JP2002095300A - Method of controlling permanent magnet synchronous motor - Google Patents

Method of controlling permanent magnet synchronous motor

Info

Publication number
JP2002095300A
JP2002095300A JP2000282785A JP2000282785A JP2002095300A JP 2002095300 A JP2002095300 A JP 2002095300A JP 2000282785 A JP2000282785 A JP 2000282785A JP 2000282785 A JP2000282785 A JP 2000282785A JP 2002095300 A JP2002095300 A JP 2002095300A
Authority
JP
Japan
Prior art keywords
axis
current
command value
motor
axis current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000282785A
Other languages
Japanese (ja)
Inventor
Takayuki Mizuno
孝行 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2000282785A priority Critical patent/JP2002095300A/en
Publication of JP2002095300A publication Critical patent/JP2002095300A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control a rather strong field current (d-axis current Id) to a optimum value so that the voltage may be constant even it the power of the magnet of a permanent synchronous motor (PM motor) changes by temperature. SOLUTION: A d-axis current command Id* is calculated by d-axis current command Iq*, rotational speed ω, etc., the current deviation between Iq* and Id* and detected currents Iq and Id are PI-computed with a current controller 22. Voltage commands Vd* and Vq* are made as three-phase voltage commands with a coordinate converter 23. A PI motor 1 is controlled by field weakening current by inverter 24. A temperature detector 7 is embedded in the winding of the PM motor 1, and the temperature Tmg of the magnet is indirectly detected. The number ϕm of interlinked magnetic fluxes of winding is obtained using an interlinked magnetic flux table 12 to temperature, ϕm, Iq*, ω, etc., are taken in an Id computer 14a, and a d-axis current command Id* which can keep the voltage constant even if ϕm changes is computed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石同期電動
機の端子電圧一定に制御する永久磁石同期電動機の制御
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet synchronous motor control method for controlling a terminal voltage of a permanent magnet synchronous motor to be constant.

【0002】[0002]

【従来の技術】インバータで駆動される永久磁石同期電
動機(以下、PMモータという)は、ACサーボモータ
をはじめ、最近では高効率モータとして汎用的に用いら
れるようになった。特に永久磁石を回転子内部に埋め込
んだ埋込磁石形PMモータ(以下、IPMモータとい
う)は弱め界磁制御が行いやすく、これを利用した定出
力運転も盛んに行われている。PMモータの弱め界磁制
御は、q軸電流Iqに加え、d軸電流Idを流すことに
よって永久磁石の磁束を等価的に低減して、モータの回
転速度増加に対して端子電圧を一定に保ち、定出力運転
範囲を拡大するものである。
2. Description of the Related Art Permanent magnet synchronous motors (hereinafter referred to as PM motors) driven by inverters have recently been widely used as high-efficiency motors such as AC servomotors. In particular, an embedded magnet type PM motor (hereinafter, referred to as an IPM motor) in which a permanent magnet is embedded in a rotor is easy to perform a field weakening control, and a constant output operation using the same is actively performed. In the field weakening control of the PM motor, the flux of the permanent magnet is equivalently reduced by flowing the d-axis current Id in addition to the q-axis current Iq, and the terminal voltage is kept constant with the increase of the motor rotation speed. This expands the output operation range.

【0003】図6に従来のPMモータの制御ブロック図
を示す。同図に示すように、インバータ24からPMモ
ータ1に三相電流を供給することによりPMモータ1が
回転する。位置検出器2はPMモータ1の回転子と共に
回転して信号を出力し、位置検出部3は位置検出器2の
信号を基にPMモータの回転子位置角θを演算し、速度
検出部4は同時に回転角速度(電源角周波数)ωを演算
する。電流検出部5及び6はインバータ出力電流のU相
及びW相の電流検出値Iu及びIwを求める。
FIG. 6 shows a control block diagram of a conventional PM motor. As shown in the figure, the PM motor 1 rotates by supplying a three-phase current from the inverter 24 to the PM motor 1. The position detector 2 rotates with the rotor of the PM motor 1 and outputs a signal. The position detector 3 calculates the rotor position angle θ of the PM motor based on the signal of the position detector 2, and outputs a signal. Calculates the rotational angular velocity (power supply angular frequency) ω at the same time. The current detectors 5 and 6 determine U-phase and W-phase current detection values Iu and Iw of the inverter output current.

【0004】座標変換部21は、電流検出値Iu,Iw
からV相電流検出値Ivを求め、更にこの三相電流検出
値Iu,Iv,Iwを三相/二相変換し、位相θを考慮
して回転座標系のq軸電流値Iq及びd軸電流値Idを
求め、電流制御部22はq軸電流指令値Iq*及びd軸
電流指令値Id*と 座標変換部21から出力されるフ
ィードバックのq軸電流値Iq及びd軸電流値Idとの
偏差を比例積分演算することにより、回転座標系のq軸
電圧指令値Vq*及びd軸電圧指令値Vdを求める。
The coordinate conversion unit 21 detects current detection values Iu, Iw
, A three-phase / two-phase conversion of the three-phase current detection values Iu, Iv, and Iw, and taking the phase θ into consideration, the q-axis current value Iq and the d-axis current of the rotating coordinate system. The current control unit 22 calculates the deviation between the q-axis current command value Iq * and the d-axis current command value Id * and the feedback q-axis current value Iq and the d-axis current value Id output from the coordinate conversion unit 21. Is calculated by the proportional integral calculation to obtain the q-axis voltage command value Vq * and the d-axis voltage command value Vd of the rotating coordinate system.

【0005】また、座標変換部23は、この回転座標系
の電圧指令値Vd*及びVq*を座標変換して、静止座
標系の三相電圧指令値Vu*,Vv*を求め、インバー
タ24はこの三相電圧指令値Vu*,Vv*を基にPM
モータ1に出力する実電圧を制御する。これによりイン
バータ24からPMモータ1に三相電力が供給される。
A coordinate conversion unit 23 performs coordinate conversion of the voltage command values Vd * and Vq * of the rotating coordinate system to obtain three-phase voltage command values Vu * and Vv * of the stationary coordinate system. PM based on the three-phase voltage command values Vu * and Vv *
The actual voltage output to the motor 1 is controlled. Thus, three-phase power is supplied from the inverter 24 to the PM motor 1.

【0006】この制御方式では、q軸電流指令演算部1
1でトルク指令T*に対応したq軸電流指令値Iq*を
求め、d軸電流司令演算部14でq軸電流指令値Iq*
を基に電圧を所定の値にするためのd軸電流指令値Id
*を求め、上記電流制御部22に入力する電流指令値I
q*、Id*としている。
In this control method, the q-axis current command calculation unit 1
In step 1, the q-axis current command value Iq * corresponding to the torque command T * is obtained, and the q-axis current command value
D-axis current command value Id for setting the voltage to a predetermined value based on
*, And the current command value I input to the current control unit 22
q * and Id *.

【0007】なお、制御部10はソフトウェアによって
処理される。また、PMモータ1の磁石による巻線鎖交
磁束数、インダクタンスなどは一定として制御が行われ
る。
The control unit 10 is processed by software. In addition, the control is performed with the number of flux linkages, inductance, and the like of the windings of the PM motor 1 being constant.

