JP4667741B2 - Induction motor control device - Google Patents

Induction motor control device Download PDF

Info

Publication number
JP4667741B2
JP4667741B2 JP2003428528A JP2003428528A JP4667741B2 JP 4667741 B2 JP4667741 B2 JP 4667741B2 JP 2003428528 A JP2003428528 A JP 2003428528A JP 2003428528 A JP2003428528 A JP 2003428528A JP 4667741 B2 JP4667741 B2 JP 4667741B2
Authority
JP
Japan
Prior art keywords
command value
magnetic flux
induction motor
voltage command
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003428528A
Other languages
Japanese (ja)
Other versions
JP2005192295A (en
Inventor
尚徳 山崎
雅樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003428528A priority Critical patent/JP4667741B2/en
Publication of JP2005192295A publication Critical patent/JP2005192295A/en
Application granted granted Critical
Publication of JP4667741B2 publication Critical patent/JP4667741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、電車や工作機械、ファン、ポンプ等の駆動用誘導電動機の制御装置に関するものであって、特に、電力変換装置への電力供給が休止され誘導電動機がフリーランしている状態から安定に再起動させる制御装置に係るものである。   The present invention relates to a control device for driving induction motors such as trains, machine tools, fans, and pumps, and in particular, stable from a state where power supply to a power converter is stopped and the induction motor is free-running. This relates to a control device that is restarted.

従来、電力供給停止時におけるモータの残留磁束によって発生する線間電圧を検出してその線間電圧の正負に対応したパルス信号を出力する残留磁束検出回路と、インバータの出力を決定していた電圧指令、出力周波数指令、及び相回転方向を記憶する記憶手段と、電力供給停止時間を管理するタイマを備え、線間電圧の正負から得たパルス信号から速度信号を求め、速度信号と電力供給停止期間と電力供給停止時点の電圧指令値とから残留電圧の大きさを推定取得し、推定取得した電圧の大きさ、周波数、位相角に基づいて再起動時の電圧初期値とすることが示されている(例えば特許文献1参照)。   Conventionally, a residual magnetic flux detection circuit that detects a line voltage generated by the residual magnetic flux of the motor when power supply is stopped and outputs a pulse signal corresponding to the positive / negative of the line voltage, and a voltage that determines the output of the inverter Command, output frequency command, storage means for storing the phase rotation direction, and timer for managing the power supply stop time, the speed signal is obtained from the pulse signal obtained from the positive and negative of the line voltage, the speed signal and power supply stop It is shown that the residual voltage magnitude is estimated and acquired from the period and the voltage command value at the time of power supply stop, and the initial voltage value at restart is based on the estimated voltage magnitude, frequency, and phase angle. (See, for example, Patent Document 1).

特開平1−194892号公報(図1)Japanese Unexamined Patent Publication No. 1-194492 (FIG. 1)

しかしながら、前記特許文献1に示されたものは、フリーラン状態からインバータを再起動させるのに電力供給休止期間の残留電圧を検知し、残留電圧の位相、周波数、振幅と同じ電圧を印加して再起動することが示されており、そのために残留電圧を検知する手段が必要であり、コスト削減の妨げとなっていた。一方、残留磁束が充分に減衰する期間をおいて再起動すれば過電流を抑制した再起動が可能であるが、この場合には、電力供給が休止された時点から、必ず残留磁束減衰期間を設ける必要があり、再起動制御への制約となるという問題点を有していた。   However, the technique disclosed in Patent Document 1 detects the residual voltage during the power supply suspension period to restart the inverter from the free-run state, and applies the same voltage as the phase, frequency, and amplitude of the residual voltage. Rebooting has been shown, which requires a means for detecting the residual voltage, which has hindered cost reduction. On the other hand, if the restart is performed after a period in which the residual magnetic flux is sufficiently attenuated, it is possible to restart with the overcurrent suppressed, but in this case, the residual magnetic flux decay period must be set from the time when the power supply is stopped. There is a problem that it is necessary to provide a restriction on the restart control.

この発明は、前記のような課題を解決するためになされたものであって、電圧検知手段を設けることなく、かつ電力休止期間の長短に依存せず、過大な電流やトルクショックを発生させずに安定にインバータを再起動制御した誘導電動機の制御装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and does not provide voltage detection means, does not depend on the length of the power suspension period, and does not generate an excessive current or torque shock. It is another object of the present invention to provide a control device for an induction motor that stably controls restart of an inverter.

この発明に係る誘導電動機の制御装置は、電力変換手段と速度検知手段と電圧指令値演算手段と磁束指令値演算手段と磁束指令値変化率リミッタとトルク指令値演算手段とを備え、電力変換手段は、誘導電動機に給電するものであり、速度検知手段は、誘導電動機の回転速度を検知するものであり、磁束指令値演算手段は、誘導電動機を制御するための所望の磁束指令値を演算して、電圧指令値演算手段に出力するものであり、トルク指令値演算手段は、誘導電動機を制御するための所望のトルク指令値を電圧指令値演算手段に出力するものであり、電圧指令値演算手段は、磁束指令値およびトルク指令値から磁束分電流指令値およびトルク分電流指令値を算出し、磁束分電流指令値およびトルク分電流指令値に基づいて電力変換手段への電圧指令値を演算、出力するものであり、電力変換手段が運転を停止し誘導電動機への給電を停止している期間に、磁束指令値演算手段は誘導電動機の回転速度と回路定数と給電停止時の磁束指令値とに基づいて、給電再開時の磁束指令値演算を続行して磁束指令値変化率リミッタに出力し、磁束指令値変化率リミッタは、磁束指令値演算手段が出力する給電再開時の磁束指令値の変化率を制限するものであり、誘導電動機への給電再開時、磁束指令値変化率リミッタは磁束指令値の変化率を制御して電圧指令値演算手段に出力し、電圧指令値演算手段は、電力変換手段の運転停止中にもトルク指令値および速度検知手段が出力する回転速度に基づき、電圧指令値の基準位相角の演算を連続して実行するとともに、給電再開時の磁束指令値と基準位相角とに基づき演算することにより給電再開時の電圧指令値を取得し、この電圧指令値を誘導電動機への給電再開時の、電力変換手段への電圧指令値の初期値としてセットし、その後所望の値まで電圧指令値の振幅を増加させるよう出力するものである。 The control apparatus for an induction motor according to the present invention comprises power conversion means, speed detection means, voltage command value calculation means, magnetic flux command value calculation means, magnetic flux command value change rate limiter, and torque command value calculation means. Is for supplying power to the induction motor, the speed detecting means is for detecting the rotational speed of the induction motor, and the magnetic flux command value calculating means is for calculating a desired magnetic flux command value for controlling the induction motor. The torque command value calculating means outputs a desired torque command value for controlling the induction motor to the voltage command value calculating means, and the voltage command value calculating means The means calculates a magnetic flux current command value and a torque current command value from the magnetic flux command value and the torque command value, and supplies power to the power conversion means based on the magnetic flux current command value and the torque current command value. The command value is calculated and output. During the period when the power conversion means stops operating and the power supply to the induction motor is stopped, the magnetic flux command value calculation means determines the rotation speed, circuit constants, and power supply stoppage of the induction motor. Based on the magnetic flux command value , the calculation of the magnetic flux command value at the time of resuming power supply is continued and output to the magnetic flux command value change rate limiter. The magnetic flux command value change rate limiter When the power supply to the induction motor is resumed, the flux command value change rate limiter controls the rate of change of the flux command value and outputs it to the voltage command value calculation means. The command value calculation means continuously executes the calculation of the reference phase angle of the voltage command value based on the torque command value and the rotation speed output by the speed detection means even when the operation of the power conversion means is stopped. Magnetic flux command value and Obtain a voltage command value at the time of resumption of power supply by calculating based on the quasi phase angle, and set this voltage command value as an initial value of the voltage command value to the power conversion means at the time of resumption of power supply to the induction motor, Thereafter, an output is made to increase the amplitude of the voltage command value to a desired value.

