JP5387899B2 - Control device for permanent magnet type synchronous motor - Google Patents

Control device for permanent magnet type synchronous motor Download PDF

Info

Publication number
JP5387899B2
JP5387899B2 JP2009164449A JP2009164449A JP5387899B2 JP 5387899 B2 JP5387899 B2 JP 5387899B2 JP 2009164449 A JP2009164449 A JP 2009164449A JP 2009164449 A JP2009164449 A JP 2009164449A JP 5387899 B2 JP5387899 B2 JP 5387899B2
Authority
JP
Japan
Prior art keywords
value
permanent magnet
armature resistance
weighting factor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009164449A
Other languages
Japanese (ja)
Other versions
JP2011024281A (en
Inventor
尚史 野村
康 松本
岳志 黒田
信夫 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009164449A priority Critical patent/JP5387899B2/en
Publication of JP2011024281A publication Critical patent/JP2011024281A/en
Application granted granted Critical
Publication of JP5387899B2 publication Critical patent/JP5387899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、磁極位置検出器を使用しない永久磁石形同期電動機の制御装置に関し、詳しくは、電動機の電機子抵抗を正確に推定して回転子の磁極位置を高精度に演算するための技術に関するものである。   The present invention relates to a control device for a permanent magnet type synchronous motor that does not use a magnetic pole position detector, and more particularly to a technique for accurately estimating the armature resistance of a motor and calculating the magnetic pole position of a rotor with high accuracy. Is.

永久磁石形同期電動機の制御装置をコストダウンするため、磁極位置検出器を使用しないで運転する、いわゆる、センサレス制御が実用化されている。センサレス制御は、電動機の端子電圧や電流の情報から回転子の磁極位置及び速度を演算し、これらに基づいて電流制御を行うことでトルク制御や速度制御を実現するものである。
例えば、特許文献1や非特許文献1には、実際の回転子の磁極方向の軸(d軸)に対して直交方向に発生する拡張誘起電圧を演算し、この拡張誘起電圧の角度から磁極位置の演算誤差(前記d軸と仮想的な制御軸であるγ軸との間の角度差)を検出し、この演算誤差を利用して磁極位置及び速度を演算するセンサレス制御技術が開示されている。
In order to reduce the cost of a control device for a permanent magnet type synchronous motor, so-called sensorless control, which is operated without using a magnetic pole position detector, has been put into practical use. In the sensorless control, torque control and speed control are realized by calculating the magnetic pole position and speed of the rotor from information on the terminal voltage and current of the electric motor, and performing current control based on these.
For example, in Patent Document 1 and Non-Patent Document 1, an expansion induced voltage generated in a direction orthogonal to the axis (d axis) of the actual rotor in the magnetic pole direction is calculated, and the magnetic pole position is calculated from the angle of the expansion induced voltage. Sensorless control technology is disclosed that detects a calculation error (angle difference between the d-axis and the γ-axis, which is a virtual control axis), and calculates the magnetic pole position and speed using this calculation error. .

特許文献1や非特許文献1に開示されている従来技術では、電動機の低速運転時に、電機子抵抗の設定誤差や温度変化によって拡張誘起電圧ひいては磁極位置の演算誤差が大きくなり、この結果、トルク制御誤差が発生したり、運転不能になる等の問題がある。
そこで、電動機の運転状態に応じて電機子抵抗を正確に推定し、高精度なセンサレス制御を行うようにした従来技術が、以下のように公知となっている。
In the prior art disclosed in Patent Document 1 and Non-Patent Document 1, when the motor is operated at a low speed, the setting error of the armature resistance and the temperature change increase the calculation error of the expansion induced voltage and hence the magnetic pole position. There are problems such as control error and inability to operate.
Therefore, a conventional technique in which the armature resistance is accurately estimated according to the operating state of the motor and high-precision sensorless control is performed is known as follows.

例えば、特許文献2には、電動機の電圧方程式から演算した永久磁石磁束から電機子巻線の温度を推定し、これに基づき電機子抵抗等の電動機定数を正確に推定して磁極位置を演算する技術が開示されている。また、非特許文献2には、電動機の電圧方程式を基に演算した電流推定値の誤差から電機子抵抗及び永久磁石磁束を推定するセンサレス制御技術が開示されている。   For example, in Patent Document 2, the temperature of the armature winding is estimated from the permanent magnet magnetic flux calculated from the voltage equation of the electric motor, and the magnetic pole position is calculated by accurately estimating the motor constant such as the armature resistance based on this. Technology is disclosed. Non-Patent Document 2 discloses a sensorless control technique for estimating an armature resistance and a permanent magnet magnetic flux from an error in an estimated current value calculated based on a voltage equation of an electric motor.

特許第3411878号公報(段落[0132]〜[0141]、図1,図8等)Japanese Patent No. 3411878 (paragraphs [0132] to [0141], FIG. 1, FIG. 8, etc.) 特開2008−92649号公報(請求項3〜5、請求項9,11、段落[0014],[0022]〜[0026]、図1、図3等)JP-A-2008-92649 (Claims 3 to 5, Claims 9 and 11, paragraphs [0014], [0022] to [0026], FIG. 1, FIG. 3, etc.)

Takashi Aihara, Akio Toba, Takao Yanase, Akihide Mashimo, and Kenji Endo,「Sensorless Torque Control of Salient-Pole Synchronous Motor at Zero-Speed Operation」,IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO.1, JANUARY 1999Takashi Aihara, Akio Toba, Takao Yanase, Akihide Mashimo, and Kenji Endo, “Sensorless Torque Control of Salient-Pole Synchronous Motor at Zero-Speed Operation”, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO.1, JANUARY 1999 福本 哲哉,富樫 重則,井上 淳,林 洋一,「固定子抵抗と永久磁石鎖交磁束のオンライン同時同定によるIPMSM位置センサレスベクトル制御の高性能化」,電気学会半導体電力変換研究会資料,SPC-08-80,p.41〜p.46Tetsuya Fukumoto, Shigenori Togashi, Satoshi Inoue, Yoichi Hayashi, “High-performance IPMSM position sensorless vector control by simultaneous on-line identification of stator resistance and permanent magnet flux linkage”, IEEJ Semiconductor Power Conversion Study Materials, SPC-08 -80, p.41-p.46

特許文献2に開示されている電機子抵抗の推定技術が適用できるのは、永久磁石磁束を正確に推定する必要から、高速時であって電流が小さい場合に限定される。ここで、特許文献2には、低速時や電流が大きい時に電機子抵抗の推定演算を停止することによって推定誤差が過大になるのを防ぐ方法が記載されているが、推定演算を停止する直前に推定誤差が大きくなった場合には、電機子抵抗推定値が大きな誤差を持ったまま保持され、磁極位置の演算誤差がかえって大きくなる恐れがある。
また、非特許文献2に開示されている電機子抵抗の推定技術が適用できるのは、当該文献中の25式より、速度と電流のうちの少なくとも何れかが大きい場合である。
すなわち、特許文献2や非特許文献2に開示された従来技術では、電動機の運転条件によって電機子抵抗の推定誤差が大きくなるという問題があった。
The armature resistance estimation technique disclosed in Patent Document 2 can be applied only when the current is small at high speed because it is necessary to accurately estimate the permanent magnet magnetic flux. Here, Patent Document 2 describes a method for preventing an estimation error from becoming excessive by stopping the estimation calculation of the armature resistance at a low speed or when the current is large, but immediately before stopping the estimation calculation. If the estimation error becomes large, the armature resistance estimation value is held with a large error, and the calculation error of the magnetic pole position may be increased.
Further, the armature resistance estimation technique disclosed in Non-Patent Document 2 can be applied when at least one of speed and current is larger than Equation 25 in the document.
That is, in the prior art disclosed in Patent Document 2 and Non-Patent Document 2, there is a problem that the estimation error of the armature resistance becomes large depending on the operating conditions of the motor.