【0008】[0008]

【発明が解決しようとする課題】PMモータの制御にお
いて、定出力運転時などにおいて電圧を一定に制御する
場合、弱め界磁電流Id(d軸電流)を流すことでモー
タ端子電圧の上昇分を抑えている。上記従来の制御では
巻線鎖交磁束数φmは一定であるとしているので、回転
速度および負荷状態によりIdは一義的に決定される。
In the control of the PM motor, when the voltage is controlled to be constant during a constant output operation or the like, the amount of increase in the motor terminal voltage is reduced by flowing a field weakening current Id (d-axis current). I am holding it down. In the conventional control described above, since the winding interlinkage magnetic flux number φm is constant, Id is uniquely determined by the rotation speed and the load state.

【0009】しかし、永久磁石、特にネオジウム磁石は
温度によりその磁気特性が変化する。即ち、PMモータ
の永久磁石の温度が上がるにつれて磁石による巻線鎖交
磁束数が減少し、巻線誘起電圧も減少する。従って、磁
石が高温にある場合、低温時に必要となる弱め界磁電流
と同等の電流を流すと、必要以上に電圧を低下させるこ
とになり特性が悪化する。また、温度上昇も大きくなり
磁石の減磁の原因となる。弱め界磁電流は磁石の状態に
合わせて最適な値に制御されるべきである。
However, permanent magnets, especially neodymium magnets, change their magnetic properties depending on temperature. That is, as the temperature of the permanent magnet of the PM motor increases, the number of flux linkages of the windings by the magnets decreases, and the winding induced voltage also decreases. Therefore, when the magnet is at a high temperature, if a current equivalent to the field weakening current required at a low temperature is passed, the voltage is lowered more than necessary, and the characteristics are deteriorated. In addition, the temperature rise increases, which causes demagnetization of the magnet. The field weakening current should be controlled to an optimum value according to the state of the magnet.

【0010】本発明は、上記課題に鑑みてなされたもの
であり、その目的とするところは、磁石による巻線鎖交
磁束数が温度により低下した場合、磁石の状態に合わせ
て弱め界磁電流を最適な値に制御できる永久磁石同期電
動機の制御方式を提供することにある。
The present invention has been made in view of the above problems, and has as its object to reduce the field-weakening current in accordance with the state of the magnet when the number of interlinkage magnetic fluxes caused by the magnet decreases due to temperature. Is to provide a control method of a permanent magnet synchronous motor that can control the motor to an optimum value.

【0011】[0011]

【課題を解決するための手段】基本原理 PMモータの回転座標(dq座標)系における電圧方程
式は(1),(2)式となる。
Means for Solving the Problems Basic Principles The voltage equations in the rotational coordinate (dq coordinate) system of the PM motor are expressed by equations (1) and (2).

【0012】[0012]

【数1】 Vd=R1Id−ωLqIq ・・・・・(1)Vd = R 1 Id−ωLqIq (1)

【0013】[0013]

【数2】 Vq=R1Iq−ωLqIq+ωφm ・・・・・(2) ただし、R1:電機子巻線抵抗、Ld,Lq:d軸、q
軸電機子自己インダクタンス、ω:電源角周波数、φ
m:巻線磁束鎖交数、Vd,Vq:d軸、q軸電圧、I
d,Iq:d軸、q軸電流また、相電圧(端子電圧)V
1は(3)式となる。
Vq = R 1 Iq−ωLqIq + ωφm (2) where R 1 is armature winding resistance, Ld, Lq: d axis, q
Shaft armature self-inductance, ω: power supply angular frequency, φ
m: winding flux linkage number, Vd, Vq: d-axis, q-axis voltage, I
d, Iq: d-axis and q-axis currents, and phase voltage (terminal voltage) V
1 becomes the equation (3).

【0014】[0014]

【数3】 [Equation 3]

【0015】(1)〜(3)式より端子電圧V1を一定
にするための電流Idは(4)式となる。
[0015] (1) to (3) current Id for the terminal voltages V 1 constant from equation becomes (4).

【0016】[0016]

【数4】 (Equation 4)

【0017】一方、磁石による巻線鎖交磁束数φmは温
度の影響を受ける。このφmは(2)式より(5)式と
して求められる。
On the other hand, the number of interlinkage magnetic fluxes φm by the magnet is affected by the temperature. This φm is obtained from equation (2) as equation (5).

【0018】[0018]

【数5】 φm=Vq/ω−R1Iq/ω−LdId ・・・・・(5) 従って、電流Iq,Id及びVqが得られればφmが推
定でき、(4)式により最適な弱め界磁電流を決定する
ことができる。
Φm = Vq / ω−R 1 Iq / ω−LdId (5) Therefore, if the currents Iq, Id and Vq are obtained, φm can be estimated, and the optimum weakening can be obtained by equation (4). The field current can be determined.

【0019】解決手段 本発明の永久磁石同期電動機の制御方法は、トルク指令
に対応したq軸電流指令値を決定し、q軸電流指令値を
基に電圧を所定の値にするためのd軸電流指令値を求
め、電流制御部でd軸電流指令値及びq軸電流指令値と
フィードバック電流を座標変換したd軸電流及びq軸電
流との偏差を比例積分し、電流制御部から出力されるd
軸、q軸電圧の指令値を座標変換した三相電圧指令値で
永久磁石同期電動機を駆動するインバータを制御する永
久磁石同期電動機の制御方法において、前記電動機の巻
線に温度検出器を埋めこみ、この検出温度を基に予め用
意した電動機の永久磁石温度に対する鎖交磁束のテーブ
ルを利用してその時の電動機巻線の鎖交磁束数を求め、
この鎖交磁束数を用いて電圧を所定の値にするための弱
め界磁電流を求め、この電流をd軸電流指令値として電
動機を制御することを特徴とする。
A method of controlling a permanent magnet synchronous motor according to the present invention determines a q-axis current command value corresponding to a torque command, and sets a d-axis current value to a predetermined value based on the q-axis current command value. A current command value is obtained, a deviation between the d-axis current command value and the q-axis current command value and the d-axis current and the q-axis current obtained by coordinate-transforming the feedback current with the current control unit is proportionally integrated, and output from the current control unit. d
In a method of controlling a permanent magnet synchronous motor that controls an inverter that drives a permanent magnet synchronous motor with a three-phase voltage command value obtained by converting a command value of an axis and a q-axis voltage into coordinates, a temperature detector is embedded in a winding of the motor, Using the table of the linkage flux with respect to the permanent magnet temperature of the motor prepared in advance based on this detected temperature, the number of linkage magnetic fluxes of the motor winding at that time is obtained,
It is characterized in that a field weakening current for setting the voltage to a predetermined value is obtained using the number of interlinkage magnetic fluxes, and the electric motor is controlled using this current as a d-axis current command value.

【0020】または、前記電流制御部から出力される電
圧指令値のd軸成分、q軸成分と、電流制御部にフィー
ドバックされる電流のd軸成分、q軸成分あるいは電流
指令値のd軸成分、q軸成分を用いてこれらの値より電
動機巻線の鎖交磁束数を推定し、この鎖交磁束数を用い
て電圧を一定に保つための弱め界磁電流を求め、この界
磁電流を前記d軸電流指令値として電動機を制御するこ
とを特徴とする。
Alternatively, the d-axis component and the q-axis component of the voltage command value output from the current control unit and the d-axis component and the q-axis component of the current fed back to the current control unit or the d-axis component of the current command value , The q-axis component is used to estimate the number of interlinkage magnetic fluxes of the motor winding from these values, and by using the number of interlinkage magnetic fluxes, a field weakening current for keeping the voltage constant is obtained. The motor is controlled as the d-axis current command value.