この発明の誘導電動機の制御装置は、電圧指令値演算手段は、磁束指令値およびトルク指令値から磁束分電流指令値およびトルク分電流指令値を算出し、磁束分電流指令値およびトルク分電流指令値に基づいて電力変換手段への電圧指令値を演算、出力するものであり、誘導電動機への給電を停止している期間に、誘導電動機の回転速度と回路定数と給電停止時の磁束指令値とに基づいて、給電再開時の磁束指令値演算を続行して磁束指令値変化率リミッタに出力し、磁束指令値変化率リミッタは、磁束指令値演算手段が出力する給電再開時の磁束指令値の変化率を制限するものであり、誘導電動機への給電再開時、磁束指令値変化率リミッタは磁束指令値の変化率を制御して電圧指令値演算手段に出力し、電圧指令値演算手段は電力変換手段の運転停止中にもトルク指令値および速度検知手段が出力する回転速度に基づき、電圧指令値の基準位相角の演算を実行し、給電再開時の磁束指令値と基準位相角とに基づき演算して給電再開時の電圧指令値を取得し、この値を給電再開時の電力変換手段への電圧指令値の初期値としてセットし、その後所望の値まで電圧指令値の振幅を増加させるので、電圧検知手段を用いることなく、給電停止期間の長短(残留磁束の大きさ)によらず、過電流やトルクショックを抑制して安定に再起動することができる。 In the control device for an induction motor according to the present invention, the voltage command value calculation means calculates a magnetic flux component current command value and a torque component current command value from the magnetic flux command value and the torque command value, and the magnetic flux component current command value and the torque component current command. The voltage command value to the power conversion means is calculated and output based on the value, and during the period when power supply to the induction motor is stopped, the rotation speed, circuit constants, and magnetic flux command value when power supply is stopped Based on the above, the calculation of the magnetic flux command value at the time of resuming power supply is continued and output to the magnetic flux command value change rate limiter. The magnetic flux command value change rate limiter When the power supply to the induction motor is resumed, the magnetic flux command value change rate limiter controls the change rate of the magnetic flux command value and outputs it to the voltage command value computing means. Is power conversion Even when the stage is stopped, the reference phase angle of the voltage command value is calculated based on the torque command value and the rotation speed output by the speed detection means, and is calculated based on the magnetic flux command value and the reference phase angle when power supply is resumed. Since the voltage command value at the time of resumption of power supply is acquired, this value is set as the initial value of the voltage command value to the power conversion means at the time of resumption of power supply, and then the amplitude of the voltage command value is increased to a desired value. Without using the voltage detection means, it is possible to suppress the overcurrent and the torque shock and stably restart regardless of the length of the power supply stop period (the magnitude of the residual magnetic flux).

実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1は、実施の形態1における誘導電動機の制御装置100を示すブロック図であり、誘導電動機1、電力変換手段2、電圧指令値演算手段3、磁束指令値演算手段4、速度検知手段5、シーケンス管理手段6、トルク指令値演算手段7で構成されている。
まず誘導電動機1のトルク制御方法について説明する。磁束指令値演算手段4、トルク指令値演算手段7は、誘導電動機1を制御するための所望の磁束指令値Φr_ref、トルク指令値τ_refを電圧指令値演算手段3に出力する。また、速度検知手段5は誘導電動機1の回転速度wrを検知し、これも電圧指令値演算手段3に出力される。以下、この発明の実施の形態では機械角回転速度に誘導電動機の極対数をかけた電気角回転速度を回転速度wrと表記する。
なお、次に誘導電動機1の制御法、すなわち電圧指令値演算手段3の動作ついて説明する前に、この発明の説明で用いる表記について以下に整理しておく。
誘導電動機の状態量の表記
dq軸:誘導電動機の磁束ベクトルに同期して回転する直交2軸座標系
Φd,Φq:d軸磁束 およびq軸磁束(通常、d軸を磁束ベクトルに一致させるためΦq=0)
id,iq:d軸電流およびq軸電流
vd,vq:d軸電圧およびq軸電圧
vu,vv,vw:三相におけるu相電圧、v相電圧、w相電圧
wr:電気角回転速度
w:磁束ベクトルの回転周波数
ws:すべり(w−wr)
θ:固定軸からみたd軸位相角(ベクトル制御の基準位相角)
誘導機定数の表記
Rs:一次抵抗値
Ls:一次インダクタンス値
Rr:二次抵抗値
Lr:二次インダクタンス値
M:相互インダクタンス値
σ:漏れ係数(1−M/Ls/Lr)
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing a control device 100 for an induction motor according to Embodiment 1, in which an induction motor 1, a power conversion unit 2, a voltage command value calculation unit 3, a magnetic flux command value calculation unit 4, a speed detection unit 5, It comprises a sequence management means 6 and a torque command value calculation means 7.
First, the torque control method of the induction motor 1 will be described. The magnetic flux command value calculation means 4 and the torque command value calculation means 7 output the desired magnetic flux command value Φr_ref and torque command value τ_ref for controlling the induction motor 1 to the voltage command value calculation means 3. Further, the speed detection means 5 detects the rotational speed wr of the induction motor 1, and this is also output to the voltage command value calculation means 3. Hereinafter, in the embodiment of the present invention, the electrical angular rotational speed obtained by multiplying the mechanical angular rotational speed by the number of pole pairs of the induction motor is expressed as a rotational speed wr.
Before describing the control method of the induction motor 1, that is, the operation of the voltage command value calculation means 3, the notations used in the description of the present invention are summarized below.
Notation of state quantity of induction motor dq axis: orthogonal biaxial coordinate system rotating in synchronization with magnetic flux vector of induction motor Φd, Φq: d-axis magnetic flux and q-axis magnetic flux (usually, Φq to match d-axis with magnetic flux vector = 0)
id, iq: d-axis current and q-axis current vd, vq: d-axis voltage and q-axis voltage vu, vv, vw: u-phase voltage, v-phase voltage, w-phase voltage in three phases wr: electrical angular rotation speed w: Rotational frequency of magnetic flux vector ws: slip (w-wr)
θ: d-axis phase angle from the fixed axis (reference phase angle for vector control)
Notation of induction machine constant Rs: Primary resistance value Ls: Primary inductance value Rr: Secondary resistance value Lr: Secondary inductance value M: Mutual inductance value σ: Leakage coefficient (1-M 2 / Ls / Lr)

電圧指令値演算手段3では、磁束指令値Φr_ref、トルク指令値τ_ref、回転速度wrに基づいて、誘導電動機1に出力すべき電圧の指令値を演算し、電力変換手段2へ出力する。一例としていわゆるベクトル制御を用いる場合の演算手段を以下で説明する。
磁束指令値Φr_ref、トルク指令値τ_refからすべり周波数指令ws_refを算出すると同時に、誘導電動機1の磁束に同期して回転するdq座標系を利用して電圧や電流を直流量として捉え、磁束分電流指令値ids_ref、トルク分電流指令値iqs_refを一度算出する。これら磁束分電流指令値ids_ref、トルク分電流指令値iqs_refに基づいてd軸電圧指令値vd_ref、q軸電圧指令値vq_refを算出し、さらに電圧指令値の振幅値と位相角に変換し、最終的にはvd_ref、vq_refを固定子座標上の3相交流の電圧指令値Vu_ref、Vv_ref、Vw_refへと座標変換することで、三相交流の電圧指令値を算出する。
こうして得られた三相交流の電圧指令値が、電力変換手段2へと出力される。電力変換手段2は、具体的には電圧指令値に基づいてPWM変調をおこなってゲート駆動信号を出力し、そのゲート信号にもとづいていわゆるインバータの主回路をスイッチング動作させることで、PWM三相電圧を誘導電動機1に出力し、これを駆動する。
The voltage command value calculation means 3 calculates a command value of a voltage to be output to the induction motor 1 based on the magnetic flux command value Φr_ref, the torque command value τ_ref, and the rotation speed wr, and outputs it to the power conversion means 2. As an example, calculation means when using so-called vector control will be described below.
The slip frequency command ws_ref is calculated from the magnetic flux command value Φr_ref and the torque command value τ_ref, and at the same time, the dq coordinate system that rotates in synchronism with the magnetic flux of the induction motor 1 is used to regard the voltage and current as a direct current, and the magnetic flux current command The value ids_ref and the torque current command value iqs_ref are calculated once. A d-axis voltage command value vd_ref and a q-axis voltage command value vq_ref are calculated based on the magnetic flux current command value ids_ref and the torque current command value iqs_ref, and further converted into an amplitude value and a phase angle of the voltage command value. In this case, vd_ref and vq_ref are coordinate-converted into three-phase AC voltage command values Vu_ref, Vv_ref, and Vw_ref on the stator coordinates, thereby calculating a three-phase AC voltage command value.
The three-phase AC voltage command value obtained in this way is output to the power conversion means 2. Specifically, the power conversion means 2 performs PWM modulation based on the voltage command value, outputs a gate drive signal, and performs a switching operation of a so-called main circuit of the inverter based on the gate signal. Is output to the induction motor 1 to drive it.

次に誘導電動機1の給電停止、再起動のシーケンスについて説明する。シーケンス管理手段6は、図示省略した更に上位の制御器からの指令、例えば電力変換手段2の電力源の停電、および復電をモニタする手段から発せられる、運転停止指令、および運転再開指令に基づいて、電力変換手段2、磁束指令値演算手段4、トルク指令値演算手段7に対してゲートオフ信号、およびゲートオン信号を出力する。ちなみに電気鉄道の用途では、主回路そのもののスイッチング動作による電力損失を抑制すべく、トルクを発生しない期間は積極的にゲート遮断して電力供給動作を休止する期間とするため、シーケンス管理手段6の動作は頻繁、かつ重要である。   Next, the power supply stop and restart sequence of the induction motor 1 will be described. The sequence management means 6 is based on a command from a higher-level controller (not shown), for example, an operation stop command and an operation restart command issued from a means for monitoring power failure and power recovery of the power conversion means 2. Thus, a gate-off signal and a gate-on signal are output to the power converter 2, the magnetic flux command value calculator 4, and the torque command value calculator 7. By the way, in the electric railway application, in order to suppress power loss due to the switching operation of the main circuit itself, the period during which no torque is generated is a period in which the power supply operation is suspended by actively shutting off the gate. Operation is frequent and important.

