JPH06350105A - マイクロマシンとその製造方法 - Google Patents

マイクロマシンとその製造方法

Info

Publication number
JPH06350105A
JPH06350105A JP5135507A JP13550793A JPH06350105A JP H06350105 A JPH06350105 A JP H06350105A JP 5135507 A JP5135507 A JP 5135507A JP 13550793 A JP13550793 A JP 13550793A JP H06350105 A JPH06350105 A JP H06350105A
Authority
JP
Japan
Prior art keywords
fixed
movable
support
micromachine
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5135507A
Other languages
English (en)
Inventor
Hiroyuki Okada
博之 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5135507A priority Critical patent/JPH06350105A/ja
Priority to US08/250,829 priority patent/US5626779A/en
Publication of JPH06350105A publication Critical patent/JPH06350105A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

(57)【要約】 【目的】マイクロマシンの一例であるセンサにおいて、
製造工程中に可動部11と固定部12と連結する部分を
破損すること無く高い歩留りが得られるとともに複数の
センサの支持部13の切断処理が同時に行ない生産性の
向上を図る。 【構成】可動部11の片持ち連結部を補強する電気抵抗
の高い導電性の支持部13を予じめ設け、可動部11お
よび固定部12を形成し、パッケージに組込み後、配線
14に電流を流し支持部13を加熱溶断して可動部11
を固定部12から分離している。また、この補強部材の
切断作業は多数のセンサに対して同時に行なっている。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、マイクロマシンに関
し、特に微小圧力を伝達するマイクロアクチュエータあ
るいは微少流量および圧力並びに加速度等を検知するマ
イクロセンサ等のマイクロマシンに関する。
【0002】
【従来の技術】通常、マイクロマシンは半導体プロセス
技術を利用して極めて微少の複数の機構部を一体化させ
た状態で作製するものである。しかしながら、これら機
構部は微少の上に互いに支える連結部が脆弱であるがた
めに製造プロセス中に発生するインパルス的な衝撃によ
って連結部が破損し極めて歩留りの低いものであった。
【0003】図5は従来の一例を示すセンサの平面図お
よび断面図である。このような低い歩留りを向上する方
法が特開昭62一190748号公報に開示されてい
る。この方法は、このマイクロマシンの代表的な例とし
て加速度を検知するセンサに適用されたものであって、
図5に示すように、エッチング加工によりシリコン半導
体基板から固定部22と固定部22から派生する連結部
20で片持する可動部21とをエッチング加工により一
枚のシリコン半導体基板から抉り出して形成し、この可
動部21と固定部22と連結する連結部20以外に支え
を補強するために、部材に負荷がかからないCVDによ
るシリコン薄膜を形成して仮止用の薄膜31を設け、こ
の薄膜31で可動部材21の支えを補強することによっ
て連結部材の破損を防止していた。そして、最終のパッ
ケージに組込み後にこの仮止用の薄膜31にパッケージ
の外からレーザ光を照射して溶断してセンサとして完成
させていた。
【0004】
【発明が解決しようとする課題】しかしながら上述した
方法では、センサがパッケージに固定されるまでの製造
プロセスでは有効であるものの、パッケージ工程で発生
する種々の振動に構造体のもつ固有振動数に近い振動を
僅かに含み、このためこの振動エネルキーによって仮止
め用の薄膜は勿論連結部も破壊されることが多々ある。
特に、近年、高感度化のための可動部材の重量の増加あ
るいは片持部材の延長などに伴ない連結部の破損による
不良発生率が増大することとなった。また、レーザ光を
照射するためにパッケージにレーザ光透過窓やあるいは
仮止め用部材にレーザ光が到達するための空間部を必要
としパッケージの構造に制約を受ける欠点がある。さら
に、レーザ加工機で切断するにしても、パッケージング
されたマイクロマシンの位置決めレーザ光照射といった
シーケンス動作を伴ない、バッチ式のように一度に大量
に生産することは困難であった。
【0005】従って、本発明の目的は、パッケージに特
別な構造を設ける必要が無いとともに可動部材と固定部
材の連結部を破損することが無く高い歩留りでかつ大量
に生産できる構造をもつマイクロマシンを提供すること
である。
【0006】
【課題を解決するための手段】本発明の特徴は、固定部
材と、この固定部材と連結部材を介して支えられる可動
部材と、前記連結部材とは別に前記固定部材より派生し
前記可動部材を支える支持部材とを有し、前記固定部材
および前記可動部材をパッケージに組込み後に前記支持
部材を切断してなるマイクロマシンにおいて、前記支持
部材が導電部材であって、電流を流しその抵抗加熱で該
支持部材を溶断するマイクロマシンである。
【0007】前記支持部材が前記可動部材および前記固
定部材並びに前記連結部材のそれぞれの融点より低い融
点をもつ材料であって、加熱することによって前記支持
部材を溶断するマイクロマシンであることができる。
【0008】また、前記支持部材が前記可動部材および
前記固定部材並びに前記連結部材のそれぞれの固有振動
数と異なる固有振動数をもつ材料であって、前記支持部
材の該固有振動数を加えることによって前記支持部材を
破断するマイクロマシンであることができる。
【実施例】次に、本発明について図面を参照して説明す
る。
【0009】図1(a)および(b)は本発明の第1の
実施例を示すセンサの平面図および断面図、図2は図1
のセンサをパッケージングするときの状態を示す断面図
である。このセンサは、図1に示すように、シリコン半
導体基板である固定部12と可動部11にリンあるいは
ホウ素などの不純物を注入し導体である拡散層を形成し
支持部13にコンタクト15を介して接続する配線14
とし、この配線の一端にボンディングパッドを形成し、
これらボンディングパッドに電流を供給するワイヤーを
接続したことである。
【0010】このように構成することによって、製造中
は、図2に示すように、緩衝用のダンピング用キャップ
24を必要に応じて被せてワイヤボンディングあるいは
パッケージングを行なう。そしてパッケージング後に、
ボンデイングパッドおよび配線14を経由して電流を流
せば、低濃度の支持部13は高抵抗であるため局部的に
加熱され溶融して切断される。この破断のための電流供
給に際しは、一切の振動を与えることも無く施工が出来
るとともに多くを並べて同時に出来るという利点があ
る。ここで、この実施例では電流を供給する配線を拡散
による配線で述べたが、通常の金属蒸着による金属配線
でも良い。要はプロセス工程順序を考慮していずれかに
決めるべきである。
【0011】図3(a)および(b)は第1の実施例を
適用した他の構造のセンサを示す平面図および断面図で
ある。また、図3に示すように、固定部12aおよび可
動部11aと支持部13aが材質および形状が異って
も、それぞれに跨がっている支持部13aを他の固定部
12aおよび可動部11aより高電気抵抗部材であれ
ば、これら支持部13aに電流を供給するボンディング
パッド16を設け、固定部12aと可動部11aと連結
する部材のボンディングパッド16aとボンディングパ
ッド16との間で電流を流してやれば、高抵抗である支
持部12aを抵抗加熱で溶断することが出来る。
【0012】図4(a)及び(b)は本発明の第2の実
施例を示すセンサの平面図および断面図である。このセ
ンサは、支持部23を他の可動部21および固定部22
の融点より低い融点をもつ材料で形成することである。
このセンサは、可動部21および固定部22の材料が高
抵抗のものであって支持部23をより高い抵抗をもたせ
ることができない場合あるいは可動部21に電流を流す
ことで障害を受ける機能素子が形成されている場合にに
適用する。低濃度のシリコン基板の裏面をエッチングで
部分的に抉り取り可動部21と固定部22の形状を形成
し、シリコン基板の表面における可動部21と固定部2
2の切離し領域の上に低融点であるプラスチック接着材
を塗布して支持部23を形成する。次に、可動部21あ
るいは固定部22に所望の配線および回路素子を形成し
た後、装置全体をオーブンに入れ加熱して支持部23を
溶かし溶断する。
【0013】また、他の例として固定部および可動部並
びに連結部のそれぞれの固有振動数と異なる固有振動数
をもつ薄膜部材を形成し、機能素子形成あるいは配線等
を形成しパッケージングを行なった後に、薄膜部材の固
有振動数と同じ振動数の振動を与え、薄膜部材を破断す
ることで可動部と固定部とを分離する。このようなセン
サの場合は、前述の実施例のように装置に電流を流した
り温度を上げるなどすることのできない材料あるいは機
能素子が形成されている場合に適用されるものである。
この薄膜部材は、固定部および可動部並びに連結部がシ
リンコン基板であれば、カーボンが妥当である。このよ
うな薄膜はマイクロマシンのプロセス途中で他の加工と
同時に出来るし、また、プロセスの簡略化の観点からも
同一のプロセスで得られる薄膜材料を選らぶべきであ
る。
【0014】
【発明の効果】以上説明したように本発明は、可動部お
よび固定部並びに連結部である構成部材がもつ電気抵
抗、融点および固有振動数を製作プロセスおよび形成さ
れる機能素子の条件より考慮しいずれかの性質を選び、
選ばれた性質において該構成部材より弱い性質の部材で
前記可動部および固定部の支持を予め補強し、構成部品
の形成およびパッケージング後に前記補強部材に選ばれ
た性質をもつエネルギーを与え前記補強部材を破壊切断
することによって、パッケージに特別な構造を設ける必
要が無いとともに製造工程中に可動部材と固定部材の連
結部を破損することが無く高い歩留りで生産できる効果
がある。また、補強部材を破壊する温度、電気および振
動エネルギーは同時に多数のマイクロマシンの構成体に
与えることが出来るので、バッチ処理のように大量生産
に適している。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示すセンサの平面図
(a)および断面図(b)である。
【図2】図1のセンサを製作するときの状態を示す断面
図である。
【図3】第1の実施例を適用した他の構造のセンサを示
す平面図(a)および断面図(b)である。
【図4】第2の実施例を示すセンサの平面図(a)およ
び断面図(b)である。
【図5】従来の一例を示すセンサの平面図(a)および
断面図(b)である。
【符号の説明】
11,11a,21 可動部 12,12a,22 固定部 13,13a,23 支持部 14 配線 15 コンタクト 16,16a ボンディングパッド 20 連結部 24 ダンピング用キャップ 31 薄膜
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成5年12月17日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】発明の名称
【補正方法】変更
【補正内容】
【発明の名称】 マイクロマシンとその製造方法
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】特許請求の範囲
【補正方法】変更
【補正内容】
【特許請求の範囲】
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0003
【補正方法】変更
【補正内容】
【0003】図5は従来の一例を示すセンサの平面図お
よび断面図である。このような低い歩留りを向上する方
法が特開昭62−190748号公報に開示されてい
る。この方法は、このマイクロマシンの代表的な例とし
て加速度を検知するセンサに適応されたものであって、
図5に示すように、エッチング加工によりシリコン半導
体基板から固定部22と固定部22から派生する連結部
20で片持する可動部21とを形成し、この可動部21
と固定部22と連結する連結部20以外に支えを補強す
るために、蒸着あるいはスパッタ法により仮止用電極薄
膜31を設け、この薄膜31で可動部材21の支えを補
強することによって連結部材の破損を防止していた。そ
して、最終のパッケージに組込み後にこの仮止用の薄膜
31にパッケージの外からレーザー光を照射し溶断して
センサとして完成させていた。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0004
【補正方法】変更
【補正内容】
【0004】
【発明が解決しようとする課題】しかしながら上述した
方法では、レーザ光を照射するためにパッケージにレー
ザ光透過窓やあるいは仮止め用部材にレーザ光が到達す
るための空間部を必要としパッケージの構造に制約を受
ける欠点がある。さらに、レーザ光照射といったシーケ
ンス動作を伴い、バッジ式のように一度に大量に生産す
ることは困難であった。
【手続補正5】
【補正対象書類名】明細書
【補正対象項目名】0006
【補正方法】変更
【補正内容】
【0006】
【課題を解決するための手段】本発明の特徴は、固定部
材と、この固定部材と連結部材を介して支えられる可動
部材と、前記連結部材とは別に前記固定部材より派生し
前記可動部材を支える支持部材とを有するマイクロマシ
ンにおいて、前記支持部材が導電部材であることを特徴
とするマイクロマシンである。使用する導電部材として
はスパッタ、蒸着あるいは気相成長法によって形成する
ことができる導電部材であれば特に限定はされないが、
可動部材及び固定部材並びに連結部材のそれぞれの融点
より低い融点をもつ材料であることが好ましい。
【手続補正6】
【補正対象書類名】明細書
【補正対象項目名】0007
【補正方法】変更
【補正内容】
【0007】又本発明は、固定部材と、この固定部材と
連結部材を介して支えられる可動部材と前記連結部材と
は別に前記固定部材より派生し前記可動部材を支える支
持部材とを有し、前記固定部材及び前記可動部材をパッ
ケージに組込後に前記支持部材を切断してなるマイクロ
マシンの製造方法において、前記支持部材を加熱するこ
とによって該支持部材を溶断することを特徴とするマイ
クロマシンの製造方法である。この場合、加熱する方法
は特に限定されないが、支持部材に電流を流し、抵抗加
熱することによって溶断することが最も好適である。
【手続補正7】
【補正対象書類名】明細書
【補正対象項目名】0008
【補正方法】変更
【補正内容】
【0008】又本発明は、支持部材を構成する導電部材
が、可動部材及び固定部材並びに連結部材のそれぞれの
固有振動数と異なる固体振動数をもつ材料であることを
特徴とするマイクロマシンである。この場合、支持部材
に相当する固有振動数を加えることによって該支持部材
を破断することによってマイクロマシンを製造すること
ができる。
【手続補正8】
【補正対象書類名】明細書
【補正対象項目名】0014
【補正方法】変更
【補正内容】
【0014】
【発明の効果】以上説明したように本発明は、可動部お
よび固定部並びに連結部である構成部材がもつ電気抵
抗、融点および固有振動数を製作プロセスおよび形成さ
れる機能素子の条件より考慮しいずれかの性質を選び、
選ばれた性質において該構成部材より弱い性質の部材で
前記可動部および固定部の支持を予め補強し、構成部品
の形成およびパッケージング後に前記補強部材に選ばれ
た性質をもつエネルギーを与え前記補強部材を破壊切断
することによって、パッケージに特別な構造を設ける必
要が無いとともに製造工程中に可動部材と固定部材の連
結部を破損することが無く高い歩留りで生産できる効果
がある。また、補強部材を破壊する熱、電気および振動
エネルギーは同時に多数のマイクロマシンの構成体に与
えることができるので、バッチ処理のように大量生産に
適している。

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 固定部材と、この固定部材と連結部材を
    介して支えられる可動部材と、前記連結部材とは別に前
    記固定部材より派生し前記可動部材を支える支持部材と
    を有し、前記固定部材および前記可動部材をパッケージ
    に組込み後に前記支持部材を切断してなるマイクロマシ
    ンにおいて、前記支持部材が導電部材であって、電流を
    流しその抵抗加熱で該支持部材を溶断することを特徴と
    するマイクロマシン。
  2. 【請求項2】 前記支持部材が前記可動部材および前記
    固定部材並びに前記連結部材のそれぞれの融点より低い
    融点をもつ材料であって、加熱することによって前記支
    持部材を溶断することを特徴とする請求項1に記載のマ
    イクロマシン。
  3. 【請求項3】 前記支持部材が前記可動部材および前記
    固定部材並びに前記連結部材のそれぞれの固有振動数と
    異なる固有振動数をもつ材料であって、前記支持部材の
    該固有振動数を加えることによって前記支持部材を破断
    することを特徴とする請求項1に記載のマイクロマシ
    ン。
JP5135507A 1993-06-07 1993-06-07 マイクロマシンとその製造方法 Pending JPH06350105A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5135507A JPH06350105A (ja) 1993-06-07 1993-06-07 マイクロマシンとその製造方法
US08/250,829 US5626779A (en) 1993-06-07 1994-05-31 Micromachine transducer with cantilevered movable portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5135507A JPH06350105A (ja) 1993-06-07 1993-06-07 マイクロマシンとその製造方法

Publications (1)

Publication Number Publication Date
JPH06350105A true JPH06350105A (ja) 1994-12-22

Family

ID=15153380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5135507A Pending JPH06350105A (ja) 1993-06-07 1993-06-07 マイクロマシンとその製造方法

Country Status (2)

Country Link
US (1) US5626779A (ja)
JP (1) JPH06350105A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930595A (en) * 1996-10-18 1999-07-27 Institute Of Microelectronics National University Of Singapore Isolation process for surface micromachined sensors and actuators
JP2003510194A (ja) * 1999-09-27 2003-03-18 インプット/アウトプット,インコーポレーテッド マイクロ加工構造用テンポラリーブリッジ
JP2004223637A (ja) * 2003-01-21 2004-08-12 Fuji Xerox Co Ltd 積層構造体の製造方法および積層構造体
JP2006126064A (ja) * 2004-10-29 2006-05-18 Star Micronics Co Ltd 静電容量型センサの製造方法
JP2007510554A (ja) * 2003-11-03 2007-04-26 アイディーシー、エルエルシー リリースされていない薄膜部分を有するmems装置
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
JP2015523220A (ja) * 2012-06-29 2015-08-13 インテル コーポレイション 機械的ヒューズを備える半導体パッケージ
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
US9429427B2 (en) 2012-12-19 2016-08-30 Intel Corporation Inductive inertial sensor architecture and fabrication in packaging build-up layers
US10508961B2 (en) 2012-06-28 2019-12-17 Intel Corporation Semiconductor package with air pressure sensor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658949B2 (ja) * 1995-02-23 1997-09-30 日本電気株式会社 半導体加速度センサ
US6087638A (en) * 1997-07-15 2000-07-11 Silverbrook Research Pty Ltd Corrugated MEMS heater structure
US6091050A (en) * 1997-11-17 2000-07-18 Roxburgh Limited Thermal microplatform
US6291345B1 (en) * 1998-07-27 2001-09-18 Honeywell International Inc. Controlled-stress stable metallization for electronic and electromechanical devices
US6393898B1 (en) 2000-05-25 2002-05-28 Symyx Technologies, Inc. High throughput viscometer and method of using same
US6664067B1 (en) * 2000-05-26 2003-12-16 Symyx Technologies, Inc. Instrument for high throughput measurement of material physical properties and method of using same
US6746615B1 (en) 2000-09-14 2004-06-08 Fsi International, Inc. Methods of achieving selective etching
US6769292B2 (en) 2001-08-24 2004-08-03 Symyx Technologies, Inc High throughput rheological testing of materials
US6690179B2 (en) 2001-08-24 2004-02-10 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using capacitance
US6650102B2 (en) * 2001-08-24 2003-11-18 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using a piezoelectric
US6736017B2 (en) 2001-08-24 2004-05-18 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6837115B2 (en) 2001-08-24 2005-01-04 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6772642B2 (en) 2001-08-24 2004-08-10 Damian A. Hajduk High throughput mechanical property and bulge testing of materials libraries
US6857309B2 (en) 2001-08-24 2005-02-22 Symyx Technologies, Inc. High throughput mechanical rapid serial property testing of materials libraries
US6860148B2 (en) 2001-08-24 2005-03-01 Symyx Technologies, Inc. High throughput fabric handle screening
US20030055587A1 (en) * 2001-09-17 2003-03-20 Symyx Technologies, Inc. Rapid throughput surface topographical analysis
EP1467948A1 (en) * 2002-01-24 2004-10-20 Cantion A/S A sensor
US7013709B2 (en) * 2002-01-31 2006-03-21 Symyx Technologies, Inc. High throughput preparation and analysis of plastically shaped material samples
US20030203500A1 (en) * 2002-04-26 2003-10-30 Symyx Technologies, Inc. High throughput testing of fluid samples using an electric field
DE10230198A1 (de) * 2002-07-05 2004-01-22 Robert Bosch Gmbh Sensor mit einer Heizeinrichtung und Verfahren
US20040123650A1 (en) * 2002-09-17 2004-07-01 Symyx Technologies, Inc. High throughput rheological testing of materials
US7112443B2 (en) * 2002-10-18 2006-09-26 Symyx Technologies, Inc. High throughput permeability testing of materials libraries

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670092A (en) * 1986-04-18 1987-06-02 Rockwell International Corporation Method of fabricating a cantilever beam for a monolithic accelerometer
US4922756A (en) * 1988-06-20 1990-05-08 Triton Technologies, Inc. Micro-machined accelerometer
JPS6381867A (ja) * 1986-09-25 1988-04-12 Yokogawa Electric Corp 半導体拡散ストレンゲ−ジ
US4974596A (en) * 1987-12-14 1990-12-04 Medex, Inc. Transducer with conductive polymer bridge
US5060504A (en) * 1988-09-23 1991-10-29 Automotive Systems Laboratory, Inc. Self-calibrating accelerometer
US4987781A (en) * 1989-05-03 1991-01-29 Sensym, Incorporated Accelerometer chip
JPH032569A (ja) * 1989-05-30 1991-01-08 Ricoh Co Ltd 加速度センサ
JPH0413975A (ja) * 1990-05-07 1992-01-17 Nec Corp 半導体加速度センサ
US5186053A (en) * 1990-12-19 1993-02-16 New Sd, Inc. Temperature compensated proofmass assembly for accelerometers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930595A (en) * 1996-10-18 1999-07-27 Institute Of Microelectronics National University Of Singapore Isolation process for surface micromachined sensors and actuators
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US9110289B2 (en) 1998-04-08 2015-08-18 Qualcomm Mems Technologies, Inc. Device for modulating light with multiple electrodes
JP2003510194A (ja) * 1999-09-27 2003-03-18 インプット/アウトプット,インコーポレーテッド マイクロ加工構造用テンポラリーブリッジ
JP2004223637A (ja) * 2003-01-21 2004-08-12 Fuji Xerox Co Ltd 積層構造体の製造方法および積層構造体
JP4528488B2 (ja) * 2003-01-21 2010-08-18 富士ゼロックス株式会社 積層構造体の製造方法および積層構造体
JP2007510554A (ja) * 2003-11-03 2007-04-26 アイディーシー、エルエルシー リリースされていない薄膜部分を有するmems装置
JP2006126064A (ja) * 2004-10-29 2006-05-18 Star Micronics Co Ltd 静電容量型センサの製造方法
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US10508961B2 (en) 2012-06-28 2019-12-17 Intel Corporation Semiconductor package with air pressure sensor
JP2015523220A (ja) * 2012-06-29 2015-08-13 インテル コーポレイション 機械的ヒューズを備える半導体パッケージ
US9429427B2 (en) 2012-12-19 2016-08-30 Intel Corporation Inductive inertial sensor architecture and fabrication in packaging build-up layers

Also Published As

Publication number Publication date
US5626779A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
JPH06350105A (ja) マイクロマシンとその製造方法
US9352953B2 (en) Mechanisms for forming micro-electro mechanical system device
US6436853B2 (en) Microstructures
US6074104A (en) Method for hermetically sealing optical fiber introducing section and hermetically sealed structure
US7459331B2 (en) Micro mirror unit and method of making the same
JP2876530B1 (ja) 固着した可動部の修復手段を具える超小型素子およびその製造方法
KR940018899A (ko) 전자부품의 매쓰 밀봉법 및 시험법, 및 웨이퍼 레벨 포장재(a method for the sealing and electrical testing of electronic devices, and wafer level package)
EP0736972B1 (en) Plastic encapsulated saw device and method
US7196405B1 (en) Silicon package with integral heater
JP2006339896A (ja) 圧電振動子の製造方法及び圧電振動子
JP2009044123A (ja) 電子部品の製造方法および電子部品。
JP4782107B2 (ja) チップおよび関連する支持体を製作する方法
CN103363975B (zh) 振动装置以及振动装置的制造方法
JP2008042512A (ja) 電子部品用パッケージ
KR100787217B1 (ko) Mems 구조물 및 그 제조방법
EP3800661B1 (en) Inert environment fusible links
EP1129479A1 (fr) Systeme d'assemblage de substrats a zones d'accrochage pourvues de cavites
JP2010181243A (ja) 容量式力学量センサ装置の製造方法
CA2273731C (en) Line-type heater
JPH07176546A (ja) 半導体装置
CN109311661A (zh) 用于晶片的共晶键合的方法和晶片复合体
CN116022728A (zh) 用于制造电触点接通部的方法;电触点接通部
JP3068571B2 (ja) 感熱型電気回路遮断部品
JPH1068846A (ja) 導波路型光伝送モジュールおよびその製造方法
JPH0667038A (ja) 光ファイバ導入部の気密封止構造

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031021