【0021】または、電気電動機の巻線に温度検出器を
埋め込み、この検出温度とトルク指令及び回転速度の情
報より、予め用意した温度、トルク指令、回転速度に対
して設定されたd軸電流テーブル及びq軸電流テーブル
を利用して、その運転状態に最適なd軸電流及びq軸電
流を求め、この電流を電流指令値として電動機端子電圧
を一定に制御することを特徴とする。
Alternatively, a temperature detector is embedded in the winding of the electric motor, and based on the detected temperature and information on the torque command and the rotation speed, a d-axis current table set for the temperature, torque command and rotation speed prepared in advance. And a d-axis current and a q-axis current that are optimal for the operation state using the q-axis current table and the currents are used as current command values to control the motor terminal voltage to be constant.

【0022】または、前記電流制御部から出力される電
圧指令から電圧のd軸成分、q軸成分と、電流制御部に
フィードバックされる電流のd軸成分、q軸成分、ある
いは電流指令値のd軸成分、q軸成分を用いてこれらの
値より電動機巻線の鎖交磁束数を推定し、この鎖交磁束
数をもとに定トルク運転領域及び定出力運転領域を含み
電動機巻線の鎖交磁束数をパラメータとするテーブルを
用いてd軸電流及びq軸電流を決定し、この電流を指令
値として電動機端子電圧を一定に制御することを特徴と
する。
Alternatively, the d-axis component and the q-axis component of the voltage from the voltage command output from the current control unit and the d-axis component and the q-axis component of the current fed back to the current control unit or d of the current command value The number of interlinkage magnetic fluxes of the motor winding is estimated from these values using the axis component and the q-axis component. Based on the number of interlinkage magnetic fluxes, the constant winding operation region and the constant output operation region are included, and the motor winding chain is included. It is characterized in that the d-axis current and the q-axis current are determined using a table in which the number of magnetic fluxes is used as a parameter, and the motor terminal voltage is controlled to be constant using these currents as command values.

【0023】または、 前記電流制御部から出力される
d軸電圧指令とq軸電圧指令から電動機の端子電圧を求
め、端子電圧の指令値とd軸電圧指令とq軸電圧指令か
ら求めた端子電圧の偏差を比例・積分演算して前記d軸
電流値とし、電圧を一定とするように電動機にd軸電流
を流して弱め界磁制御を行うことを特徴とする。
Alternatively, a terminal voltage of the motor is obtained from a d-axis voltage command and a q-axis voltage command output from the current control unit, and a terminal voltage obtained from the terminal voltage command value, the d-axis voltage command, and the q-axis voltage command. Is calculated by proportional / integral calculation to obtain the d-axis current value, and a d-axis current is supplied to the motor so as to keep the voltage constant, thereby performing field weakening control.

【0024】[0024]

【発明の実施の形態】本発明の実施の形態について図面
を用いて説明する。なお、図中従来図6と同一構成部分
には同一符号を付してその重複する説明を省略する。
Embodiments of the present invention will be described with reference to the drawings. In the figure, the same components as those of the conventional device shown in FIG. 6 are denoted by the same reference numerals, and the description thereof will not be repeated.

【0025】実施の形態1 図1に実施の形態1に係るPMモータの制御ブロック図
を示す。図中、7はセンサ部分がPMモータ1の巻線に
埋め込まれた温度検出器である。モータ巻線の温度は磁
石の温度と異なることが予想されるが、温度が平衡した
状態ではほぼ同じくなる。12は温度検出器7で検出し
た巻線温度の検出値Tmgより予め用意した電動機の永
久磁石の温度に対する巻線鎖交磁束数φmを求める鎖交
磁束テーブル。14aはd軸電流指令演算部で、q軸電
流指令演算部11からのq軸電流指令値Iq*と鎖交磁
束テーブル12からの巻線鎖交磁束数φmと速度検出部
4からの電源角周波数ωと、d軸、q軸電機子自己イン
ダクタンスLd,Lq及び一定とする端子電圧V1から
(4)式により、端子電圧V1を一定にするためのd軸
電流指令値Id*を演算するようにしてある。なお、そ
の他の構成は従来図6のものと同様に構成されている。
First Embodiment FIG. 1 shows a control block diagram of a PM motor according to a first embodiment. In the figure, reference numeral 7 denotes a temperature detector having a sensor portion embedded in the winding of the PM motor 1. The temperature of the motor winding is expected to be different from the temperature of the magnet, but will be almost the same when the temperature is balanced. Reference numeral 12 denotes a linkage magnetic flux table for obtaining a winding linkage magnetic flux number φm with respect to the temperature of the permanent magnet of the motor prepared in advance from the detection value Tmg of the winding temperature detected by the temperature detector 7. Numeral 14 a denotes a d-axis current command calculation unit, which is a q-axis current command value Iq * from the q-axis current command calculation unit 11, a winding flux linkage number φm from the linkage flux table 12, and a power supply angle from the speed detection unit 4. calculating a frequency omega, the d-axis, q-axis armature self-inductance Ld, by Lq and (4) from the terminal voltages V 1 to a constant, the d-axis current command value Id * for the terminal voltages V 1 constant I have to do it. The rest of the configuration is the same as that of the conventional device shown in FIG.

【0026】しかして、q軸電流指令演算部11からの
q軸電流指令値Iq*とd軸電流指令演算部14aから
のd軸電流指令値Id*は電流制御部22へ入力し、電
流制御部22はこのq軸電流指令値Iq*及びd軸電流
値Id*と座標変換部21から出力されるフィードバッ
クのq軸電流値Iq及びd軸電流値Idとの偏差をそれ
ぞれ比例・積分して電圧指令値Vq*,Vd*を出力
し、この電圧指令値Vq*,Vd*は座標変換部23で
三相電圧指令値Vu*,Vv*,Vw*に変換され、P
Mモータ1を駆動するインバータ24を制御する。
The q-axis current command value Iq * from the q-axis current command calculation unit 11 and the d-axis current command value Id * from the d-axis current command calculation unit 14a are input to the current control unit 22, The unit 22 proportionally integrates the deviation between the q-axis current command value Iq * and the d-axis current value Id * and the feedback q-axis current value Iq and the d-axis current value Id output from the coordinate conversion unit 21, respectively. Voltage command values Vq *, Vd * are output. These voltage command values Vq *, Vd * are converted into three-phase voltage command values Vu *, Vv *, Vw * by the coordinate conversion unit 23, and P
The inverter 24 that drives the M motor 1 is controlled.

【0027】実施の形態1によれば、PMモータの巻線
温度を検出し、その温度検出値を磁石温度検出値とし
て、鎖交磁束テーブルにより磁石温度検出値に対する巻
線鎖交磁束数を求め、端子電圧を一定にするためのd軸
電流指令値を演算し、弱め界磁制御をするので、磁石に
よる鎖交磁束数が温度により低下した場合、必要以上に
弱め界磁電流を流すことがなくなる。
According to the first embodiment, the winding temperature of the PM motor is detected, and the detected temperature value is used as the detected magnet temperature value, and the number of interlinkage magnetic fluxes with respect to the detected magnet temperature value is determined from the interlinked magnetic flux table. Since the d-axis current command value for keeping the terminal voltage constant is calculated and the field weakening control is performed, the field weakening current does not flow more than necessary when the number of interlinkage magnetic fluxes due to the magnets decreases due to the temperature.