そこで、本発明の解決課題は、電機子抵抗の推定誤差を少なくして高精度なセンサレス制御を可能にした永久磁石形同期電動機の制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a control device for a permanent magnet type synchronous motor that enables highly accurate sensorless control by reducing an estimation error of armature resistance.

上記課題を解決するため、請求項1に係る制御装置は、電力変換器により駆動される永久磁石形同期電動機の制御装置であって、前記電動機の等価電機子抵抗を推定する電機子抵抗推定手段と、等価電機子抵抗推定値を用いて速度推定値を演算する速度推定手段と、前記速度推定値から磁極位置推定値を演算する電気角演算手段と、を備えた制御装置において、
前記電機子抵抗推定手段は、
前記電動機の電圧方程式に基づいて前記等価電機子抵抗推定値の誤差を演算する手段と、
前記誤差を増幅して等価電機子抵抗補正値を演算する手段と、
前記電動機の等価電機子抵抗の初期設定値と前記等価電機子抵抗補正値とを加算して前記等価電機子抵抗推定値を演算する手段と、
前記電動機の電流検出値及び前記速度推定値に応じて、前記等価電機子抵抗補正値を演算する手段のゲインを制御する手段と、を備えたものである。
本発明によれば、等価電機子抵抗を正確に演算可能な運転条件に限って推定演算を実行することができ、等価電機子抵抗の推定誤差が過大になるのを防止することができる。
In order to solve the above problems, a control device according to claim 1 is a control device for a permanent magnet type synchronous motor driven by a power converter, and an armature resistance estimation means for estimating an equivalent armature resistance of the motor. And a control device comprising: a speed estimation unit that calculates a speed estimation value using an equivalent armature resistance estimation value; and an electrical angle calculation unit that calculates a magnetic pole position estimation value from the speed estimation value.
The armature resistance estimation means includes
Means for calculating an error of the estimated value of the equivalent armature resistance based on a voltage equation of the motor;
Means for amplifying the error and calculating an equivalent armature resistance correction value;
Means for adding the initial set value of the equivalent armature resistance of the motor and the equivalent armature resistance correction value to calculate the equivalent armature resistance estimated value;
Means for controlling the gain of the means for calculating the equivalent armature resistance correction value in accordance with the detected current value of the motor and the estimated speed value.
According to the present invention, it is possible to execute the estimation calculation only in the operating condition in which the equivalent armature resistance can be accurately calculated, and it is possible to prevent the estimation error of the equivalent armature resistance from becoming excessive.

請求項2に係る制御装置は、請求項1に記載した制御装置において、前記等価電機子抵抗補正値を演算する手段を具体化したものである。
すなわち、等価電機子抵抗補正値を演算する手段は、
前記等価電機子抵抗推定値の誤差と第1の重み係数との積と、前記等価電機子抵抗補正値と第2の重み係数との積と、の偏差を求める手段と、
前記偏差を増幅及び積分して前記等価電機子抵抗補正値を演算する手段と、
前記電流検出値及び前記速度推定値に応じて前記第1の重み係数及び前記第2の重み係数を制御する手段と、を備えている。
A control device according to a second aspect of the present invention is the control device according to the first aspect, in which the means for calculating the equivalent armature resistance correction value is embodied.
That is, the means for calculating the equivalent armature resistance correction value is
Means for obtaining a deviation between a product of the error of the equivalent armature resistance estimation value and a first weighting factor and a product of the equivalent armature resistance correction value and a second weighting factor;
Means for amplifying and integrating the deviation to calculate the equivalent armature resistance correction value;
Means for controlling the first weighting factor and the second weighting factor according to the current detection value and the speed estimation value.

請求項3に係る制御装置は、請求項1または2に記載した制御装置において、等価電機子抵抗推定値の誤差を演算する手段を具体化したものである。
すなわち、この等価電機子抵抗推定値の誤差を演算する手段は、
前記電流検出値、前記速度推定値及び前記等価電機子抵抗推定値から前記電動機の端子電圧を推定する手段と、前記電動機の端子電圧推定値と端子電圧指令値との偏差である端子電圧推定誤差を演算する手段と、前記端子電圧推定誤差と前記電流検出値とから前記等価電機子抵抗推定値の誤差を演算する手段と、を備えている。
A control device according to a third aspect of the present invention is the control device according to the first or second aspect, in which means for calculating an error of an equivalent armature resistance estimation value is embodied.
That is, the means for calculating the error of the equivalent armature resistance estimated value is
Means for estimating the terminal voltage of the motor from the detected current value, the estimated speed value, and the estimated equivalent armature resistance value, and a terminal voltage estimation error that is a deviation between the estimated terminal voltage value of the motor and a terminal voltage command value And means for calculating an error of the estimated equivalent armature resistance value from the terminal voltage estimation error and the detected current value.

請求項4に係る制御装置は、請求項2または3に記載した制御装置において、第1の重み係数及び第2の重み係数を制御する手段を具体化したものである。
すなわち、第1の重み係数及び第2の重み係数を制御する手段は、
前記速度推定値、永久磁石の温度係数、及び、基準温度における永久磁石磁束から第1の電圧変化量を演算する手段と、
前記電流検出値、電機子巻線の温度係数、及び、基準温度における電機子抵抗から第2の電圧変化量を演算する手段と、
前記第1の電圧変化量及び前記第2の電圧変化量から前記第1の重み係数及び前記第2の重み係数を制御する手段と、を備えている。
A control device according to a fourth aspect of the present invention is the control device according to the second or third aspect, in which means for controlling the first weighting factor and the second weighting factor is embodied.
That is, the means for controlling the first weighting factor and the second weighting factor is:
Means for calculating a first voltage change amount from the estimated speed value, the temperature coefficient of the permanent magnet, and the permanent magnet magnetic flux at a reference temperature;
Means for calculating a second voltage change amount from the current detection value, the temperature coefficient of the armature winding, and the armature resistance at a reference temperature;
Means for controlling the first weighting coefficient and the second weighting coefficient from the first voltage change amount and the second voltage change amount.