図2はシーケンス管理手段6が出力するゲートオフ信号、およびゲートオン信号と各指令値のタイミングを模式的に表したものである。まず、電力供給を停止させるゲートオフのシーケンスについて説明する。
通常の運転中にシーケンス管理手段6から、ゲートオフ信号が出力されると、電力変換手段2はゲート遮断し、これに応じて誘導電動機1への電流の供給が停止する。しかし、誘導電動機1には磁束が残留しており、これに起因する残留電圧が端子間に発生していることは既に述べたとおりである。
具体的には、dq軸座標でみた二次磁束(d軸成分)Φdrは以下の式1のように振舞う(通常、二次磁束ベクトルをd軸に採用するため、q軸成分Φqrは0である)。
FIG. 2 schematically shows the gate-off signal output from the sequence management means 6, and the timing of the gate-on signal and each command value. First, a gate-off sequence for stopping power supply will be described.
When a gate-off signal is output from the sequence management means 6 during normal operation, the power conversion means 2 shuts off the gate, and the supply of current to the induction motor 1 stops accordingly. However, as already described, magnetic flux remains in the induction motor 1 and a residual voltage resulting from this is generated between the terminals.
Specifically, the secondary magnetic flux (d-axis component) Φdr as seen in the dq-axis coordinates behaves as shown in the following formula 1 (usually, since the secondary magnetic flux vector is adopted for the d-axis, the q-axis component Φqr is 0. is there).

Figure 0004667741
Figure 0004667741

ただし、Φdr_offは、ゲート遮断時点の磁束の大きさを示し、sはラプラス演算子である。その他の定数表記は既出のとおりである。
式1は、誘導電動機の二次側回路の特性を示す、以下の式2、3において、ゲート遮断の瞬間からd軸電流id、q軸電流iqとも電流が0になることから導出できる。
However, (PHI) dr_off shows the magnitude | size of the magnetic flux at the time of gate interruption | blocking, and s is a Laplace operator. Other constants are as described above.
Equation 1 can be derived from the following equations 2 and 3, which show the characteristics of the secondary circuit of the induction motor, since the d-axis current id and the q-axis current iq become 0 from the moment of gate interruption.

Figure 0004667741
Figure 0004667741
Figure 0004667741
Figure 0004667741

本実施の形態1においては、図2に示すとおり、ゲート遮断中においては、式1に示した残留磁束と一致する再起動用磁束指令値Φdr_ref_onを磁束指令値演算手段4にて演算する。ここで、Φdr_ref_onは、式1に基づいた以下の式4で演算する。   In the first embodiment, as shown in FIG. 2, the magnetic flux command value calculation means 4 calculates a restart magnetic flux command value Φdr_ref_on that coincides with the residual magnetic flux shown in Equation 1 while the gate is shut off. Here, Φdr_ref_on is calculated by the following Expression 4 based on Expression 1.

Figure 0004667741
Figure 0004667741

ただし、ここでΦdr_offはゲート遮断時点における磁束指令値であり、Rr、Lr、は磁束指令値演算手段4にあらかじめ設定された二次抵抗Rr、二次インダクタンスLrの設定値である。
さらに、ゲート遮断中にもベクトル制御の基準座標軸を維持すべく、d軸が固定子座標基準軸(例えばuvwの三相のうちu相)から成す角θの演算をそのまま続行する。ただし、ここで実際のd軸と電圧制御手段で管理するd軸に誤差がでないよう、ゲート遮断中には実際のすべりすなわち磁束の回転周波数と回転子の電気角回転周波数の差が0であることを勘案して、すべり指令ws_refを0として以下の式5でθを演算する。なお、トルク指令値演算手段からトルク指令値τ_ref=0を出力するようにしても間接的にすべり指令ws_ref=0とする演算が可能であることは言うまでもない。
Here, Φdr_off is a magnetic flux command value at the time of gate interruption, and Rr * and Lr * are set values of the secondary resistance Rr and the secondary inductance Lr preset in the magnetic flux command value calculation means 4.
Further, in order to maintain the reference coordinate axis of the vector control even while the gate is shut off, the calculation of the angle θ formed by the d axis from the stator coordinate reference axis (for example, the u phase of the three phases of uvw) is continued. However, the difference between the actual slip, that is, the rotational frequency of the magnetic flux and the electrical angular rotational frequency of the rotor is 0 during the gate interruption so that there is no error between the actual d-axis and the d-axis managed by the voltage control means. Taking this into consideration, the slip command ws_ref is set to 0, and θ is calculated by the following equation 5. Needless to say, even if the torque command value calculating means outputs the torque command value τ_ref = 0, it is possible to indirectly calculate the slip command ws_ref = 0.

Figure 0004667741
Figure 0004667741

そして、以上によってゲート遮断中も演算を続行して得られる再起動用磁束指令値Φdr_ref_on、およびd軸位相角θ、そしてトルク指令τ_ref=0を用いて、電圧指令値演算手段3における演算を続行すれば、残留磁束に起因する誘起電圧に等しい電圧指令値が算出可能となる。   Then, the calculation in the voltage command value calculation means 3 is continued using the restarting magnetic flux command value Φdr_ref_on, the d-axis phase angle θ, and the torque command τ_ref = 0 obtained by continuing the calculation even while the gate is shut off. Then, a voltage command value equal to the induced voltage caused by the residual magnetic flux can be calculated.

次に、電力供給を再開するゲートオン時のシーケンスについて説明する。
電力供給を休止しているゲート遮断期間中に、シーケンス管理手段6からゲートオン信号が出力されると、誘導電動機の磁束制御、トルク制御を再開する。磁束指令値演算手段4では、所望の目標値まで磁束指令値Φdr_refを立ち上げるが、そのときの初期値として、ゲート遮断中に演算するΦdr_ref_onのゲート遮断期間の終端における値を採用し、磁束指令値Φdr_refの演算出力を開始する。同様に、ゲート遮断中に演算を続行して得ていたd軸位相角θについても、そのままリセットすることなく前記式5の積分動作を続行し、トルク指令τ_refの立ち上がりに応じたすべり指令ws_refを反映させながら、通常のベクトル制御位相角の演算とする。このように電力供給再開時の磁束指令値Φdr_ref、d軸位相角θに基づいて電圧指令演算手段3において電圧指令値を演算することで、ゲート遮断中の誘起電圧値に等しい初期電圧値から滑らかに再起動に向けた電圧指令値演算に移行できる。すなわち、この状態でゲートオン信号に同期して電力変換手段2のPWM変調動作を再開することによって、電流のショック、トルクのショックを発生させることなく、誘導電動機1の再起動が可能になる。
Next, a sequence when the gate is turned on to resume power supply will be described.
When a gate-on signal is output from the sequence management means 6 during the gate cutoff period during which the power supply is suspended, the magnetic flux control and torque control of the induction motor are resumed. In the magnetic flux command value calculation means 4, the magnetic flux command value Φdr_ref is raised to a desired target value. As an initial value at that time, the value at the end of the gate cutoff period of Φdr_ref_on calculated during gate cutoff is adopted. The calculation output of the value Φdr_ref is started. Similarly, with respect to the d-axis phase angle θ obtained by continuing the calculation while the gate is cut off, the integration operation of the above equation 5 is continued without resetting the same, and the slip command ws_ref corresponding to the rising edge of the torque command τ_ref is set. It is assumed that the normal vector control phase angle is calculated while reflecting. Thus, by calculating the voltage command value in the voltage command calculation means 3 based on the magnetic flux command value Φdr_ref and the d-axis phase angle θ when the power supply is resumed, the initial voltage value equal to the induced voltage value during gate shut-off can be smoothly obtained. It is possible to shift to voltage command value calculation for restart. That is, by restarting the PWM modulation operation of the power conversion means 2 in synchronization with the gate-on signal in this state, the induction motor 1 can be restarted without generating a current shock and a torque shock.