【0028】実施の形態2 図2に実施の形態2に係るPMモータの制御ブロック図
を示す。図中、13はモータモデルで、d軸、q軸電圧
指令値Vd*,Vq*及び電流値Id,Iq及び電源角
周波数ωが入力し、巻線鎖交磁束指令値φm*を推定す
る。巻線鎖交磁束数φmは(5)式で表されるので、電
圧及び電流のd軸成分及びq軸成分が得られれば、モー
タモデル13で巻線鎖交磁束数φmを推定することがで
きる。電流制御部22の電圧指令から電圧のd軸成分、
q軸成分が得られ、座標変換部21で座標変換された電
流から電流のd軸成分、q軸成分が得られる。これらの
値をモータモデル13に入力することにより、巻線鎖交
磁束数φmを推定する。
Second Embodiment FIG. 2 shows a control block diagram of a PM motor according to a second embodiment. In the figure, reference numeral 13 denotes a motor model, to which d-axis and q-axis voltage command values Vd *, Vq *, current values Id, Iq, and power supply angular frequency ω are input, and a winding interlinkage magnetic flux command value φm * is estimated. Since the winding interlinkage flux number φm is expressed by the equation (5), if the d-axis component and the q-axis component of the voltage and current are obtained, the motor model 13 can estimate the winding interlinkage flux number φm. it can. From the voltage command of the current control unit 22, the d-axis component of the voltage,
A q-axis component is obtained, and a d-axis component and a q-axis component of the current are obtained from the current whose coordinates have been converted by the coordinate conversion unit 21. By inputting these values to the motor model 13, the winding linkage magnetic flux number φm is estimated.

【0029】そしてd軸電流司令演算部14aでq軸電
流指令演算部11からの電流指令Iq*とこの巻線鎖交
磁束数φmを用いて(4)式により端子電圧V1を一定
に保つためのd軸電流指令Id*を演算する。なお、そ
の他の構成は従来図6のものと同様に構成されている。
Using the current command Iq * from the q-axis current command calculation unit 11 and the number of winding flux linkages φm in the d-axis current command calculation unit 14a, the terminal voltage V 1 is kept constant by equation (4). -Axis current command Id * for calculation. The rest of the configuration is the same as that of the conventional device shown in FIG.

【0030】実施の形態2によれば、PMモータの巻線
温度検出器がない場合に巻線鎖交磁束φmを推定し、最
適な弱め界磁電流を決定できる。
According to the second embodiment, when there is no winding temperature detector of the PM motor, the winding interlinkage magnetic flux φm can be estimated, and the optimum field weakening current can be determined.

【0031】実施の形態3 図3に実施の形態2に係るPMモータの制御ブロック図
を示す。図中、7はセンサ部分をPMモータの巻線部分
に挟んだ温度検出器。15aは予め用意したd軸電流テ
ーブルで、PMモータの磁石の温度Tmg、トルク指令
T*、電気角周波数ωに対して設定されたd軸電流指令
値Id*を出力する。16aは予め用意したq軸電流テ
ーブルで、PMモータの磁石の温度、トルク指令、回転
速度に対して設定されたq軸電流指令値Iq*を出力す
る。この電流テーブル15a及び16aは定トルク運転
領域及び定出力運転領域を含み、磁石の温度特性をパラ
メータとしている。
Third Embodiment FIG. 3 shows a control block diagram of a PM motor according to a second embodiment. In the figure, reference numeral 7 denotes a temperature detector in which a sensor part is sandwiched between windings of a PM motor. Reference numeral 15a denotes a d-axis current table prepared in advance, which outputs a d-axis current command value Id * set for the PM motor magnet temperature Tmg, torque command T *, and electrical angular frequency ω. Reference numeral 16a denotes a q-axis current table prepared in advance, which outputs a q-axis current command value Iq * set for the temperature, torque command, and rotation speed of the magnet of the PM motor. The current tables 15a and 16a include a constant torque operation region and a constant output operation region, and use the temperature characteristics of the magnet as parameters.

【0032】モータの巻線の温度は磁石の温度と異なる
が、温度が平衡した状態ではほぼ同じ温度となるので、
電流テーブル15a及び16aに温度検出器7からの温
度Tmgとトルク指令値T*及び速度検出部4からの電
気角周波数ωの情報を取り込み、その運転状態に最適な
d軸電流及びq軸電流を求め、この電流を電流制御部2
2の指令値Id*,Iq*として制御する。なお、その
他の構成は従来図6のものと同様に構成されている。
Although the temperature of the winding of the motor is different from the temperature of the magnet, the temperature is substantially the same when the temperature is in a state of equilibrium.
The current tables 15a and 16a fetch the information of the temperature Tmg and the torque command value T * from the temperature detector 7 and the information of the electrical angular frequency ω from the speed detector 4, and find the optimal d-axis current and q-axis current for the operation state. This current is obtained and the current control unit 2
2 are controlled as command values Id * and Iq *. The other configuration is the same as that of the conventional device shown in FIG.

【0033】実施の形態3によれば、特に定出力運転領
域では、温度が変化しても常に電圧が一定となるような
d軸電流指令及びq軸電流指令が得られるので、電圧一
定の制御ができる。
According to the third embodiment, the d-axis current command and the q-axis current command can be obtained so that the voltage is always constant even when the temperature changes, especially in the constant output operation region. Can be.

【0034】実施の形態4 図4に実施の形態4に係るPMモータの制御ブロック図
を示す。図中、13は速度検出器4からの電気角速度ω
及び電流制御部からの電圧指令Vd*,Vq*及び座標
変換部21からの電流Id,Iqが入力し、PMモータ
1の巻線鎖交磁束数φmを推定するモータモデルであ
る。
Fourth Embodiment FIG. 4 shows a control block diagram of a PM motor according to a fourth embodiment. In the figure, 13 is the electrical angular velocity ω from the speed detector 4
This is a motor model that receives the voltage commands Vd * and Vq * from the current control unit and the currents Id and Iq from the coordinate conversion unit 21 and estimates the winding interlinkage magnetic flux number φm of the PM motor 1.

【0035】また15bはd軸電流テーブル、16bは
q軸電流テーブルで、それぞれPMモータ1の巻線鎖交
磁束数φm、トルク指令T*、電気角周波数ωに対し設
定されたd軸電流指令値Id*及びq軸電流指令値Iq
*を電流制御部22に出力する。この電流テーブル15
b及び16bは定トルク運転領域及び定出力運転領域を
含み巻線鎖交磁束数をパラメータとしている。なお、そ
の他の構成は従来図6のものと同様に構成されている。
Reference numeral 15b denotes a d-axis current table, and 16b denotes a q-axis current table. The d-axis current command set for the number of winding flux linkages φm, the torque command T *, and the electrical angular frequency ω of the PM motor 1, respectively. Value Id * and q-axis current command value Iq
* Is output to the current control unit 22. This current table 15
b and 16b include the constant torque operation region and the constant output operation region, and use the number of winding flux linkages as a parameter. The rest of the configuration is the same as that of the conventional device shown in FIG.