請求項5に係る制御装置は、請求項2または3に記載した制御装置において、第1の重み係数及び第2の重み係数を制御する手段を具体化したものであり、請求項4とは異なる構成としたものである。
すなわち、第1の重み係数及び第2の重み係数を制御する手段は、
前記速度推定値、永久磁石の熱抵抗、永久磁石の温度係数、及び、基準温度における永久磁石磁束から第1の電圧変化量を演算する手段と、
前記電流検出値、電機子巻線の熱抵抗、電機子巻線の温度係数、及び、基準温度における電機子抵抗から第2の電圧変化量を演算する手段と、
前記第1の電圧変化量及び前記第2の電圧変化量から前記第1の重み係数及び前記第2の重み係数を制御する手段と、を備えている。
これにより、永久磁石温度と電機子巻線温度とが異なる場合にも第1の電圧変化量及び第2の電圧変化量を正確に演算することができる。
The control device according to claim 5 is the control device according to claim 2 or 3, wherein the control device for controlling the first weighting factor and the second weighting factor is embodied, and is different from claim 4. It is a configuration.
That is, the means for controlling the first weighting factor and the second weighting factor is:
Means for calculating a first voltage change amount from the speed estimation value, the thermal resistance of the permanent magnet, the temperature coefficient of the permanent magnet, and the permanent magnet magnetic flux at the reference temperature;
Means for calculating a second voltage change amount from the current detection value, the thermal resistance of the armature winding, the temperature coefficient of the armature winding, and the armature resistance at the reference temperature;
Means for controlling the first weighting coefficient and the second weighting coefficient from the first voltage change amount and the second voltage change amount.
Thereby, even when the permanent magnet temperature and the armature winding temperature are different, the first voltage change amount and the second voltage change amount can be accurately calculated.

請求項6に係る制御装置は、請求項2または3に記載した制御装置において、第1の重み係数及び第2の重み係数を制御する手段を具体化したものであり、請求項4,5とは更に異なる構成としたものである。
すなわち、第1の重み係数及び第2の重み係数を制御する手段は、
前記速度推定値、永久磁石の熱抵抗、永久磁石の温度係数、及び、基準温度における永久磁石磁束から第1の電圧変化量を演算する手段と、
前記電流検出値、電機子巻線の熱抵抗、電機子巻線の温度係数、基準温度における電機子抵抗、配線の熱抵抗、配線の温度係数、及び、基準温度における配線抵抗から第2の電圧変化量を演算する手段と、
前記第1の電圧変化量及び前記第2の電圧変化量から前記第1の重み係数及び前記第2の重み係数を制御する手段と、を備えている。
これにより、電動機と電力変換器との間の配線抵抗を無視できない場合にも、第1の電圧変化量及び第2の電圧変化量を正確に演算することができる。
A control device according to a sixth aspect of the present invention is the control device according to the second or third aspect, in which means for controlling the first weighting factor and the second weighting factor is embodied. Are different configurations.
That is, the means for controlling the first weighting factor and the second weighting factor is:
Means for calculating a first voltage change amount from the speed estimation value, the thermal resistance of the permanent magnet, the temperature coefficient of the permanent magnet, and the permanent magnet magnetic flux at the reference temperature;
The current detection value, the thermal resistance of the armature winding, the temperature coefficient of the armature winding, the armature resistance at the reference temperature, the thermal resistance of the wiring, the temperature coefficient of the wiring, and the wiring resistance at the reference temperature are used as the second voltage. Means for calculating the amount of change;
Means for controlling the first weighting coefficient and the second weighting coefficient from the first voltage change amount and the second voltage change amount.
Thereby, even when the wiring resistance between the electric motor and the power converter cannot be ignored, the first voltage change amount and the second voltage change amount can be accurately calculated.

本発明によれば、永久磁石形同期電動機を運転しながら等価電機子抵抗を正確に推定して磁極位置を高精度に演算することが可能であり、その結果として、低速時のトルク制御精度や安定性に優れたセンサレス制御を実現することができる。   According to the present invention, it is possible to accurately estimate the equivalent armature resistance and calculate the magnetic pole position with high accuracy while operating the permanent magnet type synchronous motor. As a result, torque control accuracy at low speed and Sensorless control with excellent stability can be realized.

本発明の実施形態に係る速度制御系のブロック図である。It is a block diagram of the speed control system which concerns on embodiment of this invention. d,q軸及びγ,δ軸の関係を示すベクトル図である。It is a vector diagram which shows the relationship of d, q axis | shaft and (gamma), (delta) axis. 本発明の実施例1における電機子抵抗推定手段のブロック図である。It is a block diagram of the armature resistance estimation means in Example 1 of this invention. 本発明の実施例2〜4における重み係数の関数を示すグラフである。It is a graph which shows the function of the weighting factor in Examples 2-4 of the present invention.

以下、図に沿って本発明の実施形態を説明する。図1は、この実施形態に係る速度制御系のブロック図である。
まず、速度推定値ω及び磁極位置推定値θの演算について説明する。
永久磁石形同期電動機80は、電動機の電流を回転子のd軸(回転子の磁極方向の軸)とd軸から90度進んだq軸とに分解して制御することにより、トルクや速度を高精度に制御することが可能である。しかしながら、磁極位置検出器を持たない場合、d,q軸を直接検出することができない。このため、d,q軸に対応した直交回転座標のγ,δ軸を制御装置内に想定し、このγ,δ軸上で制御演算を行っている。
図2は、これらのd,q軸及びγ,δ軸の関係を示すベクトル図である。図2において、ωは回転子の速度推定値(γ,δ軸の回転角速度)、ωは速度実際値(d,q軸の回転角速度)、θerrはγ,δ軸とd,q軸との角度差(磁極位置演算誤差)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a speed control system according to this embodiment.
First, the calculation of the speed estimated value ω 1 and the magnetic pole position estimated value θ 1 will be described.
The permanent magnet type synchronous motor 80 controls the torque and speed by dividing the motor current into a d-axis of the rotor (axis in the magnetic pole direction of the rotor) and a q-axis advanced 90 degrees from the d-axis. It is possible to control with high accuracy. However, when the magnetic pole position detector is not provided, the d and q axes cannot be directly detected. For this reason, γ and δ axes of orthogonal rotation coordinates corresponding to the d and q axes are assumed in the control device, and control calculation is performed on the γ and δ axes.
FIG. 2 is a vector diagram showing the relationship between the d and q axes and the γ and δ axes. In FIG. 2, ω 1 is the estimated rotor speed (rotational angular speeds of γ and δ axes), ω r is the actual speed value (rotating angular speeds of d and q axes), and θ err is the γ and δ axes and d, q This is the angle difference from the shaft (magnetic pole position calculation error).