以上、図1、図2に示したように、この実施の形態1では電力供給が停止している期間に、速度検知手段5が出力する回転速度と、電力変換停止時点の磁束指令値と、誘導電動機1の回路定数とに基づく演算によってベクトル情報としての運転再開用磁束指令値を取得しておくことにより、誘導電動機1における残留磁束と運転再開用磁束指令値を一致させる演算が可能となるため、
電力変換手段2の運転を再開し誘導電動機1への電力供給を再開するにあたって、磁束指令値の初期値として、上記運転再開用磁束指令値をセットしてから、磁束指令値の大きさを所望の値まで増加させることによって、残留磁束を考慮した磁束立ち上げ制御が可能となり、電力供給の停止期間に依らず、安定した電流制御、トルク制御を、電圧検出器を用いることなく実施できる。
As described above, as shown in FIGS. 1 and 2, in the first embodiment, during the period when the power supply is stopped, the rotation speed output by the speed detection means 5, the magnetic flux command value when the power conversion is stopped, By obtaining the operation restarting magnetic flux command value as vector information by calculation based on the circuit constants of the induction motor 1, it is possible to perform an operation for making the residual magnetic flux in the induction motor 1 coincide with the operation restarting magnetic flux command value. For,
When resuming the operation of the power conversion means 2 and resuming the power supply to the induction motor 1, the operation resumption magnetic flux command value is set as the initial value of the magnetic flux command value, and then the magnitude of the magnetic flux command value is desired. By increasing the value to the value, it becomes possible to perform the magnetic flux rise control in consideration of the residual magnetic flux, and stable current control and torque control can be performed without using a voltage detector regardless of the power supply stop period.

実施の形態2.
次に実施の形態2を図に基づいて説明する。
図3は、実施の形態2における誘導電動機の制御装置100を示すもので、前記図1に示した実施の形態1の構成に対して、飽和特性テーブル40を付加したものである。
誘導電動機1のインダクタンス値は、磁束の大きさによって変化する。具体的には、磁束分電流であるd軸電流idsと二次磁束Φdrの関係は線形ではなく、idsを大きくしていくとΦdrは飽和する特性を持っており、idsやΦdrが大きいほど、誘導電動機1の相互インダクタンスM、一次側インダクタンスLs、二次側インダクタンスLrは小さくなる特性をもつ。
上記に起因して、式1における一次遅れ特性に関する定数であるRr/Lrは、二次磁束Φdrの大きさに応じて変化することになる。例えば、磁束指令値演算手段4における二次インダクタンス値Lrとして、定格磁束における二次インダクタンス値Lr_100が固定値として設定されている場合、ゲート遮断期間における磁束の大きさの低下に伴い、実際の二次インダクタンスLrがLr_100、Lrより相対的に増加していくため、真の磁束を表す式1と、磁束指令値演算手段4の演算内容である式4の出力結果との間は、厳密には図4のような差が生じることになる。このまま、式4のΦdr_ref_onの演算結果を用いて磁束立ち上げシーケンスに入ると、運転再開用磁束指令値と実際の磁束の差に起因した制御誤差から、電流やトルクのショックが発生する。
そこでこの実施の形態2では、実際の磁束の大きさΦdrと実際の二次インダクタンスLrの間にある飽和特性を記録した飽和特性テーブル40を設け、刻々と変化するΦdr_refの大きさと、飽和特性テーブル40とから二次インダクタンス設定値Lrを求め、磁束指令値演算手段4における式4の演算中のLrとして反映させるようにする。こうすることによって、実際の磁束の挙動を記述する式1におけるΦdrと、磁束指令値演算手段4における運転再開用磁束指令値Φdr_ref_onとが精度良く一致することになり、ゲートオン時、すなわち電力供給開始時の電流ショック、トルクショックを一層抑制することが可能となる。
Embodiment 2. FIG.
Next, the second embodiment will be described with reference to the drawings.
FIG. 3 shows a control device 100 for an induction motor according to a second embodiment, which is obtained by adding a saturation characteristic table 40 to the configuration of the first embodiment shown in FIG.
The inductance value of the induction motor 1 varies depending on the magnitude of the magnetic flux. Specifically, the relationship between the d-axis current ids, which is a magnetic flux component current, and the secondary magnetic flux Φdr is not linear, and Φdr has a characteristic that saturates as ids increases, and the larger ids and Φdr, The mutual inductance M, the primary side inductance Ls, and the secondary side inductance Lr of the induction motor 1 have characteristics that become small.
Due to the above, Rr / Lr, which is a constant related to the first-order lag characteristic in Equation 1, changes according to the magnitude of the secondary magnetic flux Φdr. For example, when the secondary inductance value Lr_100 in the rated magnetic flux is set as a fixed value as the secondary inductance value Lr * in the magnetic flux command value calculation means 4, the actual magnetic flux decreases with the decrease in the magnitude of the magnetic flux during the gate interruption period. Since the secondary inductance Lr increases relative to Lr_100 and Lr * , there is a strict difference between the expression 1 that represents the true magnetic flux and the output result of the expression 4 that is the calculation content of the magnetic flux command value calculation means 4. The difference as shown in FIG. If the magnetic flux startup sequence is entered using the calculation result of Φdr_ref_on of Expression 4, a current or torque shock is generated due to a control error caused by the difference between the operation resumption magnetic flux command value and the actual magnetic flux.
Therefore, in the second embodiment, a saturation characteristic table 40 in which a saturation characteristic between the actual magnetic flux magnitude Φdr and the actual secondary inductance Lr is recorded is provided, and the magnitude of Φdr_ref changing every moment and the saturation characteristic table are provided. 40, the secondary inductance set value Lr * is obtained and reflected as Lr * during the calculation of Expression 4 in the magnetic flux command value calculation means 4. By doing so, Φdr in Equation 1 describing the actual behavior of the magnetic flux and the operation resumption magnetic flux command value Φdr_ref_on in the magnetic flux command value calculation means 4 coincide with each other with high accuracy. It becomes possible to further suppress the current shock and torque shock at the time.

以上、図3のように、図1の構成に対して、誘導電動機1の磁束とインダクタンスとの間の関係を記録した飽和特性テーブル40を設け、運転再開用磁束指令値Φdr_ref_onの演算に反映させることによって、前記実施の形態1における効果に加え、
実際の残留磁束の挙動とより精度良く一致する運転再開用磁束指令値を演算することが可能となるため、残留磁束を考慮した磁束立ち上げ制御がよりスムーズになり、電流ショック、トルクショックをさらに低減できる効果が得られる。
As described above, as shown in FIG. 3, the saturation characteristic table 40 in which the relationship between the magnetic flux and the inductance of the induction motor 1 is recorded is provided for the configuration of FIG. 1 and reflected in the calculation of the operation resumption magnetic flux command value Φdr_ref_on. In addition to the effects of the first embodiment,
Since it is possible to calculate a flux command value for resuming operation that more accurately matches the behavior of the actual residual magnetic flux, the magnetic flux startup control considering the residual magnetic flux becomes smoother, and the current shock and torque shock are further increased. The effect which can be reduced is acquired.

なお、以上では、誘導電動機定数のうち、二次インダクタンスが飽和特性に起因して変動することによって式4の演算に及ぼす影響を回避する方法について述べたが、同様にして、温度変化に起因して変動する二次抵抗Rrの値を誘導電動機1に付加した抵抗値検出手段で検知し、これを式4のRrに反映させれば、運転再開用磁束指令値Φdr_ref_onと実際の磁束ΦRdがさらに精度良く一致することは言うまでもない。なお前記抵抗値検出手段の図示は省略した。
前記二次抵抗値検知手段としては、誘導電動機1の回転子の温度を計測して二次抵抗R2の対温度特性を記録したテーブルから実際のRrを求める手法や、温度計を用いずにRrを求める手法などが既に知られており、これらを組み合わせることによって式4の運転再開用磁束指令値Φdr_ref_onの演算精度を改善できる。
In the above, the method of avoiding the influence on the calculation of Equation 4 by the secondary inductance fluctuating due to the saturation characteristic among the induction motor constants has been described. Similarly, it is caused by the temperature change. If the value of the secondary resistance Rr that fluctuates in this way is detected by the resistance value detection means added to the induction motor 1, and this is reflected in Rr * of equation 4, the operation resumption magnetic flux command value Φdr_ref_on and the actual magnetic flux ΦRd are Needless to say, they match with high accuracy. The resistance value detecting means is not shown.
As the secondary resistance value detecting means, the temperature of the rotor of the induction motor 1 is measured to obtain the actual Rr from a table in which the temperature characteristic of the secondary resistance R2 is recorded, or Rr without using a thermometer. Is already known, and by combining these, the calculation accuracy of the operation resumption magnetic flux command value Φdr_ref_on of Equation 4 can be improved.