【0036】実施の形態4によれば、電流テーブル15
b及び16bはモータモデル13で推定した巻線鎖交磁
束数φmをパラメータとして特に定出力運転領域では常
に電圧一定となるようなd軸電流指令及びq軸電流指令
が電流制御部22に出力するので、温度が変化しても電
圧一定の制御ができる。
According to the fourth embodiment, the current table 15
b and 16b output the d-axis current command and the q-axis current command to the current control unit 22 so that the voltage is always constant particularly in the constant output operation region, using the winding linkage flux number φm estimated by the motor model 13 as a parameter. Therefore, constant voltage control can be performed even when the temperature changes.

【0037】実施の形態5 図5に実施の形態5に係る無負荷で高速回転する場合の
PMモータの制御ブロック図を示す。図中、17は電流
制御部22から出力される電圧指令Vd*,Vq*を用
いてPMモータの出力電圧(相電圧)V1を演算する電
圧演算部、18は制限電圧指令値Vmax*と電圧演算
部17からの出力電圧V1との偏差を検出する加算器、
19は加算器18からの電圧偏差を比例・積分しd軸電
流指令Id*を電流制御部22に出力する電圧制御部で
ある。この場合、無負荷であるので電流制御部22に入
力するq軸電流指令Iq*は0としてある。なお、その
他の構成は従来図6のものと同様に構成されている。
Fifth Embodiment FIG. 5 is a control block diagram of a PM motor according to a fifth embodiment when rotating at a high speed with no load. In the figure, reference numeral 17 denotes a voltage calculation unit for calculating the output voltage (phase voltage) V 1 of the PM motor using the voltage commands Vd * and Vq * output from the current control unit 22, and 18 denotes a limit voltage command value Vmax * and An adder for detecting a deviation from the output voltage V1 from the voltage calculator 17;
Reference numeral 19 denotes a voltage control unit that proportionally integrates the voltage deviation from the adder 18 and outputs a d-axis current command Id * to the current control unit 22. In this case, since there is no load, the q-axis current command Iq * input to the current control unit 22 is set to 0. The rest of the configuration is the same as that of the conventional device shown in FIG.

【0038】PMモータが無負荷で高速で回転される場
合にも端子電圧が上昇するが、実施の形態5によれば、
q軸電流指令Iq*=0の無負荷運転において、電圧演
算部17で電流指令値Id*,Iq*から出力電圧V1
*を演算し電圧制御部19で制限電圧指令Vmax*と
電圧V1*との偏差を比例・積分演算したd軸電流指令
Vd*で弱め界磁制御を行うので、電圧を一定とする制
御ができる。
Although the terminal voltage increases even when the PM motor is rotated at high speed with no load, according to the fifth embodiment,
In the no-load operation with the q-axis current command Iq * = 0, the voltage calculator 17 calculates the output voltage V 1 from the current command values Id * and Iq *.
*, And the voltage controller 19 performs the field-weakening control with the d-axis current command Vd *, which is a proportional / integral calculation of the deviation between the limit voltage command Vmax * and the voltage V 1 *, so that the voltage can be controlled to be constant.

【0039】この無負荷時に電圧を一定に制御する方法
は、ハイブリッド電気自動車や風力発電などでは高速で
空転される場合があり、その場合の制御として簡便で、
損失を小さくできる
The method of controlling the voltage to be constant at the time of no load may be performed at a high speed in a hybrid electric vehicle or a wind power generation, for example.
Loss can be reduced

【0040】[0040]

【発明の効果】本発明は、上述のとおり構成されている
ので、以下に記載する効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0041】(1)PMモータの磁石による巻線鎖交磁
束数が温度により低下した場合、必要以上に弱め界磁電
流を流すことがなくなり、効率が向上し温度上昇が低減
すると共に磁石の減磁予防ができる。
(1) When the number of interlinkage magnetic fluxes caused by the magnets of the PM motor decreases due to temperature, the field current weakening does not flow more than necessary, the efficiency is improved, the temperature rise is reduced, and the number of magnets is reduced. Prevents magnetism.

【0042】(2)PMモータの巻線温度を温度検出器
により検出して弱め界磁制御する方法の場合、簡単に弱
め界磁電流を求められる。
(2) In the case of the method of controlling the field weakening by detecting the winding temperature of the PM motor with the temperature detector, the field weakening current can be easily obtained.

【0043】(3)PMモータの巻線鎖交磁束数を推定
して弱め界磁制御する方法の場合、モータに温度センサ
を取り付ける必要がないため、コスト的に有利である。
(3) In the method of estimating the number of flux linkages of the windings of the PM motor and performing field-weakening control, there is no need to attach a temperature sensor to the motor, which is advantageous in cost.

【0044】(4)弱め界磁電流を計算で求める方法の
場合、モータ定数の影響を受けるが、構成が簡単であ
り、磁気飽和の影響の少ない表面磁石形PMモータの制
御に適する。
(4) The method of calculating the field weakening current by calculation is affected by the motor constant, but has a simple structure and is suitable for controlling a surface magnet type PM motor which is less affected by magnetic saturation.

【0045】(5)テーブルを用いて電流指令値を求め
る方法では、モータ定数の磁気飽和による変動などを考
慮できるので、埋込磁石形PMモータの制御に適する。
(5) The method of obtaining the current command value using the table is suitable for control of an embedded magnet type PM motor because fluctuations of the motor constant due to magnetic saturation can be considered.

【0046】(6)無負荷時に電圧を一定に制御する方
法は、ハイブリッド電気自動車や風力発電などでは高速
で空転される場合があり、その場合の制御として簡便
で、損失を小さくできる。
(6) The method of controlling the voltage to be constant when there is no load may be performed at a high speed in a hybrid electric vehicle or a wind power generation, for example. In such a case, the control is simple and the loss can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1にかかるPMモータの制御ブロッ
ク図。
FIG. 1 is a control block diagram of a PM motor according to a first embodiment.

【図2】実施の形態2にかかるPMモータの制御ブロッ
ク図。
FIG. 2 is a control block diagram of a PM motor according to a second embodiment.

【図3】実施の形態3にかかるPMモータの制御ブロッ
ク図。
FIG. 3 is a control block diagram of a PM motor according to a third embodiment;

【図4】実施の形態4にかかるPMモータの制御ブロッ
ク図。
FIG. 4 is a control block diagram of a PM motor according to a fourth embodiment.

【図5】実施の形態5にかかるPMモータの制御ブロッ
ク図。
FIG. 5 is a control block diagram of a PM motor according to a fifth embodiment.

【図6】従来例にかかるPMモータの制御ブロック図。FIG. 6 is a control block diagram of a PM motor according to a conventional example.