図1において、速度推定手段31は、γ軸電圧指令値vγ 、δ軸電圧指令値vδ 、γ軸電流検出値iγ、δ軸電流検出値iδから、永久磁石形同期電動機80の電圧方程式に基づいてγ,δ軸とd,q軸との角度差θerrを演算し、この角度差θerrを増幅して速度推定値ωを演算する。
速度推定手段31における角度差θerrの演算には、電機子抵抗推定手段41により求めた等価電機子抵抗推定値Raestを用いる。ここで、等価電機子抵抗は、電動機80の電機子抵抗と、電動機80と電力変換器70との間の配線抵抗との和によって定義する。
電気角演算器32は、速度推定手段31から出力される速度推定値ωを積分して磁極位置推定値θを演算する。
これらの演算によって角度差θerrを零に収束させることができ、速度推定値ω及び磁極位置推定値θを真値に収束させることができる。
In FIG. 1, the speed estimation means 31 is based on a γ-axis voltage command value v γ * , a δ-axis voltage command value v δ * , a γ-axis current detection value i γ , and a δ-axis current detection value i δ. An angular difference θ err between the γ and δ axes and the d and q axes is calculated based on the 80 voltage equation, and the estimated angular speed ω 1 is calculated by amplifying the angular difference θ err .
For the calculation of the angle difference θ err in the speed estimation means 31, the equivalent armature resistance estimated value R aest obtained by the armature resistance estimation means 41 is used. Here, the equivalent armature resistance is defined by the sum of the armature resistance of the motor 80 and the wiring resistance between the motor 80 and the power converter 70.
The electrical angle calculator 32 integrates the speed estimated value ω 1 output from the speed estimating means 31 to calculate the magnetic pole position estimated value θ 1 .
By these calculations, the angle difference θ err can be converged to zero, and the speed estimated value ω 1 and the magnetic pole position estimated value θ 1 can be converged to true values.

次に、磁極位置推定値θ及び速度推定値ωを用いて永久磁石形同期電動機80の速度制御を行う方法について説明する。
速度指令値ωと速度推定値ωとの偏差を減算器16により演算し、この偏差を速度調節器17により増幅してトルク指令値τを演算する。電流指令演算器18は、トルク指令値τと速度推定値ωとから、電動機80の端子電圧が電力変換器70の最大出力電圧以下の条件で所望のトルクを出力するようなγ,δ軸電流指令値iγ ,iδ を演算する。
Next, a method for controlling the speed of the permanent magnet synchronous motor 80 using the magnetic pole position estimated value θ 1 and the speed estimated value ω 1 will be described.
The deviation between the speed command value ω * and the estimated speed value ω 1 is calculated by the subtractor 16, and the deviation is amplified by the speed regulator 17 to calculate the torque command value τ * . From the torque command value τ * and the estimated speed value ω 1 , the current command calculator 18 outputs γ, δ such that a desired torque is output under the condition that the terminal voltage of the electric motor 80 is equal to or lower than the maximum output voltage of the power converter 70. The shaft current command values i γ * and i δ * are calculated.

また、u相電流検出器11u、w相電流検出器11wによりそれぞれ検出した相電流検出値i,iは、磁極位置推定値θを用いて電流座標変換器14によりγ,δ軸電流検出値iγ,iδに座標変換する。
γ軸電流指令値iγ とγ軸電流検出値iγとの偏差を減算器19aにて演算し、この偏差をγ軸電流調節器20aにより増幅してγ軸電圧指令値vγ を演算する。一方、δ軸電流指令値iδ とδ軸電流検出値iδとの偏差を減算器19bにて演算し、この偏差をδ軸電流調節器20bにより増幅してδ軸電圧指令値vδ を演算する。
Also, the phase current detection values i u and i w detected by the u-phase current detector 11u and the w-phase current detector 11w are respectively converted into γ and δ-axis currents by the current coordinate converter 14 using the magnetic pole position estimation value θ 1. Coordinates are converted to detected values i γ and i δ .
The deviation between the γ-axis current command value i γ * and the detected γ-axis current value i γ is calculated by the subtractor 19a, and this deviation is amplified by the γ-axis current regulator 20a to obtain the γ-axis voltage command value v γ * . Calculate. On the other hand, the difference between the δ-axis current command value i δ * and the detected δ-axis current value i δ is calculated by the subtractor 19b, and this deviation is amplified by the δ-axis current regulator 20b to be amplified by the δ-axis voltage command value v δ. * Is calculated.

γ,δ軸電圧指令値vγ ,vδ は、電圧座標変換器15により磁極位置推定値θを用いて相電圧指令値v ,v ,v に変換される。
整流回路60は、三相交流電源50の三相交流電圧を整流して得た直流電圧をインバータ等の電力変換器70に供給する。
PWM回路13は、相電圧指令値v ,v ,v と入力電圧検出回路12により検出した入力電圧検出値Edcとから、電力変換器70の出力電圧を相電圧指令値v ,v ,v に制御するためのゲート信号を生成する。電力変換器70は、上記ゲート信号に基づいて内部の半導体スイッチング素子をオンオフ制御し、電動機80の端子電圧を相電圧指令値v ,v ,v に制御する。
The γ and δ-axis voltage command values v γ * and v δ * are converted by the voltage coordinate converter 15 into phase voltage command values v u * , v v * , and v w * using the magnetic pole position estimated value θ 1. .
The rectifier circuit 60 supplies a DC voltage obtained by rectifying the three-phase AC voltage of the three-phase AC power supply 50 to a power converter 70 such as an inverter.
The PWM circuit 13 calculates the output voltage of the power converter 70 from the phase voltage command values v u * , v v * , v w * and the input voltage detection value E dc detected by the input voltage detection circuit 12. A gate signal for controlling to v u * , v v * , and v w * is generated. The power converter 70 performs on / off control of the internal semiconductor switching element based on the gate signal, and controls the terminal voltage of the electric motor 80 to the phase voltage command values v u * , v v * , v w * .

次に、図1の電機子抵抗推定手段41の構成及び作用を、以下の実施例1〜実施例4により説明する。   Next, the configuration and operation of the armature resistance estimation means 41 of FIG. 1 will be described with reference to the following first to fourth embodiments.

図3は、実施例1における電機子抵抗推定手段41のブロック図であり、請求項1,2に対応している。
電機子抵抗推定誤差演算器110は、γ,δ軸電流検出値iγ,iδ、δ軸電圧指令値vδ 及び速度推定値ωから、等価電機子抵抗推定誤差演算値Raerrestを求める。
FIG. 3 is a block diagram of the armature resistance estimating means 41 in the first embodiment, and corresponds to claims 1 and 2.
The armature resistance estimation error calculator 110 calculates an equivalent armature resistance estimation error calculation value R aerrest from the γ, δ axis current detection values i γ , i δ , the δ axis voltage command value v δ *, and the speed estimation value ω 1. Ask.

ここで、請求項3記載の技術を用いた電機子抵抗推定誤差演算器110の詳細を説明する。
電動機のδ軸電圧方程式より、δ軸電圧推定値vδestを数式1により演算する。
Here, the details of the armature resistance estimation error calculator 110 using the technique of claim 3 will be described.
From the δ-axis voltage equation of the electric motor, the δ-axis voltage estimated value v δest is calculated by Equation 1.