実施の形態3.
次に実施の形態3を図に基づいて説明する。
図5は、実施の形態3における誘導電動機の制御装置100を示すもので、前記図1に示した実施の形態1の構成に対して、磁束指令値変化率リミッタ41を付加したものである。図2で説明したように、ゲートオン時には運転再開用磁束指令値Φdr_ref_onを初期値として磁束指令値
Φdr_refを目標値まで増加させるが、磁束指令値変化率リミッタ41は、このときの変化率を制限して電圧指令値演算手段3に出力するものである。これによってゲートオンから磁束指令値Φdr_refが目標値に達するまでの間に生じる電流ショックやトルクショックを一層低減できることを以下で説明する。
誘導電動機の二次側回路の特性を示す式2、3のうち、二次磁束Φdrの大きさに関する式2に対し移項操作したものを以下の式6に示す。
Embodiment 3 FIG.
Next, Embodiment 3 will be described with reference to the drawings.
FIG. 5 shows a control device 100 for an induction motor according to a third embodiment, in which a magnetic flux command value change rate limiter 41 is added to the configuration of the first embodiment shown in FIG. As described with reference to FIG. 2, when the gate is turned on, the magnetic flux command value Φdr_ref is increased to the target value using the magnetic flux command value Φdr_ref_on for restarting operation as an initial value, but the magnetic flux command value change rate limiter 41 Output to the voltage command value calculation means 3. It will be described below that the current shock and torque shock that occur during the period from when the gate is turned on until the magnetic flux command value Φdr_ref reaches the target value can be further reduced.
Of Expressions 2 and 3 indicating the characteristics of the secondary side circuit of the induction motor, Expression 6 below is a result of the shift operation performed on Expression 2 regarding the magnitude of the secondary magnetic flux Φdr.

Figure 0004667741
Figure 0004667741

この式6に従うと、磁束の変化率が大きいほど、大きなd軸電流idsが発生することが言える。
次に誘導電動機1の一次側回路の電圧方程式は以下の式7とおりである。式2、3と同様に、二次磁束ベクトルをd軸とした回転座標上での表記である。
According to Equation 6, it can be said that the larger the change rate of the magnetic flux, the larger the d-axis current ids is generated.
Next, the voltage equation of the primary side circuit of the induction motor 1 is as the following Expression 7. Similar to Equations 2 and 3, it is a notation on rotational coordinates with the secondary magnetic flux vector as the d-axis.

Figure 0004667741
Figure 0004667741

なお、状態量や誘導電動機1の定数表記については既に説明したとおりである。
ここで前記q軸の式に注目すると、d軸からの干渉項として(w・σLs・ids)が存在することが分かる。すなわち、磁束の変化率が大きいときには、式6に従って大きなd軸電流idsが発生し、かつq軸電圧に対する干渉電圧(w・σLs・ids)が発生すると言える。電圧指令値演算手段3において、干渉電圧を正確に指令値に反映させる、すなわち正確にd軸位相角θを制御した上で正確に非干渉化制御ができれば、上記干渉電圧が電流の過渡応答に外乱となることはないが、実際には過渡的にθが実際の二次磁束ベクトルからずれた値となったり、電圧指令値演算手段における漏れインダクタンスの設定値が実際のσLsに対して誤差を有すること等によって、完全な非干渉化は困難である。その結果、q軸電圧に対する干渉電圧(w・σLs・ids)が外乱として急激に発生する場合、過渡的にq軸電流が発生することになり、磁束との積で過渡的なトルクが発生することになる。
The state quantity and the constant notation of the induction motor 1 are as already described.
When attention is paid to the q-axis equation, it can be seen that (w · σLs · ids) exists as an interference term from the d-axis. That is, when the change rate of the magnetic flux is large, it can be said that a large d-axis current ids is generated according to Equation 6 and an interference voltage (w · σLs · ids) with respect to the q-axis voltage is generated. In the voltage command value calculation means 3, if the interference voltage is accurately reflected in the command value, that is, the d-axis phase angle θ is accurately controlled and the non-interference control can be performed accurately, the interference voltage becomes a current transient response. Although there is no disturbance, in practice, θ becomes a value that is transiently deviated from the actual secondary magnetic flux vector, or the set value of the leakage inductance in the voltage command value calculation means has an error relative to the actual σLs. It is difficult to make it completely non-interfering by having it. As a result, when the interference voltage (w · σLs · ids) with respect to the q-axis voltage is abruptly generated as a disturbance, a q-axis current is transiently generated, and a transient torque is generated by the product with the magnetic flux. It will be.

以上から、急激に磁束を変化させると、過渡的に大きなd軸電流が発生し、これがq軸へ外乱としての干渉電圧を発生させ、過渡的なq軸電流制御も発生し、ひいては過渡的なトルク制御誤差も発生すると言える。逆を言えば、磁束の変化が緩やかであれば、上記の過渡電流、過渡トルクは発生しにくい。
そこで、磁束指令値発生手段4の出力に磁束指令値変化率リミッタ41を設け、磁束指令値の変化率を制限する。これによって、ゲートオンの後、磁束指令値を目標値まで増加させるときに発生する電流ショックやトルクショックを低減することができる。
以上、図5のように、前記実施の形態1に示した図1の構成に対して、磁束指令値の変化率を制限する磁束指令値変化率リミッタ41を設けることによって、前記実施の形態1における効果に加え、
d軸電流idsが過渡的に大きくなることを抑制し、同時にq軸への過渡的な外乱電圧の発生や過渡的なq軸電流制御誤差、トルク制御誤差を抑制することが可能となるため、再起動時の電流ショック、トルクショックをさらに低減できる。
From the above, if the magnetic flux is suddenly changed, a transiently large d-axis current is generated, which generates an interference voltage as a disturbance to the q-axis, which also causes a transient q-axis current control, and thus transient. It can be said that a torque control error also occurs. In other words, if the change in magnetic flux is gradual, the above transient current and transient torque are unlikely to occur.
Therefore, a magnetic flux command value change rate limiter 41 is provided at the output of the magnetic flux command value generating means 4 to limit the change rate of the magnetic flux command value. As a result, it is possible to reduce current shock and torque shock that occur when the magnetic flux command value is increased to the target value after gate-on.
As described above, as shown in FIG. 5, the magnetic flux command value change rate limiter 41 for limiting the change rate of the magnetic flux command value is provided in the configuration of FIG. In addition to the effects in
Since it is possible to suppress the d-axis current ids from becoming transiently large, and to suppress the generation of transient disturbance voltage to the q-axis, the transient q-axis current control error, and the torque control error at the same time, Current shock and torque shock during restart can be further reduced.

実施の形態4.
次に実施の形態4を図に基づいて説明する。
図6は、実施の形態4における誘導電動機の制御装置100を示すもので、構成要素1〜7は実施の形態1と同様であり、その説明を省略する。この実施の形態4は、磁束推定手段9を設ける制御装置の構成において、その出力である磁束推定値に基づいて、ゲートオン時の磁束制御を行うことを特徴とする。以下、その動作について説明する。
まず電流検出手段8は、誘導電動機1の一次側回路に流れる電流を検出する。このように電流検出手段8を設置する場合には、検出された電流を電圧指令値演算手段3にフイードバックし、電流指令値との差に基づいて電圧指令値を調節するいわゆる電流ループを構成すると電流の制御応答や制御精度が向上し、ひいてはトルク制御精度が向上することは、電動機制御における一般的技術として良く知られているとおりである。
磁束推定手段9は、速度検知手段5で得られる誘導電動機1の回転速度、電流検知手段8で得られる電流値、そして電圧指令値演算手段3の出力である電圧指令値に基づいて、誘導電動機1の磁束を推定する。磁束推定手段9の構成例としては例えば電気学会産業応用部門論文誌121巻8号(2001年)金原他;「抵抗変動にロバストな最適オブザーバを用いた誘導電動機のベクトル制御法」に示されている。その演算式を以下に引用する。
Embodiment 4 FIG.
Next, a fourth embodiment will be described with reference to the drawings.
FIG. 6 shows an induction motor control apparatus 100 according to the fourth embodiment, and the components 1 to 7 are the same as those in the first embodiment, and the description thereof is omitted. The fourth embodiment is characterized in that, in the configuration of the control device provided with the magnetic flux estimation means 9, the magnetic flux control is performed when the gate is turned on based on the magnetic flux estimation value that is the output. The operation will be described below.
First, the current detection means 8 detects the current flowing through the primary circuit of the induction motor 1. When the current detection means 8 is installed in this way, a so-called current loop is formed in which the detected current is fed back to the voltage command value calculation means 3 and the voltage command value is adjusted based on the difference from the current command value. It is well known as a general technique in motor control that the current control response and control accuracy are improved, and consequently the torque control accuracy is improved.
The magnetic flux estimation means 9 is based on the rotation speed of the induction motor 1 obtained by the speed detection means 5, the current value obtained by the current detection means 8, and the voltage command value that is the output of the voltage command value calculation means 3. 1 magnetic flux is estimated. An example of the configuration of the magnetic flux estimation means 9 is shown, for example, in the Institute of Electrical Engineers, Industrial Application Division, Vol. 121, No. 8 (2001) Kanehara et al., “Vector Control Method of Induction Motor Using an Optimal Observer Robust to Resistance Variation”. Yes. The arithmetic expression is cited below.