【符号の説明】[Explanation of symbols]

1…PMモータ 2…位置(回転子位置角)検出器 3…位置検出部 4…速度検出部 5,6…電流検出部 7…温度(巻線温度)検出器 11…q軸電流指令演算部 12…鎖交磁束テーブル 13…モータモデル 14…d軸電流指令演算部 15,16…d軸、q軸電流テーブル 17…出力電圧(相電圧)演算部 18…電圧制御部 21,22…座標変換部 22…電流制御部 24…インバータ DESCRIPTION OF SYMBOLS 1 ... PM motor 2 ... Position (rotor position angle) detector 3 ... Position detector 4 ... Speed detector 5, 6 ... Current detector 7 ... Temperature (winding temperature) detector 11 ... Q-axis current command calculator 12 Linkage magnetic flux table 13 Motor model 14 d-axis current command calculator 15, 16 d-axis, q-axis current table 17 output voltage (phase voltage) calculator 18 voltage controller 21, 22 coordinate conversion Unit 22: Current control unit 24: Inverter

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H560 BB04 BB12 DA00 DB20 DC05 DC12 EB01 TT11 TT15 XA02 XA13 5H576 AA15 BB02 BB06 DD02 DD07 EE01 GG02 GG04 HB01 JJ04 JJ17 JJ24 KK06 LL12 LL22 LL32 LL41 LL45 MM12  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 トルク指令に対応したq軸電流指令値を
決定し、q軸電流指令値を基に電圧を所定の値にするた
めのd軸電流指令値を求め、電流制御部でd軸電流指令
値及びq軸電流指令値とフィードバック電流を座標変換
したd軸電流及びq軸電流との偏差を比例積分し、電流
制御部から出力されるd軸、q軸電圧の指令値を座標変
換した三相電圧指令値で永久磁石同期電動機を駆動する
インバータを制御する永久磁石同期電動機の制御方法に
おいて、 前記電動機の巻線に温度検出器を埋めこみ、この検出温
度を基に予め用意した電動機の永久磁石温度に対する鎖
交磁束のテーブルを利用してその時の電動機巻線の鎖交
磁束数を求め、この鎖交磁束数を用いて電圧を所定の値
にするための弱め界磁電流を求め、この電流をd軸電流
指令値として電動機を制御することを特徴とする永久磁
石同期電動機の制御方法。
1. A q-axis current command value corresponding to a torque command is determined, a d-axis current command value for setting a voltage to a predetermined value is determined based on the q-axis current command value, and a d-axis current command unit Deviation between the d-axis current and the q-axis current obtained by coordinate-converting the current command value and the q-axis current command value and the feedback current is proportionally integrated, and the d-axis and q-axis voltage command values output from the current control unit are coordinate-converted. A permanent magnet synchronous motor control method for controlling an inverter that drives a permanent magnet synchronous motor with the three-phase voltage command value, wherein a temperature detector is embedded in the winding of the motor, and the motor is prepared in advance based on the detected temperature. Using the table of the interlinkage magnetic flux with respect to the permanent magnet temperature, the number of interlinkage magnetic fluxes of the motor winding at that time is obtained, and the field weakening current for setting the voltage to a predetermined value using the number of interlinkage magnetic fluxes is obtained. This current is referred to as the d-axis current command value. Control method of a permanent magnet synchronous motor and controls the motor Te.
【請求項2】 トルク指令に対応したq軸電流指令値を
決定し、q軸電流指令値を基に電圧を所定の値にするた
めのd軸電流指令値を求め、電流制御部でd軸電流指令
値及びq軸電流指令値とフィードバック電流を座標変換
したd軸電流及びq軸電流との偏差を比例積分し、電流
制御部から出力されるd軸、q軸電圧の指令値を座標変
換した三相電圧指令値で永久磁石同期電動機を駆動する
インバータを制御する永久磁石同期電動機の制御方法に
おいて、 前記電流制御部から出力される電圧指令値のd軸成分、
q軸成分と、電流制御部にフィードバックされる電流の
d軸成分、q軸成分あるいは電流指令値のd軸成分、q
軸成分を用いてこれらの値より電動機巻線の鎖交磁束数
を推定し、この鎖交磁束数を用いて電圧を一定に保つた
めの弱め界磁電流を求め、この界磁電流を前記d軸電流
指令値として電動機を制御することを特徴とする永久磁
石電動機の制御方法。
2. A q-axis current command value corresponding to a torque command is determined, a d-axis current command value for setting a voltage to a predetermined value is determined based on the q-axis current command value, and a d-axis Deviation between the d-axis current and the q-axis current obtained by coordinate-converting the current command value and the q-axis current command value and the feedback current is proportionally integrated, and the d-axis and q-axis voltage command values output from the current control unit are coordinate-converted. A permanent magnet synchronous motor control method for controlling an inverter that drives a permanent magnet synchronous motor with the three-phase voltage command value, wherein a d-axis component of a voltage command value output from the current control unit;
q-axis component, d-axis component of current fed back to current control unit, q-axis component or d-axis component of current command value, q
The number of interlinkage magnetic fluxes of the motor winding is estimated from these values using the axial component, and a field weakening current for maintaining a constant voltage is obtained using the number of interlinkage magnetic fluxes. A method for controlling a permanent magnet motor, wherein the motor is controlled as a shaft current command value.
【請求項3】 トルク指令に対応したq軸電流指令値を
決定し、q軸電流指令値を基に電圧を所定の値にするた
めのd軸電流指令値を求め、電流制御部でd軸電流指令
値及びq軸電流指令値とフィードバック電流を座標変換
したd軸電流及びq軸電流との偏差を比例積分し、電流
制御部から出力されるd軸、q軸電圧の指令値を座標変
換した三相電圧指令値で永久磁石同期電動機を駆動する
インバータを制御する永久磁石同期電動機の制御方法に
おいて、 電気電動機の巻線に温度検出器を埋め込み、この検出温
度とトルク指令及び回転速度の情報より、予め用意した
温度、トルク指令、回転速度に対して設定されたd軸電
流テーブル及びq軸電流テーブルを利用して、その運転
状態に最適なd軸電流及びq軸電流を求め、この電流を
電流指令値として電動機端子電圧を一定に制御すること
を特徴とする永久磁石電動機の制御方法。
3. A q-axis current command value corresponding to a torque command is determined, a d-axis current command value for setting a voltage to a predetermined value is determined based on the q-axis current command value, and a d-axis Deviation between the d-axis current and the q-axis current obtained by coordinate-converting the current command value and the q-axis current command value and the feedback current is proportionally integrated, and the d-axis and q-axis voltage command values output from the current control unit are coordinate-converted. In the method of controlling a permanent magnet synchronous motor that controls an inverter that drives a permanent magnet synchronous motor with the three-phase voltage command value, a temperature detector is embedded in the winding of the electric motor, and information on the detected temperature, torque command, and rotation speed is provided. By using the d-axis current table and the q-axis current table set for the temperature, torque command, and rotation speed prepared in advance, the optimum d-axis current and q-axis current for the operation state are obtained. The current command Control method of a permanent magnet motor and controlling the motor terminal voltage constant as.
【請求項4】 トルク指令に対応したq軸電流指令値を
決定し、q軸電流指令値を基に電圧を所定の値にするた
めのd軸電流指令値を求め、電流制御部でd軸電流指令
値及びq軸電流指令値とフィードバック電流を座標変換
したd軸電流及びq軸電流との偏差を比例積分し、電流
制御部から出力されるd軸、q軸電圧の指令値を座標変
換した三相電圧指令値で永久磁石同期電動機を駆動する
インバータを制御する永久磁石同期電動機の制御方法に
おいて、 前記電流制御部から出力される電圧指令から電圧のd軸
成分、q軸成分と、電流制御部にフィードバックされる
電流のd軸成分、q軸成分、あるいは電流指令値のd軸
成分、q軸成分を用いてこれらの値より電動機巻線の鎖
交磁束数を推定し、この鎖交磁束数をもとに定トルク運
転領域及び定出力運転領域を含み電動機巻線の鎖交磁束
数をパラメータとするテーブルを用いてd軸電流及びq
軸電流を決定し、この電流を指令値として電動機端子電
圧を一定に制御することを特徴とする永久磁石電動機の
制御方法。
4. A q-axis current command value corresponding to a torque command is determined, a d-axis current command value for setting a voltage to a predetermined value is determined based on the q-axis current command value, and a d-axis current command unit determines a d-axis current command value. Deviation between the d-axis current and the q-axis current obtained by coordinate-converting the current command value and the q-axis current command value and the feedback current is proportionally integrated, and the d-axis and q-axis voltage command values output from the current control unit are coordinate-converted. A method for controlling a permanent magnet synchronous motor that controls an inverter that drives a permanent magnet synchronous motor with the set three-phase voltage command value, comprising: a d-axis component, a q-axis component, Using the d-axis component and the q-axis component of the current fed back to the control unit, or the d-axis component and the q-axis component of the current command value, the number of interlinkage magnetic fluxes of the motor winding is estimated from these values. The constant torque operation range and the d-axis current and q by using the table to flux linkage parameters of the motor windings comprises a constant-output operation range
A method for controlling a permanent magnet motor, comprising: determining a shaft current; and using the current as a command value to control the motor terminal voltage to be constant.
【請求項5】 トルク指令に対応したq軸電流指令値を
決定し、q軸電流指令値を基に電圧を所定の値にするた
めのd軸電流指令値を求め、電流制御部でd軸電流指令
値及びq軸電流指令値とフィードバック電流を座標変換
したd軸電流及びq軸電流との偏差を比例積分し、電流
制御部から出力されるd軸、q軸電圧の指令値を座標変
換した三相電圧指令値で永久磁石同期電動機を駆動する
インバータを制御する永久磁石同期電動機の制御方法に
おいて、 前記電流制御部から出力されるd軸電圧指令とq軸電圧
指令から電動機の端子電圧を求め、端子電圧の指令値と
d軸電圧指令とq軸電圧指令から求めた端子電圧の偏差
を比例・積分演算して前記d軸電流値とし、電圧を一定
とするように電動機にd軸電流を流して弱め界磁制御を
行うことを特徴とする永久磁石同期電動機の制御方法。
5. A q-axis current command value corresponding to a torque command is determined, a d-axis current command value for setting a voltage to a predetermined value based on the q-axis current command value is determined, and a d-axis Deviation between the d-axis current and the q-axis current obtained by coordinate-converting the current command value and the q-axis current command value and the feedback current is proportionally integrated, and the d-axis and q-axis voltage command values output from the current control unit are coordinate-converted. A method for controlling a permanent magnet synchronous motor that controls an inverter that drives a permanent magnet synchronous motor with the three-phase voltage command value obtained, wherein the terminal voltage of the motor is determined from the d-axis voltage command and the q-axis voltage command output from the current control unit. Then, the deviation of the terminal voltage obtained from the terminal voltage command value, the d-axis voltage command, and the q-axis voltage command is proportionally / integrally calculated to obtain the d-axis current value. To perform field weakening control Control method of a permanent magnet synchronous motor, wherein.
JP2000282785A 2000-09-19 2000-09-19 Method of controlling permanent magnet synchronous motor Pending JP2002095300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282785A JP2002095300A (en) 2000-09-19 2000-09-19 Method of controlling permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282785A JP2002095300A (en) 2000-09-19 2000-09-19 Method of controlling permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
JP2002095300A true JP2002095300A (en) 2002-03-29