Figure 0005387899
Figure 0005387899

次に、等価電機子抵抗推定誤差演算値Raerrestを数式2により求める。 Next, an equivalent armature resistance estimation error calculation value R aerrest is obtained by Equation 2.

Figure 0005387899
Figure 0005387899

等価電機子抵抗推定誤差演算値Raerrestは反転増幅器111により符号が反転され、第1の重み係数WRaが乗じられる。ここで、第1の重み係数WRaに対して(1−WRa)を第2の重み係数とし(両者の和を“1”とする)、第1,第2の重み係数WRa,(1−WRa)の上限値を何れも“1”、下限値を何れも“零”とする。
このとき、等価電機子抵抗の真値Rから等価電機子抵抗推定値Raestまでの伝達関数は、数式3の関係にある。
The equivalent armature resistance estimation error calculation value R aerrest is inverted in sign by the inverting amplifier 111 and multiplied by the first weight coefficient W Ra . Here, with respect to the first weighting factor WRa , (1- WRa ) is set as the second weighting factor (the sum of both is set to "1"), and the first and second weighting factors WRa , ( 1−W Ra ) is set to “1” for all upper limit values and “zero” for both lower limit values.
At this time, the transfer function from the true value R a of the equivalent armature resistance to the equivalent armature resistance estimated value R aest is in the relationship of Equation 3.

Figure 0005387899
Figure 0005387899

数式3より、第1の重み係数WRaに比例して、等価電機子抵抗の真値Rから等価電機子抵抗推定値Raestまでの伝達関数のゲイン(等価電機子抵抗補正値Racompを演算する手段のゲイン)を制御できることが明らかである。
等価電機子抵抗を正しく演算可能な運転条件が満たされている場合、例えば、速度推定値ωやδ軸電流検出値iδの情報から電動機80の速度が低い場合やδ軸電流が大きいと判断される場合には、第1の重み係数WRaを“1”、すなわち第2の重み係数(1−WRa)を“零”に制御することにより、等価電機子抵抗推定誤差演算値Raerrestを積分制御して等価電機子抵抗補正値Racompを演算する。つまり、図3における反転増幅器111、第1の重み係数WRa(=1)、減算器112、電機子抵抗推定ゲインGRa、積分器113を用いて、等価電機子抵抗補正値Racompは数式4のように演算される。
From Equation 3, in proportion to the first weighting factor W Ra, the transfer function from the true value R a of the equivalent armature resistance to equivalent armature resistance estimate R aest gain (equivalent armature resistance correction value R acomp It is clear that the gain of the means for calculating can be controlled.
When the operating condition that can calculate the equivalent armature resistance correctly is satisfied, for example, when the speed of the motor 80 is low or the δ-axis current is large from the information of the estimated speed value ω 1 or the detected δ-axis current value i δ When it is determined, the equivalent armature resistance estimation error calculation value R is controlled by controlling the first weighting factor W Ra to “1”, that is, the second weighting factor (1−W Ra ) to “zero”. The equivalent armature resistance correction value R acomp is calculated by integrating the aerrest . In other words, the inverting amplifier 111 in FIG. 3, the first weighting factor W Ra (= 1), the subtracter 112, the armature resistance estimated gain G Ra, using an integrator 113, an equivalent armature resistance correction value R acomp the formula 4 is calculated.

Figure 0005387899
Figure 0005387899

また、等価電機子抵抗の初期設定値は、平均温度時の電機子抵抗Ra(AVE)とし、この電機子抵抗Ra(AVE)は、平均温度電機子抵抗演算器114が周囲温度Tを用いて数式5により演算する。なお、この数式5は、前述したごとく、等価電機子抵抗が、電機子抵抗と配線抵抗との和によって表されることに基づいている。 The initial setting value of the equivalent armature resistance, the average temperature during the armature resistance R a (AVE), the armature resistance R a (AVE), the average temperature the armature resistance calculator 114 is the ambient temperature T a Is calculated by Equation (5). Note that, as described above, Equation 5 is based on the fact that the equivalent armature resistance is represented by the sum of the armature resistance and the wiring resistance.

Figure 0005387899
Figure 0005387899

ここで、周囲温度Tは、予め設定した一定値、または、温度検出回路による検出値の何れを用いても良い。
図3における加算器115は、数式6に示すように、平均温度時の等価電機子抵抗Ra(AVE)と等価電機子抵抗補正値Racompとを加算して等価電機子抵抗推定値Raestを演算する。
Here, the ambient temperature T a is a constant value set in advance, or may be used any of the detected value by the temperature detecting circuit.
As shown in Equation 6, the adder 115 in FIG. 3 adds the equivalent armature resistance Ra (AVE) at the average temperature and the equivalent armature resistance correction value R acomp to calculate the equivalent armature resistance estimated value R aest. Is calculated.

Figure 0005387899
Figure 0005387899

以上の演算処理により、等価電機子抵抗推定誤差演算値Raerrestが零になるように等価電機子抵抗推定値Raestが演算され、等価電機子抵抗推定値Raestは真値に収束する。 By the above processing, the equivalent armature resistance estimate R aest as equivalent armature resistance estimation error calculation value R Aerrest becomes zero is computed, the equivalent armature resistance estimate R aest converges to the true value.

一方、等価電機子抵抗を正しく演算できない運転条件である場合、例えば、ωやiδの情報から電動機80の速度が高い場合やδ軸電流が小さいと判断される場合には、第1の重み係数WRaを“1”から減少させ、すなわち第2の重み係数(1−WRa)を“零”から増加させることで、等価電機子抵抗推定誤差演算値Raerrestから等価電機子抵抗補正値Racompまでのゲインを減少させる。
図3において、第1の重み係数WRaを“零”、第2の重み係数(1−WRa)を“1”に制御すると、等価電機子抵抗推定誤差演算値Raerrestが積分器113に入力されなくなり、等価電機子抵抗補正値Racompが積分器113の入力側に負帰還されるため、等価電機子抵抗補正値Racompは零になる。この結果、等価電機子抵抗推定値Raestは、初期設定値である平均温度時の電機子抵抗Ra(AVE)に等しくなる。
On the other hand, when the operating conditions are such that the equivalent armature resistance cannot be calculated correctly, for example, when it is determined from the information of ω 1 or i δ that the speed of the motor 80 is high or the δ-axis current is small, the first By reducing the weighting factor W Ra from “1”, that is, by increasing the second weighting factor (1−W Ra ) from “zero”, the equivalent armature resistance estimation error correction value R aerrest is corrected. Decrease the gain up to the value R acomp .
In FIG. 3, when the first weighting factor W Ra is controlled to “zero” and the second weighting factor (1−W Ra ) is set to “1”, the equivalent armature resistance estimation error calculation value R aerrest is input to the integrator 113. Since the equivalent armature resistance correction value R acomp is negatively fed back to the input side of the integrator 113, the equivalent armature resistance correction value R acomp becomes zero. As a result, the equivalent armature resistance estimation value R aest is equal to the armature resistance Ra (AVE) at the average temperature, which is an initial setting value.