Figure 0004667741
Figure 0004667741
Figure 0004667741
Figure 0004667741

二次磁束推定値の位相角情報はd軸位相角θとして電圧指令値演算手段3に出力され、座標変換に用いられる。前記文献では、以下のようにして二次磁束の回転周波数wを算出し、それを用いてθを算出している。   The phase angle information of the secondary magnetic flux estimated value is output as the d-axis phase angle θ to the voltage command value calculation means 3 and used for coordinate conversion. In the above document, the rotational frequency w of the secondary magnetic flux is calculated as follows, and θ is calculated using it.

Figure 0004667741
Figure 0004667741
Figure 0004667741
Figure 0004667741

また、二次磁束推定値は磁束指令値演算手段4に出力され、磁束の制御に用いる。
ここで、ゲートオフ、ゲートオンに伴う磁束推定手段9の動作について説明する。
電力変換手段2、誘導電動機1に電力が供給されている期間、すなわち所望のPWM動作により電圧が誘導電動機1に出力されている期間には、誘導電動機1の一次側端子電圧は、ほぼ電圧指令値演算手段3の出力に等しい。したがって、磁束推定手段9に必要な一次側端子電圧の信号として、電圧指令値を代用することで、電圧を検知するハードウェアを省略してコストを抑制しつつ、磁束推定を行うことが可能である。当然、大きさの情報だけでなく、二次磁束の位相角の情報も推定できるため、d軸位相角θの演算も可能であり、ベクトル制御のための座標変換操作が可能である。
一方、電力変換手段2、誘導電動機1に電力が供給されていない期間、ゲート遮断期間中には、誘導電動機1の一次側端子電圧と電圧指令値演算手段3の出力とは必ずしも一致しない。従って、上記のように電圧指令値で代用する方法で磁束推定手段9の入力に用いると、磁束推定手段9の出力である磁束推定値の精度は著しく低下してしまう。そこで、ゲート遮断期間中には、一次側端子電圧を用いない磁束推定演算手法に切り替える。前記文献における例では、フィードバックゲインHを以下の式9のH_offに置き換えることで、二次磁束Φdr、Φqrの推定演算については実施の形態1の説明に用いた式2、3と等価になり、電圧値を用いない磁束推定演算形式とすることができる。
The estimated value of the secondary magnetic flux is output to the magnetic flux command value calculating means 4 and used for controlling the magnetic flux.
Here, the operation of the magnetic flux estimation means 9 accompanying gate-off and gate-on will be described.
During a period in which power is supplied to the power conversion means 2 and the induction motor 1, that is, a period in which a voltage is output to the induction motor 1 by a desired PWM operation, the primary terminal voltage of the induction motor 1 is almost equal to the voltage command. It is equal to the output of the value calculation means 3. Therefore, by substituting the voltage command value as the primary terminal voltage signal necessary for the magnetic flux estimation means 9, it is possible to perform magnetic flux estimation while omitting the hardware for detecting the voltage and suppressing costs. is there. Of course, since not only the magnitude information but also the phase angle information of the secondary magnetic flux can be estimated, the d-axis phase angle θ can be calculated, and a coordinate conversion operation for vector control is possible.
On the other hand, the primary terminal voltage of the induction motor 1 and the output of the voltage command value calculation means 3 do not necessarily match during the period when power is not supplied to the power conversion means 2 and the induction motor 1 and during the gate cutoff period. Therefore, if the method of substituting the voltage command value as described above is used for the input of the magnetic flux estimation means 9, the accuracy of the magnetic flux estimation value that is the output of the magnetic flux estimation means 9 will be significantly reduced. Therefore, during the gate cut-off period, the magnetic flux estimation calculation method that does not use the primary terminal voltage is switched. In the example in the above document, by substituting the feedback gain H with H_off in Equation 9 below, the estimation calculation of the secondary magnetic fluxes Φdr and Φqr becomes equivalent to Equations 2 and 3 used in the description of Embodiment 1. It is possible to adopt a magnetic flux estimation calculation format that does not use a voltage value.

Figure 0004667741
Figure 0004667741

こうして、ゲート遮断期間用にはフィードバックゲイン行列HをH_offに切り替えて、前記式9、10の磁束オブザーバによる磁束推定演算を続行することで、ゲート遮断期間中の二次磁束、いわゆる残留磁束を推定することが可能であり、これを磁束指令値演算手段4に出力して給電再開用磁束指令値としてセットしておく。また、磁束の大きさの情報だけでなく、二次磁束の位相角の情報も推定できるため、遮断期間中におけるd軸位相角θの演算も可能である。
なお、ゲート遮断期間中は、誘導電動機1の端子が開放されることとほぼ等価であり、原則として一次電流ids、iqsは共に0となる。結局、式12のH_offを用いて式9、10をゲート遮断期間中に演算することは、ゲートオフ時点の磁束推定値と回転速度wrと誘導機の回路定数のみに基づいた演算である。従って、0を積算する演算を省略した簡易な演算式に切り替えても同様の磁束推定演算が可能であり、切り替え項目の省略によるシーケンス簡易化とのバランスを考慮して磁束推定手段9に実装すれば良い。
以上のようにして、電力供給期間、ゲート遮断期間にかかわらず、二次磁束の推定演算、およびd軸位相角θの演算が可能である。従って、ゲートオン時には、その時点における磁束推定値Φdrを運転再開用磁束指令値として、磁束指令値演算手段4のΦdr_refの初期値に設定すれば、電圧指令値演算手段3は残留磁束を考慮した電圧指令値を出力することができ、この状態から電力変換手段2の動作を再開すれば、電流ショック、トルクショックを発生させることなく安定に誘導電動機1、電力変換手段2の運転を再開できる。その後、所望の目標値まで磁束指令値Φdr_refを増加させるようにすれば、所望の運転状態に移行することができる。
Thus, by switching the feedback gain matrix H to H_off for the gate interruption period and continuing the magnetic flux estimation calculation by the magnetic flux observer of the above formulas 9 and 10, the secondary magnetic flux during the gate interruption period, so-called residual magnetic flux, is estimated. This is output to the magnetic flux command value calculation means 4 and set as a power supply resumption magnetic flux command value. Further, since not only the information on the magnitude of the magnetic flux but also the information on the phase angle of the secondary magnetic flux can be estimated, it is possible to calculate the d-axis phase angle θ during the interruption period.
Note that during the gate cutoff period, it is almost equivalent to opening the terminal of the induction motor 1, and the primary currents ids and iqs are both 0 in principle. After all, the calculation of Expressions 9 and 10 during the gate cutoff period using H_off of Expression 12 is based only on the estimated magnetic flux at the gate-off time, the rotational speed wr, and the circuit constants of the induction machine. Therefore, the same magnetic flux estimation calculation can be performed even when switching to a simple arithmetic expression that omits the calculation of adding zero, and is implemented in the magnetic flux estimation means 9 in consideration of the balance with the simplification of the sequence by omitting the switching items. It ’s fine.
As described above, the secondary magnetic flux estimation calculation and the d-axis phase angle θ can be calculated regardless of the power supply period and the gate cutoff period. Accordingly, when the gate is turned on, if the estimated magnetic flux value Φdr at that time is set as the initial value of Φdr_ref of the magnetic flux command value calculation means 4 as the operation resumption magnetic flux command value, the voltage command value calculation means 3 is a voltage that takes into account the residual magnetic flux. The command value can be output, and if the operation of the power conversion means 2 is resumed from this state, the operation of the induction motor 1 and the power conversion means 2 can be stably resumed without generating a current shock and a torque shock. Thereafter, if the magnetic flux command value Φdr_ref is increased to a desired target value, it is possible to shift to a desired operation state.

以上、この実施の形態4の図6に示すように電力供給が停止している期間に、電力変換手段2の停止時の磁束推定値と、速度検知手段5が出力する回転速度と、誘導電動機1の回路定数とに基づく演算によってベクトル情報としての運転再開用磁束指令値を取得しておくことにより、誘導電動機1における残留磁束と運転再開用磁束指令値を一致させる演算が可能となるため、
電力変換手段2の運転を再開し誘導電動機1への電力供給を再開するにあたって、磁束指令値の初期値として、上記運転再開用磁束指令値をセットしてから、磁束指令値の大きさを所望の値まで増加させることによって、残留磁束を考慮した磁束立ち上げ制御が可能となり、電力供給の停止期間に依らず、安定した電流制御、トルク制御を、電圧検出器を用いることなく実施できる効果が得られる。
As described above, as shown in FIG. 6 of the fourth embodiment, the estimated magnetic flux when the power conversion means 2 is stopped, the rotational speed output by the speed detection means 5, and the induction motor during the period when the power supply is stopped. Since the operation restarting magnetic flux command value as vector information is obtained by the calculation based on the circuit constant of 1, the calculation of matching the residual magnetic flux in the induction motor 1 with the operation restarting magnetic flux command value becomes possible.
When resuming the operation of the power conversion means 2 and resuming the power supply to the induction motor 1, the operation resumption magnetic flux command value is set as the initial value of the magnetic flux command value, and then the magnitude of the magnetic flux command value is desired. By increasing the value up to this value, it becomes possible to control the rise of magnetic flux in consideration of the residual magnetic flux, and it is possible to carry out stable current control and torque control without using a voltage detector regardless of the power supply stop period. can get.

