない無効電力に基づく制御が実行される。 As a result, the current command calculator 181 calculates the γ-axis current command value i γ * so that the reactive power Q matches the reactive power command value Q * calculated from the armature current of the motor 80 and the frequency command value. Therefore, in principle, control based on reactive power that is not affected by armature resistance is executed.

次に、図3は電流指令演算器の第2実施例を示すブロック図である。なお、図3では、電流指令演算器を符号182にて示している。
δ軸電流を零に制御した場合、端子電圧成分のうち、電機子電流と直交する成分として定義される無効電圧vは、数式4によって表される。
FIG. 3 is a block diagram showing a second embodiment of the current command calculator. In FIG. 3, the current command calculator is indicated by reference numeral 182.
When the δ-axis current is controlled to be zero, the reactive voltage v Q defined as a component orthogonal to the armature current among the terminal voltage components is expressed by Equation 4.

Figure 0005092572
Figure 0005092572

数式4に示した無効電圧vの関係式は、数式1に示した無効電力Qの関係式と比例関係にある。このため、第1実施例と同様に、無効電圧vを、γ軸電流が最小となる角度差θerrの値を数式4に代入して求めた値に制御すれば、γ軸電流の最小化が可能になる。この場合も、安定性を考慮して、無効電圧vが前述した電流最小条件時の値よりもやや大きい値になるようにγ軸電流を制御するのがよい。 Relationship of reactive voltage v Q shown in Equation 4, is proportional to the relation of the reactive power Q as shown in Equation 1. Therefore, as in the first embodiment, if the reactive voltage v Q is controlled to a value obtained by substituting the value of the angle difference θ err at which the γ-axis current is minimized into Equation 4, the minimum γ-axis current is obtained. Can be realized. Again, in view of the stability, it is preferable to control the γ-axis current to be slightly larger than the value when the current minimum condition that disables voltage v Q is as described above.

図3において、無効電圧指令演算器201は、数式5により無効電圧指令値v を演算する。 In FIG. 3, the reactive voltage command calculator 201 calculates the reactive voltage command value v Q * using Equation 5.

Figure 0005092572
Figure 0005092572

この数式5は、iδを零とすれば前記数式4に相当しており、数式5における無効電圧指令演算係数KvQ1,KvQ2は、KvQ1=ψcosθerr,KvQ2=L+(L−L)cosθerrである。
一方、無効電圧演算器202は、無効電圧vを数式6により演算する。
The equation 5 corresponds to the equation 4 when i δ is zero, and the reactive voltage command calculation coefficients K vQ1 and K vQ2 in the equation 5 are K vQ1 = ψ m cos θ err , K vQ2 = L q + (L d −L q ) cos 2 θ err .
On the other hand, reactive voltage calculator 202 calculates the equation 6 invalid voltage v Q.

Figure 0005092572
Figure 0005092572

無効電圧指令値v と無効電圧演算値vとの偏差が減算器203により演算され、この偏差は積分調節器204により増幅される。また、電流指令値Ia0 と積分調節器204の出力とが加算器205により加算され、その結果がγ軸電流指令値iγ として図1の減算器19aに与えられる。なお、δ軸電流指令値iδ は零に制御される。 The deviation between the reactive voltage command value v Q * and the reactive voltage calculation value v Q is calculated by the subtractor 203, and this deviation is amplified by the integral controller 204. Further, the current command value I a0 * and the output of the integral controller 204 are added by the adder 205, and the result is given to the subtracter 19a in FIG. 1 as the γ-axis current command value i γ * . The δ-axis current command value i δ * is controlled to zero.

これにより、図1の電流指令演算器182では、電動機80の電機子電流と周波数指令値とから演算した無効電圧指令値v に無効電圧vが一致するようにγ軸電流指令値iγ が演算されることになり、第1実施例と同様に、原理的に電機子抵抗の影響を受けない制御が実行される。 As a result, in the current command calculator 182 of FIG. 1, the γ-axis current command value i so that the reactive voltage v Q matches the reactive voltage command value v Q * calculated from the armature current of the motor 80 and the frequency command value. γ * is calculated, and control that is not influenced by the armature resistance in principle is executed as in the first embodiment.

次いで、図4は電流指令演算器の第3実施例を示すブロック図である。なお、図4においては、電流指令演算器を符号183にて示している。
δ軸電流を零に制御した場合、鎖交磁束の成分のうち、電機子電流と平行な成分として定義される無効磁束ψは、数式7によって表される。
FIG. 4 is a block diagram showing a third embodiment of the current command calculator. In FIG. 4, the current command calculator is indicated by reference numeral 183.
When the δ-axis current is controlled to be zero, the reactive magnetic flux ψ Q defined as a component parallel to the armature current among the components of the interlinkage magnetic flux is expressed by Equation 7.

Figure 0005092572
Figure 0005092572

数式7に示した無効磁束ψの関係式は、数式1に示した無効電力Qの関係式と比例関係にある。このため、第1実施例と同様に、無効磁束ψを、γ軸電流が最小となる角度差θerrの値を数式7に代入して求めた値に制御すれば、γ軸電流の最小化が可能になる。この場合も、安定性を考慮して、無効磁束ψが前述した電流最小条件時の値よりもやや大きい値になるようにγ軸電流を制御するのがよい。 Relationship of invalid magnetic flux [psi Q shown in Equation 7, is proportional to the relation of the reactive power Q as shown in Equation 1. Therefore, as in the first embodiment, if the reactive magnetic flux ψ Q is controlled to a value obtained by substituting the value of the angle difference θ err that minimizes the γ-axis current into Equation 7, the minimum of the γ-axis current is reduced. Can be realized. Again, in view of the stability, it is preferable to control the γ-axis current to be slightly larger than the value when the current minimum condition that disables flux [psi Q is as described above.

図4において、無効磁束指令演算器301は、数式8により無効磁束指令値ψ を演算する。 In FIG. 4, a reactive magnetic flux command calculator 301 calculates a reactive magnetic flux command value ψ Q * using Equation 8.

Figure 0005092572
Figure 0005092572

この数式8は、iδを零とすれば前記数式7に相当しており、数式8における無効磁束指令演算係数KψQ1,KψQ2は、KψQ1=ψcosθerr,KψQ2=L+(L−L)cosθerrである。
無効磁束演算器302は、無効磁束ψを数式9により演算する。
The equation 8 corresponds to the equation 7 when i δ is zero, and the reactive magnetic flux command calculation coefficients K ψQ1 and K ψQ2 in the equation 8 are K ψQ1 = ψ m cosθ err , K ψQ2 = L q + (L d −L q ) cos 2 θ err .
Invalid flux calculator 302 calculates the equation (9) to disable flux [psi Q.

Figure 0005092572
Figure 0005092572

無効磁束指令値ψ と無効磁束演算値ψとの偏差が減算器303により演算され、この偏差は積分調節器304により増幅される。もとの電流指令値Ia0 と積分調節器304の出力とが加算器305により加算され、その結果がγ軸電流指令値iγ として図1の減算器19aに与えられる。なお、δ軸電流指令値iδ は零に制御される。 The deviation between the reactive magnetic flux command value ψ Q * and the reactive magnetic flux calculation value ψ Q is calculated by the subtractor 303, and this deviation is amplified by the integral controller 304. The original current command value I a0 * and the output of the integral controller 304 are added by the adder 305, and the result is given to the subtracter 19a in FIG. 1 as the γ-axis current command value i γ * . The δ-axis current command value i δ * is controlled to zero.

本実施例において、図1の電流指令演算器182では、電動機80の電機子電流から演算した無効磁束指令値ψ に無効磁束ψが一致するようにγ軸電流指令値iγ が演算されることになり、第1,第2実施例と同様に、原理的に電機子抵抗の影響を受けない制御が実行される。 In the present embodiment, in the current command calculator 182 of FIG. 1, the γ-axis current command value i γ * is set so that the reactive magnetic flux ψ Q * matches the reactive magnetic flux command value ψ Q * calculated from the armature current of the motor 80. As in the first and second embodiments, in principle, control that is not affected by the armature resistance is executed.

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 電流指令演算器の第1実施例を示すブロック図である。It is a block diagram which shows the 1st Example of a current command calculator. 電流指令演算器の第2実施例を示すブロック図である。It is a block diagram which shows the 2nd Example of an electric current instruction | command calculator. 電流指令演算器の第3実施例を示すブロック図である。It is a block diagram which shows the 3rd Example of an electric current command calculating unit. d−q軸及びγ−δ軸の定義を示す図である。It is a figure which shows the definition of dq axis | shaft and (gamma) -delta axis | shaft.

符号の説明Explanation of symbols

50 三相交流電源
60 整流回路
70 電力変換器
80 永久磁石形同期電動機
11u u相電流検出回路
11w w相電流検出回路
12 電気角演算器
13 PWM回路
14 電流座標変換器
15 電圧座標変換器
18,181,182,183 電流指令演算器
19a,19b 減算器
20a γ軸電流調節器
20b δ軸電流調節器
101 無効電力指令演算器
102 無効電力演算器
103,203,303 減算器
104,204,304 積分調節器
105,205,305 加算器
201 無効電圧指令演算器
202 無効電圧演算器
301 無効磁束指令演算器
302 無効磁束演算器
50 three-phase AC power supply 60 rectifier circuit 70 power converter 80 permanent magnet type synchronous motor 11u u-phase current detection circuit 11w w-phase current detection circuit 12 electrical angle calculator 13 PWM circuit 14 current coordinate converter 15 voltage coordinate converter 18, 181, 182, 183 Current command calculators 19a, 19b Subtractor 20a γ-axis current regulator 20b δ-axis current regulator 101 Reactive power command calculator 102 Reactive power calculators 103, 203, 303 Subtractors 104, 204, 304 Integration Controllers 105, 205, 305 Adder 201 Reactive voltage command calculator 202 Reactive voltage calculator 301 Reactive magnetic flux command calculator 302 Reactive magnetic flux calculator

Claims (3)

永久磁石形同期電動機の電機子電流の大きさを電流指令値に一致させ、かつ、電機子電流の周波数を周波数指令値に一致させるように、電力変換器により前記電動機の端子電圧を制御するための制御装置において、
前記電流指令値を生成する電流指令演算手段は、
前記電動機の端子電圧と電機子電流とから無効電力を演算する無効電力演算手段と、
前記電動機の電機子電流と周波数指令値とから無効電力指令値を演算する無効電力指令演算手段と、
前記無効電力指令値と無効電力演算値との偏差を増幅した信号を用いて前記電流指令値を生成する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In order to control the terminal voltage of the motor by the power converter so that the magnitude of the armature current of the permanent magnet type synchronous motor matches the current command value and the frequency of the armature current matches the frequency command value In the control device of
Current command calculation means for generating the current command value,
Reactive power calculation means for calculating reactive power from the terminal voltage and armature current of the motor;
Reactive power command calculation means for calculating a reactive power command value from the armature current of the motor and the frequency command value;
Means for generating the current command value using a signal obtained by amplifying a deviation between the reactive power command value and the reactive power calculation value;
A control device for a permanent magnet type synchronous motor.
永久磁石形同期電動機の電機子電流の大きさを電流指令値に一致させ、かつ、電機子電流の周波数を周波数指令値に一致させるように、電力変換器により前記電動機の端子電圧を制御するための制御装置において、
前記電流指令値を生成する電流指令演算手段は、
前記電動機の端子電圧と電機子電流とから電機子電流と直交する電圧成分である無効電圧を演算する無効電圧演算手段と、
前記電動機の電機子電流と周波数指令値とから無効電圧指令値を演算する無効電圧指令演算手段と、
前記無効電圧指令値と無効電圧演算値との偏差を増幅した信号を用いて前記電流指令値を生成する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In order to control the terminal voltage of the motor by the power converter so that the magnitude of the armature current of the permanent magnet type synchronous motor matches the current command value and the frequency of the armature current matches the frequency command value In the control device of
Current command calculation means for generating the current command value,
Reactive voltage calculation means for calculating a reactive voltage that is a voltage component orthogonal to the armature current from the terminal voltage and the armature current of the motor;
Reactive voltage command calculation means for calculating a reactive voltage command value from the armature current of the motor and the frequency command value;
Means for generating the current command value using a signal obtained by amplifying a deviation between the reactive voltage command value and the reactive voltage calculation value;
A control device for a permanent magnet type synchronous motor.
永久磁石形同期電動機の電機子電流の大きさを電流指令値に一致させ、かつ、電機子電流の周波数を周波数指令値に一致させるように、電力変換器により前記電動機の端子電圧を制御するための制御装置において、
前記電流指令値を生成する電流指令演算手段は、
前記電動機の端子電圧、電機子電流、及び、周波数指令値から電機子電流と平行成分の磁束である無効磁束を演算する無効磁束演算手段と、
前記電動機の電機子電流から無効磁束指令値を演算する無効磁束指令演算手段と、
前記無効磁束指令値と無効磁束演算値との偏差を増幅した信号を用いて前記電流指令値を生成する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In order to control the terminal voltage of the motor by the power converter so that the magnitude of the armature current of the permanent magnet type synchronous motor matches the current command value and the frequency of the armature current matches the frequency command value In the control device of
Current command calculation means for generating the current command value,
A reactive magnetic flux calculating means for calculating a reactive magnetic flux that is a magnetic flux parallel to the armature current from the terminal voltage of the motor, the armature current, and the frequency command value;
A reactive magnetic flux command calculating means for calculating a reactive magnetic flux command value from the armature current of the motor;
Means for generating the current command value using a signal obtained by amplifying a deviation between the reactive magnetic flux command value and the reactive magnetic flux calculation value;
A control device for a permanent magnet type synchronous motor.
JP2007164876A 2007-06-22 2007-06-22 Control device for permanent magnet type synchronous motor Active JP5092572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164876A JP5092572B2 (en) 2007-06-22 2007-06-22 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164876A JP5092572B2 (en) 2007-06-22 2007-06-22 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2009005513A JP2009005513A (en) 2009-01-08
JP5092572B2 true JP5092572B2 (en) 2012-12-05

Family

ID=40321291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164876A Active JP5092572B2 (en) 2007-06-22 2007-06-22 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP5092572B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549283B1 (en) * 2011-10-12 2015-09-01 엘에스산전 주식회사 Parameter estimating apparatus for permanent magnet synchronous motor driving system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680618B2 (en) * 1999-03-10 2005-08-10 富士電機機器制御株式会社 Control device for permanent magnet type synchronous motor
JP2001190093A (en) * 1999-10-29 2001-07-10 Fuji Electric Co Ltd Control device of print magnet type synchronous motor
JP2001169598A (en) * 1999-12-07 2001-06-22 Toshiba Corp Control device of synchronous motor

Also Published As

Publication number Publication date
JP2009005513A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP6868772B2 (en) Motor control device and motor control method
JP5445892B2 (en) Control device for permanent magnet type synchronous motor
JP6367332B2 (en) Inverter control device and motor drive system
WO2017033508A1 (en) Drive system and inverter device
JP2009038921A (en) Sensorless controller for brushless motor
JP2009290929A (en) Controller for permanent magnet type synchronous motor
JP2002095300A (en) Method of controlling permanent magnet synchronous motor
JP6414771B2 (en) Motor control device and motor control method
JP2007135345A (en) Magnet motor controller
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP6031969B2 (en) Motor drive device
JP4667741B2 (en) Induction motor control device
JP5092572B2 (en) Control device for permanent magnet type synchronous motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP6590196B2 (en) Power converter
JP2011067066A (en) Controller for permanent magnet type synchronous motor
JP6108109B2 (en) Control device for permanent magnet type synchronous motor
JP5862690B2 (en) Control device for motor drive device and motor drive system
JP2009278692A (en) Controller of permanent magnet synchronous motor
JP2009268183A (en) Drive apparatus for three-phase ac motor
JP4987032B2 (en) Rotor angle estimation device
JP6497584B2 (en) Control device for permanent magnet type synchronous motor
JP5862691B2 (en) Control device for motor drive device and motor drive system
JP7449204B2 (en) power converter
JP5040605B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5092572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250