以上により、等価電機子抵抗を正しく演算可能な速度条件や電流条件を満足する場合だけ推定演算を実行することにより、結果として等価電機子抵抗を正確に推定することができる。また、等価電機子抵抗の推定演算の実行と停止は、第1の重み係数WRaを変化させるだけでスムースに移行可能である。 As described above, the equivalent armature resistance can be accurately estimated as a result by executing the estimation calculation only when the speed condition and the current condition capable of correctly calculating the equivalent armature resistance are satisfied. Moreover, execution and stop of the estimation calculation of the equivalent armature resistance can be performed smoothly only by changing the first weighting coefficient WRa .

次に、本発明の実施例2は、第1の重み係数WRa及び第2の重み係数(1−WRa)を、永久磁石磁束の温度変化に起因する第1の電圧変化量と、等価電機子抵抗の温度変化に起因する第2の電圧変化量とから演算するようにしたものであり、請求項4に対応する。
まず、永久磁石磁束の温度変化に起因する第1の電圧変化量としての第1のδ軸電圧変化量、及び、等価電機子抵抗の温度変化に起因する第2の電圧変化量としての第2のδ軸電圧変化量について説明する。
第1のδ軸電圧変化量は、永久磁石磁束の変化量と速度との積に等しい。一方、第2のδ軸電圧変化量は、等価電機子抵抗の変化量とδ軸電流との積に等しい。
ここで、温度変化に起因する永久磁石磁束の無負荷時からの変化量は、数式7によって表される。
Next, in the second embodiment of the present invention, the first weight coefficient W Ra and the second weight coefficient (1-W Ra ) are equivalent to the first voltage change amount caused by the temperature change of the permanent magnet magnetic flux. This is calculated from the second voltage change amount resulting from the temperature change of the armature resistance, and corresponds to claim 4.
First, the first δ-axis voltage change amount as the first voltage change amount due to the temperature change of the permanent magnet magnetic flux, and the second voltage change amount as the second voltage change amount due to the temperature change of the equivalent armature resistance. Will be described.
The first δ-axis voltage change amount is equal to the product of the change amount of the permanent magnet magnetic flux and the speed. On the other hand, the second δ-axis voltage change amount is equal to the product of the change amount of the equivalent armature resistance and the δ-axis current.
Here, the amount of change of the permanent magnet magnetic flux due to the temperature change from the time of no load is expressed by Equation 7.

Figure 0005387899
Figure 0005387899

また、温度変化に起因する等価電機子抵抗Rの無負荷時からの変化量は、数式8に示す如く、電機子抵抗Rの無負荷時からの変化量と、配線抵抗Rの無負荷時からの変化量との和になる。 Further, the amount of change from the no-load of the equivalent armature resistance R a due to temperature changes, as shown in Equation 8, the change from no load of the armature resistance R w, the wiring resistance R 1 No It is the sum of the change from the load.

Figure 0005387899
Figure 0005387899

次に、配線抵抗を無視でき、永久磁石温度と電機子巻線温度とが等しい場合について、第1のδ軸電圧変化量及び第2のδ軸電圧変化量から、第1の重み係数WRa及び第2の重み係数(1−WRa)を求めるための評価関数xの演算方法を説明する。
永久磁石温度と電機子巻線温度とが等しい場合、永久磁石の熱抵抗Rthmと電機子巻線の熱抵抗Rthwとは等しく、永久磁石の熱時定数Tthmと電機子巻線の熱時定数Tthwとは等しい。数式7に示した永久磁石磁束の変化量と数式8に示した等価電機子抵抗の変化量との比から、評価関数xを数式9により演算する。
Next, in the case where the wiring resistance can be ignored and the permanent magnet temperature and the armature winding temperature are equal, the first weighting factor W Ra is calculated from the first δ-axis voltage change amount and the second δ-axis voltage change amount. A calculation method of the evaluation function x for obtaining the second weighting coefficient (1-W Ra ) will be described.
When the permanent magnet temperature and the armature winding temperature are equal, the thermal resistance R thm of the permanent magnet and the thermal resistance R thw of the armature winding are equal, and the thermal time constant T thm of the permanent magnet and the heat of the armature winding It is equal to the time constant T thw . From the ratio of the change amount of the permanent magnet magnetic flux shown in Equation 7 and the change amount of the equivalent armature resistance shown in Equation 8, the evaluation function x is calculated by Equation 9.

Figure 0005387899
Figure 0005387899

数式9に示した評価関数xの右辺第1項は、第1のδ軸電圧変化量に比例し、右辺第2項は、第2のδ軸電圧変化量に比例する。このため、評価関数xが零より大きいときに、δ軸電圧方程式を使って等価電機子抵抗を正確に推定することができる。   The first term on the right side of the evaluation function x shown in Equation 9 is proportional to the first δ-axis voltage change amount, and the second term on the right side is proportional to the second δ-axis voltage change amount. For this reason, when the evaluation function x is greater than zero, the equivalent armature resistance can be accurately estimated using the δ-axis voltage equation.

図4は、評価関数xから第1の重み係数WRa及び第2の重み係数(1−WRa)を演算する関数を示している。
評価関数xが零より小さい場合には、第1の重み係数WRaを“零”、第2の重み係数(1−WRa)を“1”とする。評価関数xが零としきい値xth1との間にある場合は、第1の重み係数WRaを評価関数xに比例させて“零”から“1”へ増加させ、第2の重み係数(1−WRa)は“1”から“零”へ減少させる。
評価関数xがしきい値xth1よりも大きい場合には、第1の重み係数WRaを“1”とし、第2の重み係数(1−WRa)を“零”とする。
FIG. 4 shows a function for calculating the first weighting factor WRa and the second weighting factor (1- WRa ) from the evaluation function x.
When the evaluation function x is smaller than zero, the first weight coefficient W Ra is set to “zero”, and the second weight coefficient (1−W Ra ) is set to “1”. When the evaluation function x is between zero and the threshold value x th1 , the first weighting factor W Ra is increased from “zero” to “1” in proportion to the evaluation function x, and the second weighting factor ( 1-W Ra ) is decreased from “1” to “zero”.
When the evaluation function x is larger than the threshold value xth1 , the first weighting factor W Ra is set to “1”, and the second weighting factor (1-W Ra ) is set to “zero”.

次いで、本発明の実施例3は、永久磁石温度と電機子巻線温度とが異なる場合にも実施例2を適用できるように評価関数xの演算方法を改良したものであり、請求項5に対応する。この実施例では、永久磁石の熱抵抗Rthmと電機子巻線の熱抵抗Rthwとが異なることを考慮し、評価関数xを数式10により演算する。 Next, the third embodiment of the present invention is an improvement of the calculation method of the evaluation function x so that the second embodiment can be applied even when the permanent magnet temperature and the armature winding temperature are different. Correspond. In this embodiment, the evaluation function x is calculated by Equation 10 in consideration of the difference between the thermal resistance R thm of the permanent magnet and the thermal resistance R thw of the armature winding.

Figure 0005387899
Figure 0005387899

第1の重み係数WRa、第2の重み係数(1−WRa)の演算は、実施例2と同様に行えば良い。 The calculation of the first weight coefficient W Ra and the second weight coefficient (1-W Ra ) may be performed in the same manner as in the second embodiment.

本発明の実施例4は、配線抵抗を無視できない場合にも実施例2を適用できるように改良したものであり、請求項6に対応する。
すなわち、前述の数式7において、電動機の鉄損Qironを零に近似し、数式8において、電動機の損失Qmotorと配線の損失Qとの比が電機子抵抗Rと配線抵抗Rとの比に等しいと近似することにより、評価関数xを数式11によって演算する。
The fourth embodiment of the present invention is improved so that the second embodiment can be applied even when the wiring resistance cannot be ignored, and corresponds to claim 6.
That is, in Equation 7 described above, the iron loss Q iron of the motor is approximated to zero, and in Equation 8, the ratio of the motor loss Q motor and the wiring loss Q 1 is the armature resistance R w and the wiring resistance R 1 . The evaluation function x is calculated by Equation 11 by approximating that it is equal to the ratio.

Figure 0005387899
Figure 0005387899

なお、第1の重み係数WRa、第2の重み係数(1−WRa)の演算は、実施例2と同様に行えば良い。 The calculation of the first weight coefficient W Ra and the second weight coefficient (1-W Ra ) may be performed in the same manner as in the second embodiment.

11u u相電流検出回路
11w w相電流検出回路
12 入力電圧検出回路
13 PWM回路
14 電流座標変換器
15 電圧座標変換器
16 減算器
17 速度調節器
18 電流指令演算器
19a 減算器
19b 減算器
20a γ軸電流調節器
20b δ軸電流調節器
31 速度推定手段
32 電気角演算器
41 電機子抵抗推定手段
50 三相交流電源
60 整流回路
70 電力変換器
80 永久磁石形同期電動機
110 電機子抵抗推定誤差演算器
111 反転増幅器
112 減算器
113 積分器
114 平均温度電機子抵抗演算器
115 加算器
11u u-phase current detection circuit 11w w-phase current detection circuit 12 input voltage detection circuit 13 PWM circuit 14 current coordinate converter 15 voltage coordinate converter 16 subtractor 17 speed regulator 18 current command calculator 19a subtractor 19b subtractor 20a γ Axis current regulator 20b δ axis current regulator 31 Speed estimation means 32 Electrical angle calculator 41 Armature resistance estimation means 50 Three-phase AC power supply 60 Rectifier circuit 70 Power converter 80 Permanent magnet synchronous motor 110 Armature resistance estimation error calculation 111 Inverting amplifier 112 Subtractor 113 Integrator 114 Average temperature armature resistance calculator 115 Adder

Claims (6)