以上のように、この発明の実施の形態1〜4による誘導電動機の制御装置は、電車、工作機械、ファン、ポンプ等の駆動に用いられている誘導電動機に適用可能である。   As described above, the control apparatus for induction motors according to the first to fourth embodiments of the present invention can be applied to induction motors used for driving trains, machine tools, fans, pumps, and the like.

この発明の実施の形態1の誘導電動機の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the induction motor of Embodiment 1 of this invention. この発明の実施の形態1の信号タイミングを模式的に示す図である。It is a figure which shows typically the signal timing of Embodiment 1 of this invention. この発明の実施の形態2の誘導電動機の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the induction motor of Embodiment 2 of this invention. この発明の実施の形態2の信号タイミングを模式的に示す図である。It is a figure which shows typically the signal timing of Embodiment 2 of this invention. この発明の実施の形態3の誘導電動機の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the induction motor of Embodiment 3 of this invention. この発明の実施の形態4の誘導電動機の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the induction motor of Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 誘導電動機、2 電力変換手段、3 電圧指令値演算手段、
4 磁束指令値演算手段、5 速度検知手段、7 トルク指令値演算手段、
8 電流検出手段、9 磁束推定手段、40 飽和特性テーブル、
41 磁束指令値変化率リミッタ、100 誘導電動機の制御装置。
1 induction motor, 2 power conversion means, 3 voltage command value calculation means,
4 magnetic flux command value calculating means, 5 speed detecting means, 7 torque command value calculating means,
8 current detection means, 9 magnetic flux estimation means, 40 saturation characteristic table,
41 Magnetic flux command value change rate limiter, 100 Induction motor control device.

Claims (4)

誘導電動機の制御装置であって、
電力変換手段と速度検知手段と電圧指令値演算手段と磁束指令値演算手段と磁束指令値変化率リミッタとトルク指令値演算手段とを備え、
前記電力変換手段は、前記誘導電動機に給電するものであり、前記速度検知手段は、前記誘導電動機の回転速度を検知するものであり、
前記磁束指令値演算手段は、前記誘導電動機を制御するための所望の磁束指令値を演算して、前記電圧指令値演算手段に出力するものであり、
前記トルク指令値演算手段は、前記誘導電動機を制御するための所望のトルク指令値を前記電圧指令値演算手段に出力するものであり、
前記電圧指令値演算手段は、前記磁束指令値および前記トルク指令値から磁束分電流指令値およびトルク分電流指令値を算出し、前記磁束分電流指令値および前記トルク分電流指令値に基づいて前記電力変換手段への電圧指令値を演算、出力するものであり、
前記電力変換手段が運転を停止し前記誘導電動機への給電を停止している期間に、
前記磁束指令値演算手段は前記誘導電動機の回転速度と回路定数と給電停止時の磁束指令値とに基づいて、給電再開時の磁束指令値演算を続行して前記磁束指令値変化率リミッタに出力し、
前記磁束指令値変化率リミッタは、前記磁束指令値演算手段が出力する給電再開時の磁束指令値の変化率を制限するものであり、前記誘導電動機への給電再開時、前記磁束指令値変化率リミッタは磁束指令値の変化率を制御して前記電圧指令値演算手段に出力し、
前記電圧指令値演算手段は、前記電力変換手段の運転停止中にも前記トルク指令値および前記速度検知手段が出力する回転速度に基づき、電圧指令値の基準位相角の演算を連続して実行するとともに、前記給電再開時の磁束指令値と前記基準位相角とに基づき演算することにより給電再開時の電圧指令値を取得し、この電圧指令値を前記誘導電動機への給電再開時の、前記電力変換手段への電圧指令値の初期値としてセットし、その後所望の値まで電圧指令値の振幅を増加させるよう出力することを特徴とする誘導電動機の制御装置。
A control device for an induction motor,
Power conversion means, speed detection means, voltage command value calculation means, magnetic flux command value calculation means, magnetic flux command value change rate limiter, torque command value calculation means,
The power conversion means supplies power to the induction motor, and the speed detection means detects a rotation speed of the induction motor,
The magnetic flux command value calculating means calculates a desired magnetic flux command value for controlling the induction motor, and outputs it to the voltage command value calculating means.
The torque command value calculation means outputs a desired torque command value for controlling the induction motor to the voltage command value calculation means,
The voltage command value calculating means calculates a magnetic flux current command value and a torque current command value from the magnetic flux command value and the torque command value, and based on the magnetic flux current command value and the torque current command value, Calculates and outputs the voltage command value to the power conversion means,
During the period in which the power conversion means stops operating and stops feeding the induction motor,
The magnetic flux command value calculation means continues the calculation of the magnetic flux command value at the time of resuming the power supply based on the rotational speed of the induction motor, the circuit constants, and the magnetic flux command value at the time of the power supply stop. Output,
The magnetic flux command value change rate limiter limits the rate of change of the magnetic flux command value when the power supply is resumed, which is output from the magnetic flux command value calculation means, and when the power supply to the induction motor is resumed, the magnetic flux command value change rate The limiter controls the rate of change of the magnetic flux command value and outputs it to the voltage command value calculating means,
The voltage command value calculation means continuously calculates a reference phase angle of the voltage command value based on the torque command value and the rotation speed output by the speed detection means even when the operation of the power conversion means is stopped. A voltage command value at the time of resuming power feeding is obtained by calculating based on the magnetic flux command value at the time of resuming power feeding and the reference phase angle, and the power at the time of resuming power feeding to the induction motor is obtained from this voltage command value. A control device for an induction motor, which is set as an initial value of a voltage command value to a conversion means and then outputs to increase the amplitude of the voltage command value to a desired value.
前記誘導電動機の制御装置には、さらに加えて前記磁束指令値演算手段に付属して飽和特性テーブルが設けられており、前記飽和特性テーブルは、前記誘導電動機の磁束とインダクタンスとの間の飽和特性を記録したものであり、
前記磁束指令値演算手段が給電再開時の磁束指令値を演算する際、前記飽和特性テーブルを前記演算に反映させることを特徴とする請求項1に記載の誘導電動機の制御装置。
In addition, the control device for the induction motor is provided with a saturation characteristic table attached to the magnetic flux command value calculation means, and the saturation characteristic table is a saturation characteristic between the magnetic flux and the inductance of the induction motor. Is recorded,
2. The induction motor control device according to claim 1, wherein when the magnetic flux command value calculation means calculates a magnetic flux command value when power supply is resumed, the saturation characteristic table is reflected in the calculation.
前記誘導電動機の制御装置には、さらに加えて抵抗値検出手段が設けられており、
前記抵抗値検出手段は2次側巻線回路の温度変化に伴う抵抗値を推定して前記磁束指令値演算手段に出力するものであり、前記磁束指令値演算手段は、前記推定抵抗値を給電再開時の磁束指令値を演算する際の回路定数に反映させることを特徴とする請求項1または請求項2に記載の誘導電動機の制御装置。
In addition to the induction motor control device, a resistance value detection means is provided,
The resistance value detecting means estimates a resistance value associated with a temperature change of the secondary winding circuit and outputs the estimated resistance value to the magnetic flux command value calculating means. The magnetic flux command value calculating means feeds the estimated resistance value. The control apparatus for an induction motor according to claim 1 or 2, wherein a magnetic flux command value at the time of restart is reflected in a circuit constant at the time of calculation.
誘導電動機の制御装置であって、
電力変換手段と速度検知手段と電流検出手段と電圧指令値演算手段と磁束指令値演算手段と磁束推定手段および磁束指令値変化率リミッタとを備え、
前記電力変換手段は、前記誘導電動機に給電するものであり、前記速度検知手段は、前記誘導電動機の回転速度を検知するものであり、
前記電流検出手段は前記誘導電動機の1次側回路電流を検出するとともに、前記電圧指令値演算手段にフィードバックするものであり、
前記磁束指令値演算手段は、前記誘導電動機を制御するための所望の磁束指令値を演算して、前記磁束指令値変化率リミッタに出力し、
前記電圧指令値演算手段は、前記磁束指令値およびトルク指令値から磁束分電流指令値およびトルク分電流指令値を算出し、前記磁束分電流指令値および前記トルク分電流指令値に基づいて前記電力変換手段への電圧指令値を演算、出力するとともに、電圧指令値の基準位相角を演算するものであり、
前記磁束指令値変化率リミッタは、前記磁束指令値演算手段が出力する給電再開時の磁束指令値の変化率を制限するものであり、前記誘導電動機への給電再開時、前記磁束指令値変化率リミッタは磁束指令値の変化率を制御して前記電圧指令値演算手段に出力し、前記磁束推定手段は、前記誘導電動機を制御するための磁束推定値を演算して、前記電圧指令値演算手段および前記磁束指令値演算手段に出力するものであり、
前記電力変換手段が運転を停止し前記誘導電動機への給電を停止している期間に、
前記磁束指令値演算手段は前記誘導電動機の回転速度と回路定数と給電停止時の磁束推定値とに基づいて、給電再開時の磁束指令値演算を続行して前記電圧指令値演算手段に出力し、
前記電圧指令値演算手段は、前記電力変換手段の運転停止中にも前記速度検知手段が出力する回転速度に基づき、電圧指令値の基準位相角の演算を連続して実行するとともに、前記給電再開時の磁束指令値と前記基準位相角とに基づき演算することにより給電再開時の電圧指令値を取得し、この電圧指令値を前記誘導電動機の給電再開時の前記電力変換手段への電圧指令値の初期値としてセットして前記誘導電動機を再始動させ、始動開始後は前記磁束推定手段が前記回転速度、1次側回路電流および電圧指令値演算手段の出力する電圧指令値に基づいて推定磁束を演算するとともに前記電圧指令値演算手段に出力し、前記電圧指令値演算手段は前記推定磁束値と基準位相角とに基づいて演算した電圧指令値を前記電力変換手段に出力し、その後所望の値まで電圧指令値の振幅を増加させるよう出力することを特徴とする誘導電動機の制御装置。
A control device for an induction motor,
Power conversion means, speed detection means, current detection means, voltage command value calculation means, magnetic flux command value calculation means, magnetic flux estimation means and magnetic flux command value change rate limiter,
The power conversion means supplies power to the induction motor, and the speed detection means detects a rotation speed of the induction motor,
The current detection means detects a primary circuit current of the induction motor and feeds back to the voltage command value calculation means.
The magnetic flux command value calculating means calculates a desired magnetic flux command value for controlling the induction motor, and outputs it to the magnetic flux command value change rate limiter.
The voltage command value calculation means calculates a magnetic flux current command value and a torque current command value from the magnetic flux command value and the torque command value, and the electric power based on the magnetic flux current command value and the torque current command value. While calculating and outputting the voltage command value to the conversion means, the reference phase angle of the voltage command value is calculated,
The magnetic flux command value change rate limiter limits the rate of change of the magnetic flux command value when the power supply is resumed, which is output from the magnetic flux command value calculation means, and when the power supply to the induction motor is resumed, the magnetic flux command value change rate The limiter controls the rate of change of the magnetic flux command value and outputs it to the voltage command value calculating means, and the magnetic flux estimating means calculates the magnetic flux estimated value for controlling the induction motor, and the voltage command value calculating means And output to the magnetic flux command value calculation means,
During the period in which the power conversion means stops operating and stops feeding the induction motor,
The magnetic flux command value calculation means continues the calculation of the magnetic flux command value at the time of resuming the power supply based on the rotation speed of the induction motor, the circuit constant, and the estimated magnetic flux value at the time of power supply stop, and outputs it to the voltage command value calculation means And
The voltage command value calculation means continuously calculates a reference phase angle of the voltage command value based on the rotation speed output by the speed detection means even when the operation of the power conversion means is stopped, and resumes the power supply A voltage command value at the time of resuming power supply is obtained by calculating based on the magnetic flux command value at the time and the reference phase angle, and this voltage command value is a voltage command value to the power conversion means at the time of resuming power feeding of the induction motor. And the induction motor is restarted. After starting, the magnetic flux estimation means estimates the magnetic flux based on the rotational speed, the primary side circuit current, and the voltage command value output from the voltage command value calculation means. Is output to the voltage command value calculation means, and the voltage command value calculation means outputs a voltage command value calculated based on the estimated magnetic flux value and a reference phase angle to the power conversion means. Control device for an induction motor and outputs to increase the amplitude of the voltage command value to the trailing desired value.
JP2003428528A 2003-12-25 2003-12-25 Induction motor control device Expired - Fee Related JP4667741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428528A JP4667741B2 (en) 2003-12-25 2003-12-25 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428528A JP4667741B2 (en) 2003-12-25 2003-12-25 Induction motor control device