Family

ID=18767232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282785A Pending JP2002095300A (en) 2000-09-19 2000-09-19 Method of controlling permanent magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP2002095300A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040906A (en) * 2002-07-03 2004-02-05 Meidensha Corp Vector controller for synchronous motor
JP2004201425A (en) * 2002-07-25 2004-07-15 Daikin Ind Ltd Motor temperature estimation device and compressor interior-state estimation device
KR100659250B1 (en) 2004-07-01 2006-12-19 가부시끼가이샤 히다치 세이사꾸쇼 Control apparatus and module of permanent magnet synchronous motor
JP2007325397A (en) * 2006-05-31 2007-12-13 Honda Motor Co Ltd Controller of motor
JP2008155683A (en) * 2006-12-21 2008-07-10 Jtekt Corp Electric power steering device
US7443120B2 (en) 2005-10-19 2008-10-28 Hitachi, Ltd. Field weakening vector controller for permanent magnet synchronous motor and control module
US7560896B2 (en) 2006-03-15 2009-07-14 Hitachi, Ltd. Vector control apparatus for permanent magnet motor
US7573227B2 (en) 2006-06-26 2009-08-11 Honda Motor Co., Ltd. Controller and control method of permanent magnet type rotary motor
EP2182620A1 (en) 2008-10-31 2010-05-05 Hitachi Automotive Systems Ltd. Controller for rotating electrical machines
WO2011024935A1 (en) 2009-08-28 2011-03-03 日産自動車株式会社 Anomaly detection device for a permanent magnet synchronous electric motor
EP2464002A1 (en) * 2010-12-09 2012-06-13 Danaher Motion Stockholm AB Estimation of actual torque in an electrical motor drive
JP2012222959A (en) * 2011-04-08 2012-11-12 Mitsubishi Electric Corp Synchronous machine controller
CN102891647A (en) * 2011-07-22 2013-01-23 通用汽车环球科技运作有限责任公司 Temperature compensation for improved field weakening accuracy
JP2013102671A (en) * 2011-10-12 2013-05-23 Fanuc Ltd MOTOR CONTROL DEVICE THAT CONTROLS d-AXIS CURRENT OF PERMANENT MAGNET SYNCHRONOUS MOTOR
CN104038125A (en) * 2013-03-04 2014-09-10 株式会社电装 Rotary electric machine control apparatus
JP2015116021A (en) * 2013-12-11 2015-06-22 日立オートモティブシステムズ株式会社 Control device for permanent magnet synchronous motor
CN104734582A (en) * 2015-04-10 2015-06-24 哈尔滨力盛达机电科技有限公司 Magnetic field control device and method for alternating current permanent magnet synchronous motor
CN105024604A (en) * 2014-04-28 2015-11-04 青岛海信日立空调系统有限公司 Field weakening control method and device of permanent magnet synchronous motor
CN105527593A (en) * 2014-09-29 2016-04-27 上海汽车集团股份有限公司 Method and system for measuring motor magnetic steel linkage parameters
CN105703685A (en) * 2016-03-16 2016-06-22 湖南省耐为数控技术有限公司 Control system for asynchronous motor and control method by adopting system
JP2018046615A (en) * 2016-09-13 2018-03-22 株式会社豊田中央研究所 Temperature estimation device, interlinkage magnetic flux estimation device and motor controller
DE112015007148T5 (en) 2015-11-25 2018-08-02 Mitsubishi Electric Corporation Control device for permanent magnet type rotary electric machine
JP2019017218A (en) * 2017-07-10 2019-01-31 株式会社日立製作所 Control arrangement and control method of inverter for driving synchronous motor
WO2019096497A1 (en) * 2017-11-20 2019-05-23 Robert Bosch Gmbh Method and device for operating an electric machine for outputting a predfined torque and a predefined rotational speed
JPWO2020250742A1 (en) * 2019-06-14 2020-12-17
CN113348620A (en) * 2019-02-15 2021-09-03 深圳配天智能技术研究院有限公司 Motor control method and motor control device
JP2021141629A (en) * 2020-03-02 2021-09-16 三菱電機株式会社 Control apparatus for ac rotary electric machine

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040906A (en) * 2002-07-03 2004-02-05 Meidensha Corp Vector controller for synchronous motor
JP2004201425A (en) * 2002-07-25 2004-07-15 Daikin Ind Ltd Motor temperature estimation device and compressor interior-state estimation device
KR100659250B1 (en) 2004-07-01 2006-12-19 가부시끼가이샤 히다치 세이사꾸쇼 Control apparatus and module of permanent magnet synchronous motor
CN100365927C (en) * 2004-07-01 2008-01-30 株式会社日立制作所 Control device and module for permanent magnet synchronous motor
US7443120B2 (en) 2005-10-19 2008-10-28 Hitachi, Ltd. Field weakening vector controller for permanent magnet synchronous motor and control module
US7560896B2 (en) 2006-03-15 2009-07-14 Hitachi, Ltd. Vector control apparatus for permanent magnet motor
JP2007325397A (en) * 2006-05-31 2007-12-13 Honda Motor Co Ltd Controller of motor
US7573227B2 (en) 2006-06-26 2009-08-11 Honda Motor Co., Ltd. Controller and control method of permanent magnet type rotary motor
JP2008155683A (en) * 2006-12-21 2008-07-10 Jtekt Corp Electric power steering device
US8242722B2 (en) 2008-10-31 2012-08-14 Hitachi Automotive Systems, Ltd. Controller for rotating electrical machines
EP2182620A1 (en) 2008-10-31 2010-05-05 Hitachi Automotive Systems Ltd. Controller for rotating electrical machines
WO2011024935A1 (en) 2009-08-28 2011-03-03 日産自動車株式会社 Anomaly detection device for a permanent magnet synchronous electric motor
US8791716B2 (en) 2009-08-28 2014-07-29 Nissan Motor Co., Ltd. Anomaly detector of permanent magnet synchronous electric motor
EP2464002A1 (en) * 2010-12-09 2012-06-13 Danaher Motion Stockholm AB Estimation of actual torque in an electrical motor drive
JP2012222959A (en) * 2011-04-08 2012-11-12 Mitsubishi Electric Corp Synchronous machine controller
CN102891647A (en) * 2011-07-22 2013-01-23 通用汽车环球科技运作有限责任公司 Temperature compensation for improved field weakening accuracy
JP2013102671A (en) * 2011-10-12 2013-05-23 Fanuc Ltd MOTOR CONTROL DEVICE THAT CONTROLS d-AXIS CURRENT OF PERMANENT MAGNET SYNCHRONOUS MOTOR
US8698434B2 (en) 2011-10-12 2014-04-15 Fanuc Corporation Motor control device that controls d-axis current of permanent magnet synchronous motor
CN104038125A (en) * 2013-03-04 2014-09-10 株式会社电装 Rotary electric machine control apparatus
JP2014171326A (en) * 2013-03-04 2014-09-18 Denso Corp Rotary electric machine control device
US9124211B2 (en) 2013-03-04 2015-09-01 Denso Corporation Rotary electric machine control apparatus
JP2015116021A (en) * 2013-12-11 2015-06-22 日立オートモティブシステムズ株式会社 Control device for permanent magnet synchronous motor
CN105024604A (en) * 2014-04-28 2015-11-04 青岛海信日立空调系统有限公司 Field weakening control method and device of permanent magnet synchronous motor
CN105024604B (en) * 2014-04-28 2017-09-29 青岛海信日立空调系统有限公司 A kind of method and a device for controlling weak magnetism of permagnetic synchronous motor
CN105527593A (en) * 2014-09-29 2016-04-27 上海汽车集团股份有限公司 Method and system for measuring motor magnetic steel linkage parameters
CN104734582A (en) * 2015-04-10 2015-06-24 哈尔滨力盛达机电科技有限公司 Magnetic field control device and method for alternating current permanent magnet synchronous motor
US10469014B2 (en) 2015-11-25 2019-11-05 Mitsubishi Electric Corporation Control device for permanent magnet-type rotating electrical machine
DE112015007148T5 (en) 2015-11-25 2018-08-02 Mitsubishi Electric Corporation Control device for permanent magnet type rotary electric machine
CN105703685A (en) * 2016-03-16 2016-06-22 湖南省耐为数控技术有限公司 Control system for asynchronous motor and control method by adopting system
CN105703685B (en) * 2016-03-16 2018-04-06 湖南省耐为数控技术有限公司 A kind of control system for asynchronous machine and the control method using this system
JP2018046615A (en) * 2016-09-13 2018-03-22 株式会社豊田中央研究所 Temperature estimation device, interlinkage magnetic flux estimation device and motor controller
JP2019017218A (en) * 2017-07-10 2019-01-31 株式会社日立製作所 Control arrangement and control method of inverter for driving synchronous motor
WO2019096497A1 (en) * 2017-11-20 2019-05-23 Robert Bosch Gmbh Method and device for operating an electric machine for outputting a predfined torque and a predefined rotational speed
CN111344942A (en) * 2017-11-20 2020-06-26 罗伯特·博世有限公司 Method and device for operating an electric machine to output a predefined torque and a predefined rotational speed
US11558003B2 (en) 2017-11-20 2023-01-17 Robert Bosch Gmbh Method and device for operating an electric machine for outputting a predefined torque and a predefined rotational speed
CN113348620A (en) * 2019-02-15 2021-09-03 深圳配天智能技术研究院有限公司 Motor control method and motor control device
JPWO2020250742A1 (en) * 2019-06-14 2020-12-17
WO2020250742A1 (en) * 2019-06-14 2020-12-17 株式会社日立製作所 Device and method for driving permanent magnet synchronous motor, and railway vehicle
JP7289914B2 (en) 2019-06-14 2023-06-12 株式会社日立製作所 Driving device for permanent magnet synchronous motor, driving method, and railway vehicle
JP2021141629A (en) * 2020-03-02 2021-09-16 三菱電機株式会社 Control apparatus for ac rotary electric machine

Similar Documents

Publication Publication Date Title
JP2002095300A (en) Method of controlling permanent magnet synchronous motor
US6650081B2 (en) Synchronous motor driving system
JP4531751B2 (en) Synchronous machine controller
JP3467961B2 (en) Control device for rotating electric machine
JP6367332B2 (en) Inverter control device and motor drive system
JP4754417B2 (en) Control device for permanent magnet type rotating electrical machine
US6900613B2 (en) Motor control apparatus
JP4764124B2 (en) Permanent magnet type synchronous motor control apparatus and method
JP5748051B2 (en) Synchronous motor applied voltage electrical angle setting method and motor control device
JP2012228127A (en) Motor controller
WO2006027941A1 (en) Servomotor current control method and servomotor
US20040183496A1 (en) Motor control apparatus and motor control method
JP3674741B2 (en) Control device for permanent magnet synchronous motor
KR101514391B1 (en) Vector controller and motor controller using the same, air-conditioner
JP2006129632A (en) Motor drive unit
JP3397013B2 (en) Control device for synchronous motor
JPH08275599A (en) Control method for permanent magnet synchronous motor
JP5473289B2 (en) Control device and control method for permanent magnet type synchronous motor
JPH1014273A (en) Controller for permanent magnet synchronous motor for driving vehicle
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP2008148437A (en) Controller for permanent magnet type synchronous motor
JP3551911B2 (en) Brushless DC motor control method and device
JP2010268599A (en) Control device for permanent magnet motor
JP3933348B2 (en) Control device for embedded magnet type synchronous motor
JP2003250293A (en) Method and apparatus for controlling motor