電力変換器により駆動される永久磁石形同期電動機の制御装置であって、前記電動機の等価電機子抵抗を推定する電機子抵抗推定手段と、等価電機子抵抗推定値を用いて速度推定値を演算する速度推定手段と、前記速度推定値から磁極位置推定値を演算する電気角演算手段と、を備えた制御装置において、
前記電機子抵抗推定手段は、
前記電動機の電圧方程式に基づいて前記等価電機子抵抗推定値の誤差を演算する手段と、
前記誤差を増幅して等価電機子抵抗補正値を演算する手段と、
前記電動機の等価電機子抵抗の初期設定値と前記等価電機子抵抗補正値とを加算して前記等価電機子抵抗推定値を演算する手段と、
前記電動機の電流検出値及び前記速度推定値に応じて、前記等価電機子抵抗補正値を演算する手段のゲインを制御する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
A control device for a permanent magnet type synchronous motor driven by a power converter, wherein armature resistance estimating means for estimating an equivalent armature resistance of the motor and an estimated armature resistance value are used to calculate an estimated speed value In a control apparatus comprising: a speed estimation unit that performs an electrical angle calculation unit that calculates a magnetic pole position estimation value from the speed estimation value;
The armature resistance estimation means includes
Means for calculating an error of the estimated value of the equivalent armature resistance based on a voltage equation of the motor;
Means for amplifying the error and calculating an equivalent armature resistance correction value;
Means for adding the initial set value of the equivalent armature resistance of the motor and the equivalent armature resistance correction value to calculate the equivalent armature resistance estimated value;
Means for controlling the gain of the means for calculating the equivalent armature resistance correction value according to the current detection value of the motor and the speed estimation value;
A control device for a permanent magnet type synchronous motor.
請求項1に記載した永久磁石形同期電動機の制御装置において、
前記等価電機子抵抗補正値を演算する手段は、
前記等価電機子抵抗推定値の誤差と第1の重み係数との積と、前記等価電機子抵抗補正値と第2の重み係数との積と、の偏差を求める手段と、
前記偏差を増幅及び積分して前記等価電機子抵抗補正値を演算する手段と、
前記電流検出値及び前記速度推定値に応じて前記第1の重み係数及び前記第2の重み係数を制御する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for the permanent magnet type synchronous motor according to claim 1,
Means for calculating the equivalent armature resistance correction value,
Means for obtaining a deviation between a product of the error of the equivalent armature resistance estimation value and a first weighting factor and a product of the equivalent armature resistance correction value and a second weighting factor;
Means for amplifying and integrating the deviation to calculate the equivalent armature resistance correction value;
Means for controlling the first weighting factor and the second weighting factor in response to the current detection value and the speed estimation value;
A control device for a permanent magnet type synchronous motor.
請求項1または2に記載した永久磁石形同期電動機の制御装置において、
前記等価電機子抵抗推定値の誤差を演算する手段は、
前記電流検出値、前記速度推定値及び前記等価電機子抵抗推定値から前記電動機の端子電圧を推定する手段と、
前記電動機の端子電圧推定値と端子電圧指令値との偏差である端子電圧推定誤差を演算する手段と、
前記端子電圧推定誤差と前記電流検出値とから前記等価電機子抵抗推定値の誤差を演算する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for a permanent magnet type synchronous motor according to claim 1 or 2,
Means for calculating an error of the equivalent armature resistance estimation value,
Means for estimating a terminal voltage of the motor from the current detection value, the speed estimation value and the equivalent armature resistance estimation value;
Means for calculating a terminal voltage estimation error which is a deviation between the terminal voltage estimated value of the electric motor and a terminal voltage command value;
Means for calculating an error of the equivalent armature resistance estimation value from the terminal voltage estimation error and the current detection value;
A control device for a permanent magnet type synchronous motor.
請求項2または3に記載した永久磁石形同期電動機の制御装置において、
前記第1の重み係数及び前記第2の重み係数を制御する手段は、
前記速度推定値、永久磁石の温度係数、及び、基準温度における永久磁石磁束から第1の電圧変化量を演算する手段と、
前記電流検出値、電機子巻線の温度係数、及び、基準温度における電機子抵抗から第2の電圧変化量を演算する手段と、
前記第1の電圧変化量及び前記第2の電圧変化量から前記第1の重み係数及び前記第2の重み係数を制御する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for a permanent magnet type synchronous motor according to claim 2 or 3,
The means for controlling the first weighting factor and the second weighting factor are:
Means for calculating a first voltage change amount from the estimated speed value, the temperature coefficient of the permanent magnet, and the permanent magnet magnetic flux at a reference temperature;
Means for calculating a second voltage change amount from the current detection value, the temperature coefficient of the armature winding, and the armature resistance at a reference temperature;
Means for controlling the first weighting factor and the second weighting factor from the first voltage change amount and the second voltage change amount;
A control device for a permanent magnet type synchronous motor.
請求項2または3に記載した永久磁石形同期電動機の制御装置において、
第1の重み係数及び第2の重み係数を制御する手段は、
前記速度推定値、永久磁石の熱抵抗、永久磁石の温度係数、及び、基準温度における永久磁石磁束から第1の電圧変化量を演算する手段と、
前記電流検出値、電機子巻線の熱抵抗、電機子巻線の温度係数、及び、基準温度における電機子抵抗から第2の電圧変化量を演算する手段と、
前記第1の電圧変化量及び前記第2の電圧変化量から前記第1の重み係数及び前記第2の重み係数を制御する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for a permanent magnet type synchronous motor according to claim 2 or 3,
The means for controlling the first weighting factor and the second weighting factor are:
Means for calculating a first voltage change amount from the speed estimation value, the thermal resistance of the permanent magnet, the temperature coefficient of the permanent magnet, and the permanent magnet magnetic flux at the reference temperature;
Means for calculating a second voltage change amount from the current detection value, the thermal resistance of the armature winding, the temperature coefficient of the armature winding, and the armature resistance at the reference temperature;
Means for controlling the first weighting factor and the second weighting factor from the first voltage change amount and the second voltage change amount;
A control device for a permanent magnet type synchronous motor.
請求項2または3に記載した永久磁石形同期電動機の制御装置において、
第1の重み係数及び第2の重み係数を制御する手段は、
前記速度推定値、永久磁石の熱抵抗、永久磁石の温度係数、及び、基準温度における永久磁石磁束から第1の電圧変化量を演算する手段と、
前記電流検出値、電機子巻線の熱抵抗、電機子巻線の温度係数、基準温度における電機子抵抗、配線の熱抵抗、配線の温度係数、及び、基準温度における配線抵抗から第2の電圧変化量を演算する手段と、
前記第1の電圧変化量及び前記第2の電圧変化量から前記第1の重み係数及び前記第2の重み係数を制御する手段と、
を備えたことを特徴とする永久磁石形同期電動機の制御装置。
In the control device for a permanent magnet type synchronous motor according to claim 2 or 3,
The means for controlling the first weighting factor and the second weighting factor are:
Means for calculating a first voltage change amount from the speed estimation value, the thermal resistance of the permanent magnet, the temperature coefficient of the permanent magnet, and the permanent magnet magnetic flux at the reference temperature;
The current detection value, the thermal resistance of the armature winding, the temperature coefficient of the armature winding, the armature resistance at the reference temperature, the thermal resistance of the wiring, the temperature coefficient of the wiring, and the wiring resistance at the reference temperature are used as the second voltage. Means for calculating the amount of change;
Means for controlling the first weighting factor and the second weighting factor from the first voltage change amount and the second voltage change amount;
A control device for a permanent magnet type synchronous motor.
JP2009164449A 2009-07-13 2009-07-13 Control device for permanent magnet type synchronous motor Active JP5387899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164449A JP5387899B2 (en) 2009-07-13 2009-07-13 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164449A JP5387899B2 (en) 2009-07-13 2009-07-13 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2011024281A JP2011024281A (en) 2011-02-03
JP5387899B2 true JP5387899B2 (en) 2014-01-15

Family

ID=43633831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164449A Active JP5387899B2 (en) 2009-07-13 2009-07-13 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP5387899B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040353A (en) * 2017-11-08 2021-03-11 株式会社日立製作所 Driving device of induction motor and driving method of the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585376B2 (en) * 1987-06-12 1997-02-26 株式会社日立製作所 Control method of induction motor
JP3467961B2 (en) * 1995-05-31 2003-11-17 株式会社明電舎 Control device for rotating electric machine
JP3067659B2 (en) * 1996-11-11 2000-07-17 株式会社日立製作所 Control method of induction motor
JP4225657B2 (en) * 1999-11-15 2009-02-18 東洋電機製造株式会社 Control device for permanent magnet type synchronous motor
JP2002233199A (en) * 2001-02-05 2002-08-16 Railway Technical Res Inst Control device for permanent magnet synchronous motor
JP4228651B2 (en) * 2002-10-11 2009-02-25 株式会社安川電機 Method and apparatus for controlling IPM motor
JP2006141123A (en) * 2004-11-11 2006-06-01 Toshiba Corp Dynamo-electric machine controller, dynamo-electric machine controlling method and washing machine
JP2008092649A (en) * 2006-09-29 2008-04-17 Yaskawa Electric Corp Controller of ipm motor and control method thereof
JP2009060688A (en) * 2007-08-30 2009-03-19 Fuji Electric Systems Co Ltd Controller for synchronous motors
JP5015703B2 (en) * 2007-09-12 2012-08-29 オークマ株式会社 Position control device

Also Published As

Publication number Publication date
JP2011024281A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5104239B2 (en) Control device for permanent magnet type synchronous motor
JP5445892B2 (en) Control device for permanent magnet type synchronous motor
JP5223109B2 (en) Control device for permanent magnet type synchronous motor
JP2009290929A (en) Controller for permanent magnet type synchronous motor
JP5471156B2 (en) Control device for permanent magnet type synchronous motor
JP6030511B2 (en) Motor control device, generator control device, and motor control method
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
CN110235355B (en) Speed estimation method for induction motor and power conversion device using the same
JP6102516B2 (en) Control method and control device for permanent magnet type synchronous motor
JP5446494B2 (en) Control device for permanent magnet type synchronous motor
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP5387899B2 (en) Control device for permanent magnet type synchronous motor
JP5332301B2 (en) Control device for permanent magnet type synchronous motor
JP6590196B2 (en) Power converter
JP7449204B2 (en) power converter
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP6621052B2 (en) Control device for permanent magnet type synchronous motor
JP6573213B2 (en) Control device for permanent magnet type synchronous motor
JP6497584B2 (en) Control device for permanent magnet type synchronous motor
JP5040605B2 (en) Control device for permanent magnet type synchronous motor
US11545924B2 (en) Power conversion device, power conversion method and program
JP5456873B1 (en) Synchronous machine controller
JP5333716B2 (en) Control device for permanent magnet type synchronous motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5387899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250