Publications (2)

Publication Number Publication Date
JP2005192295A JP2005192295A (en) 2005-07-14
JP4667741B2 true JP4667741B2 (en) 2011-04-13

Family

ID=34787458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428528A Expired - Fee Related JP4667741B2 (en) 2003-12-25 2003-12-25 Induction motor control device

Country Status (1)

Country Link
JP (1) JP4667741B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855274B2 (en) * 2007-01-11 2012-01-18 三菱電機株式会社 Power converter
JP5266803B2 (en) * 2008-03-06 2013-08-21 富士電機株式会社 Induction motor control device
DE102009021823A1 (en) * 2009-05-18 2010-12-09 Bombardier Transportation Gmbh Overcurrent limiting in the control of converter-fed three-phase machines
US9509240B2 (en) * 2014-12-30 2016-11-29 Tesla Motors, Inc. Electric motor using multiple reference frames for flux angle
KR101786335B1 (en) * 2016-04-27 2017-10-17 엘에스산전 주식회사 Apparatus for controlling drive
DE112017007220T5 (en) * 2017-03-10 2019-11-21 Mitsubishi Electric Corporation Electric vehicle drive control device
JP7245739B2 (en) * 2019-07-24 2023-03-24 株式会社日立製作所 Induction motor drive device, drive method, and electric vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487591A (en) * 1990-07-24 1992-03-19 Fuji Electric Co Ltd Controller of induction motor
JPH08154305A (en) * 1994-11-28 1996-06-11 Toyota Motor Corp Control method for induction motor
JPH09502334A (en) * 1992-07-29 1997-03-04 エイビービー ストロームベルグ ドライブズ オサケ ユキチュア Method of determining residual magnetic flux in an inverter-fed cage-type induction machine
JPH1052100A (en) * 1996-08-02 1998-02-20 Okuma Mach Works Ltd Controller for induction motor
WO1998035903A1 (en) * 1997-02-14 1998-08-20 Hitachi, Ltd. Control device for induction motor and control device for elevator
JP2003259699A (en) * 2002-03-06 2003-09-12 Toshiba Corp Power converter
JP2003274687A (en) * 2002-03-13 2003-09-26 Mitsubishi Electric Corp Controlling apparatus for rotating machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2629196B2 (en) * 1987-08-29 1997-07-09 株式会社安川電機 Vector controller for induction motor
JP3474730B2 (en) * 1997-07-31 2003-12-08 株式会社東芝 Vector control device for linear induction motor
JP2000184799A (en) * 1998-12-15 2000-06-30 Mitsubishi Electric Corp Controller for induction motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487591A (en) * 1990-07-24 1992-03-19 Fuji Electric Co Ltd Controller of induction motor
JPH09502334A (en) * 1992-07-29 1997-03-04 エイビービー ストロームベルグ ドライブズ オサケ ユキチュア Method of determining residual magnetic flux in an inverter-fed cage-type induction machine
JPH08154305A (en) * 1994-11-28 1996-06-11 Toyota Motor Corp Control method for induction motor
JPH1052100A (en) * 1996-08-02 1998-02-20 Okuma Mach Works Ltd Controller for induction motor
WO1998035903A1 (en) * 1997-02-14 1998-08-20 Hitachi, Ltd. Control device for induction motor and control device for elevator
JP2003259699A (en) * 2002-03-06 2003-09-12 Toshiba Corp Power converter
JP2003274687A (en) * 2002-03-13 2003-09-26 Mitsubishi Electric Corp Controlling apparatus for rotating machine

Also Published As

Publication number Publication date
JP2005192295A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP5957704B2 (en) Electric motor control device
TWI587622B (en) Drive system and inverter device
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
JP2009142116A (en) Position sensorless controller of permanent magnetic motor
JP6776066B2 (en) Inverter controller and motor drive system
JP2009232498A (en) Motor control device
JP2009290929A (en) Controller for permanent magnet type synchronous motor
JPWO2014192467A1 (en) Magnetic pole position detection device for permanent magnet type synchronous motor
JPWO2016121373A1 (en) Motor control device and torque constant correction method in motor control device
JP2015133802A (en) Control device and control method for synchronous motor
JP2007135345A (en) Magnet motor controller
JP4667741B2 (en) Induction motor control device
JP2013150498A (en) Controller and control method of synchronous motor
JP2011067066A (en) Controller for permanent magnet type synchronous motor
JP2007336645A (en) Controller for synchronous machines
US10298158B2 (en) Controller for electric motor
JP2008017577A (en) Synchronous motor controller
JP5744151B2 (en) Electric motor driving apparatus and electric motor driving method
JP7009861B2 (en) Motor control device
JP5307578B2 (en) Electric motor control device
JP2009284557A (en) Controller for permanent magnet type synchronous motor
JP5862691B2 (en) Control device for motor drive device and motor drive system
JP5092572B2 (en) Control device for permanent magnet type synchronous motor
JP5511531B2 (en) Control device for synchronous motor
JP2012175776A (en) Motor controller and motor drive system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100302

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees