JPH06345530A - 多層ガラスセラミック基板およびその製造方法 - Google Patents

多層ガラスセラミック基板およびその製造方法

Info

Publication number
JPH06345530A
JPH06345530A JP5163786A JP16378693A JPH06345530A JP H06345530 A JPH06345530 A JP H06345530A JP 5163786 A JP5163786 A JP 5163786A JP 16378693 A JP16378693 A JP 16378693A JP H06345530 A JPH06345530 A JP H06345530A
Authority
JP
Japan
Prior art keywords
glass
weight
quartz
ceramic substrate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5163786A
Other languages
English (en)
Other versions
JPH0816021B2 (ja
Inventor
Kazuhiro Inata
一洋 生稲
Hikari Kimura
光 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5163786A priority Critical patent/JPH0816021B2/ja
Publication of JPH06345530A publication Critical patent/JPH06345530A/ja
Publication of JPH0816021B2 publication Critical patent/JPH0816021B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 1000℃以下の低温で、しかも酸化性ばか
りでなく中性および還元雰囲気でも焼成でき、誘電率の
低い機械的強度の優れた多層ガラスセラミック基板を提
供する。 【構成】 ムライト,石英ガラス,α−石英およびコー
ディエライトの中から選ばれる少なくとも1種の粉末1
0〜30重量%と、有機アルミネートコーティングした
ホウケイ酸系ガラス粉末70〜90重量%よりなる原料
粉末を用いてガラスセラミック層を製造する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、LSI素子を高密度に
実装するための多層ガラスセラミック基板に関し、特に
低温で焼結できる多層ガラスセラミック基板とその製造
方法に関するものである。
【0002】
【従来の技術】半導体技術の発展に伴い、電子装置、シ
ステムの小型化、高速化が益々要求されている。半導体
素子においては、VLSI、ULSIと高密度高集積化
され、これらをアセンブリするための実装技術は極めて
高密度微細化が必要とされている。特に半導体素子を搭
載するための実装基板は、配線密度の増大による微細配
線化とともに、配線抵抗の低減化、高速化に対応した基
板材料の低誘電率化および高密度配線化が要求されてい
る。実装基板として従来から使用されているものにアル
ミナ多層基板がある。この基板の製造方法としては、厚
膜印刷多層法およびグリーンシート積層法があるが、高
密度化の要求に対してはグリーンシート積層法が有利で
ある。グリーンシート積層法は、薄いセラミックグリー
ンシート各層に配線を印刷形成し一体に積層して得られ
るため配線層数を任意に多くすることができ、その結
果、厚膜印刷多層法よりも配線密度を高くすることがで
きる。しかし、アルミナセラミックは焼結温度が150
0℃以上と高く、配線導体に電気抵抗の比較的高いM
o、W金属を使わなければならず配線の微細化が困難で
あった。
【0003】一方、最近低抵抗導体のAu、Ag−P
d、Ag、Cu等を用いるために低温焼結型のセラミッ
ク材料が開発されている。まずアルミナとホウケイ酸鉛
系ガラスの複合材料の場合、1000℃以下の低温で焼
結が可能で、Au、Ag−Pd、Agを配線導体に用い
た多層基板が開発されている。この材料は鉛を含んでい
るため卑金属であるCuを配線に用いることは困難であ
り、更に誘電率においても7.5以上にしか低減するこ
とができない。低誘電率化と1000℃以下の還元雰囲
気焼成をねらったホウケイ酸系ガラスを用いたガラスセ
ラミック材料も開発されている。これは誘電率が5.5
程度と低く抑えられ、Cu配線による多層化がガラスセ
ラミックと導体との同時焼結法により実現されている
が、焼結時に結晶化を起こしておらず、機械的強度が著
しく低くなる欠点があった。また、従来このような基板
材料原料粉末をコーティングする技術として、特開昭6
3−151645号公報に記載されているような石英結
晶の生成を防ぐ手段は公知であったが、原料粉末コーテ
ィングにより新たな結晶相を析出させ、高強度の複合材
料を製造する方法については報告がなされていなかっ
た。
【0004】
【発明が解決しようとする課題】従来のアルミナ多層基
板では、高温でしか焼結できないため、電気抵抗の高い
Mo、Wしか導体に利用できず、このため配線抵抗が高
くなったり、微細配線が不可能である等の欠点があっ
た。またアルミナの誘電率は約10と高く信号の高速化
には不利であった。アルミナとホウケイ酸鉛系ガラスの
複合材料は、低温焼結化ができ低抵抗導体を配線に使え
るが、還元雰囲気焼成や卑金属導体配線の実現が困難で
あった。更にホウケイ酸系ガラスを用いたガラスセラミ
ック基板では、Cu多層配線および低誘電率化は可能で
あるが、機械的強度が著しく低くなった。基板の機械的
強度は極めて重要な特性である。特に基板上に多数の半
導体素子が実装されるマルチチップ実装基板において
は、基板サイズが大面積化するとともに入出力端子また
はピンが多数接続されるため、アセンブリー工程ばかり
でなく製品の状態で基板破損や金属との接合不良等の問
題が発生する。本発明の目的は、このような従来の実装
基板の課題を解決することにより、1000℃以下の低
温で、しかも酸化性ばかりでなく中性および還元雰囲気
で焼成でき、誘電率の低い機械的強度の優れた多層ガラ
スセラミック基板を提供することにある。従って配線導
体に低抵抗なAu、Ag、Cu、Ag−Pd等の金属を
適用することが可能となり、高密度微細配線でしかも高
速化が期待できる実装基板を提供することができる。
【0005】
【課題を解決するための手段】本発明は、ガラスセラミ
ック層が、アルミナ、ムライト,石英ガラス,α−
石英およびコーディエライトの中から選ばれる少なくと
も1種(以下、X成分と称する。)、ホウケイ酸系ガ
ラス、およびアノーサイト結晶からなる無機組成物で
あって、該組成物は、アルミナ12〜59.6重量%、
ムライト,石英ガラス,α−石英およびコーディエライ
トの中から選ばれる少なくとも1種10〜30重量%、
ホウケイ酸系ガラス18〜69.6重量%、アノーサイ
ト結晶1〜40重量%の組成範囲で総量100%になる
ように構成され、複数の導体層を上記ガラスセラミック
層を介して積層したことを特徴とする多層ガラスセラミ
ック基板である。ここで、X成分については、1成分で
あるとき4、2成分であるとき6、3成分であるとき
4、4成分であるとき1の選び方があるので、全部で1
5とおりの選択ができるものである。
【0006】またその製造方法は、原料粉末に、X成分
の粉末10〜30重量%および有機アルミネートコーテ
ィングしたホウケイ酸系ガラス粉末70〜90重量%で
総量100%になるように混合した混合粉末を用いるこ
とを特徴とし、焼結工程でアルミナ、アノーサイト結晶
を生成させる方法を採用することができる。ここで、ホ
ウケイ酸系ガラス粉末のガラス組成は、酸化物換算表記
で、SiO2:40〜75重量%、B23:5〜40重
量%、PbO:0〜30重量%、CaO:5〜30重量
%、BaO:0.1〜20重量%、Al23:0〜30
重量%、M1O:0〜5重量%、M2 2O:0.1〜5重
量%、M32:0.1〜5重量%(ただし、M1はMg
およびZnから選択される少なくとも1種、M2はL
i,NaおよびKから選択される少なくとも1種、M3
はTiおよびZrから選択される少なくとも1種を示
す。)であることが好ましい。製造法としては、これら
の原料粉末を混合し、スラリー状態にしたのちグリーン
シート化し、次にヴィアホールを形成し、導体印刷およ
び穴埋めを行ったのち積層、熱圧着し、1000℃以下
の温度で焼成する方法を採用する。
【0007】本発明を実施するときは、1000℃以下
の温度で焼結可能となるため、所望のグリーンシート積
層法によって容易に多層化でき、導体としてはAu、A
g、Pd、Pt等の元素ばかりでなく、中性または還元
雰囲気で焼成するCu、Ni等の卑金属の元素を含め、
それぞれ1種および2種以上を含む合金が安心して使用
できるようになり、実装密度が高く機械的強度に優れた
多層ガラスセラミック基板を実用に供することが可能と
なる。ここで機械的強度は少なくとも抗折強度で200
0kg/cm2以上が必要といわれており、この点から
も本発明は十分な強度を有している。
【0008】
【作用】本発明の多層ガラスセラミック基板の組成は、
1000℃以下の温度で焼結できるが、その理由を次に
示す。ホウケイ酸系ガラスは焼成の際、約700℃以上
で軟化を開始する。この液相化したガラスがX成分の粒
子間の空隙を埋めることになり緻密化が進行する。こう
して800〜1000℃の温度領域で十分緻密なガラス
セラミック体が形成され焼結を完了する。また、このと
き同時にガラス表面のAl成分が、ある部分はガラスと
反応し、アノーサイトとして析出し、残りの部分は酸化
してアルミナとなる。次に還元雰囲気で焼結できる理由
は、本組成物がこの条件下で酸化物状態から還元され金
属元素に変化することが抑えられる元素を用いているた
めである。例えば酸化鉛を含んだ組成物の場合、還元雰
囲気下では金属鉛に変化しガラスセラミック体の絶縁性
が著しく劣化する。機械的強度は多層ガラスセラミック
基板において重要な特性の一つであり、本発明は特にこ
の特性に対して効果が大である。強度を2000kg/
cm2以上に実現できる理由は、焼結後のガラスセラミ
ック体の構造に起因する。つまり液相化したガラスの表
面においては焼結と同時に化学反応を伴いアルミナ、ア
ノーサイト結晶を生成することができる。こうして焼結
後のガラスセラミック体にはアルミナ粒子、X成分粒子
とガラス質部分およびアノーサイト結晶とが三次元的に
緻密に構成されることになりセラミックとガラスとが強
固に結合され、その結果、基板として抗折強度の十分な
特性が得られる。本発明においては、ホウケイ酸系ガラ
スに有機アルミネートをコーティングしてからアルミナ
と複合体とすることで、焼成時に生成されるアノーサイ
ト結晶の量をアルミナに対して任意にコントロールする
ことができる。また、その際のコーティング量は、コー
ト液中の有機アルミネート濃度を調整したり、コーティ
ング回数を調整したりすることで容易に制御することが
できる。
【0009】
【実施例】以下、本発明の実施例について詳細に説明す
る。ガラスセラミック層を形成する組成物を表1〜表3
に示す。該組成物を製造するための方法を次に示す。X
粉末と有機アルミネートコーティングしたホウケイ酸カ
ルシウム系ガラス粉末を、X粉末:ホウケイ酸カルシウ
ム系ガラス=10重量%:90重量%〜30重量%:7
0重量%の比率で十分に混合し、グリーンシート積層法
によってシート状に形成する。このとき、ホウケイ酸系
ガラス粉末には酸化物換算表記で酸化カルシウムが10
重量%含まれている。グリーンシートに作成する方法
は、混合粉をポリビニルブチラール、ポリビニルアルコ
ール、ポリアクリル系樹脂などの有機バインダーととも
に溶媒中に分散し、泥漿化したのち、スリップキャステ
ィング法により形成される。グリーンシート厚みは10
〜400μmの範囲で均一にしかも自由にコントロール
することが可能である。
【0010】次に上下導体を接続するためのヴィアホー
ルを打ち抜き装置によりグリーンシートに形成する。該
ヴィアホールに電気的接続を行うための導体ペーストの
埋め込みおよび配線パターン印刷を行う。ここで用いる
導体としては、Au、Ag、AgーPd、Cu、Ni、
AgーPt等を主成分とする導体ペーストであり、スク
リーン印刷法によって所定の位置に印刷される。導体パ
ターンが印刷されヴィアフィルされたグリーンシートを
所定の層数になるように積層し、熱圧着する。成形時に
添加された有機バインダーおよび溶剤を400℃〜70
0℃の温度の脱バインダー工程により除去した後、80
0〜1000℃の温度範囲で焼成し多層ガラスセラミッ
ク基板を得た。本焼成に際し、ガラスが軟化し、X粒子
間の空隙をガラスが占有することになり緻密化が進む。
更にアルミニウム成分の結晶化、アルミニウム成分とガ
ラスとの化学反応によりアノーサイトが生成されること
になる。
【0011】表4〜表9には、多層ガラスセラミック基
板を作製したときの焼成条件、配線仕様および特性を示
した。焼結後の基板におけるガラスセラミック層の組成
を示した表1〜表3の試料番号と表4〜表9の試料番号
は対応している。
【0012】
【表1】
【0013】
【表2】
【0014】
【表3】
【0015】
【表4】 試料番号1〜17の焼成条件と配線仕様 ─────────────────────────────────── 焼 成 配 線 寸 法 試料 温 度 導 体 焼 成 積層数 ───────────── 番号 (℃) 雰囲気 (層) 配線幅 配線ピッチ ビア径 (μm) (μm) (μm) ─────────────────────────────────── 1 900 Ag Air 30 120 300 150 2 900 Ag Air 30 120 300 150 3 910 Ag-Pd Air 30 120 300 150 4 880 Cu N2 30 120 250 120 5 850 Cu N2 30 120 250 120 6 850 Cu N2 30 120 250 120 7 900 Cu N2+H2O 40 150 300 150 8 910 Cu N2+H2O 40 150 300 150 9 900 Ag Air 40 150 300 150 10 900 Ag Air 40 150 300 150 11 890 Ag Air 40 150 300 200 12 880 Ag Air 40 150 300 200 13 900 Ag-Pd Air 40 150 300 200 14 880 Ag-Pd Air 30 150 300 200 15 880 Ag-Pd Air 30 100 200 100 16 900 Ag-Pd Air 30 100 200 100 17 870 Ag Air 30 100 250 120 ───────────────────────────────────
【0016】
【表5】 試料番号1〜17の特性 ────────────────────────────── 試料 比誘電率 熱膨張率 抗折強度 絶縁抵抗 番号 (×10-7deg-1) (kg/cm2) (Ω・cm) ────────────────────────────── 1 5.2 40 2200 >1013 2 5.1 41 2300 >1013 3 5.0 43 2300 >1013 4 5.3 40 2200 >1013 5 5.3 43 2300 >1013 6 4.9 46 2600 >1013 7 5.6 40 2300 >1013 8 5.4 44 2300 >1013 9 5.1 48 2400 >1013 10 4.8 49 2600 >1013 11 5.6 43 2700 >1013 12 5.4 47 2500 >1013 13 5.3 49 2400 >1013 14 5.0 52 2600 >1013 15 6.3 41 2600 >1013 16 6.0 45 2400 >1013 17 6.0 46 2500 >1013 ──────────────────────────────
【0017】
【表6】 試料番号18〜34の焼成条件と配線仕様 ─────────────────────────────────── 焼 成 配 線 寸 法 試料 温 度 導 体 焼 成 積層数 ───────────── 番号 (℃) 雰囲気 (層) 配線幅 配線ピッチ ビア径 (μm) (μm) (μm) ─────────────────────────────────── 18 850 Ag Air 30 100 250 120 19 890 Ag Air 30 100 250 120 20 900 Ag Air 35 100 300 150 21 900 Cu N2+H2O 40 100 200 90 22 900 Cu N2+H2O 40 100 200 90 23 880 Cu N2+H2O 40 100 200 90 24 880 Ag Air 40 100 200 90 25 850 Ag Air 40 100 200 90 26 850 Ag Air 40 100 200 90 27 860 Ag Air 40 100 200 90 28 870 Ag Air 40 100 200 90 29 900 Cu N2+H2O 40 100 200 90 30 900 Cu N2+H2O 40 100 200 90 31 900 Cu N2 35 100 300 150 32 850 Cu N2 35 100 300 150 33 930 Cu N2 35 100 300 150 34 900 Cu N2 40 150 300 150 ───────────────────────────────────
【0018】
【表7】 試料番号18〜34の特性 ────────────────────────────── 試料 比誘電率 熱膨張率 抗折強度 絶縁抵抗 番号 (×10-7deg-1) (kg/cm2) (Ω・cm) ────────────────────────────── 18 5.8 49 2500 >1013 19 6.0 47 2700 >1013 20 5.9 47 2500 >1013 21 5.6 50 2500 >1013 22 5.7 46 2400 >1013 23 5.7 46 2600 >1013 24 5.6 50 2600 >1013 25 6.0 43 2400 >1013 26 6.1 48 2500 >1013 27 6.1 41 2500 >1013 28 5.8 45 2700 >1013 29 5.7 48 2500 >1013 30 5.6 46 2300 >1013 31 5.9 43 2500 >1013 32 5.6 48 2800 >1013 33 6.6 39 2400 >1013 34 5.9 45 2500 >1013 ──────────────────────────────
【0019】
【表8】 試料番号35〜50の焼成条件と配線仕様 ─────────────────────────────────── 焼 成 配 線 寸 法 試料 温 度 導 体 焼 成 積層数 ───────────── 番号 (℃) 雰囲気 (層) 配線幅 配線ピッチ ビア径 (μm) (μm) (μm) ─────────────────────────────────── 35 910 Cu N2+H2 40 150 350 150 36 900 Au Air 40 150 350 150 37 900 Ag Air 40 150 250 150 38 880 Cu N2 40 150 250 150 39 950 Cu N2 40 120 300 120 40 930 Ag-Pd Air 30 120 300 120 41 900 Ag-Pd Air 30 120 300 120 42 900 Au Air 30 120 300 120 43 930 Cu N2 30 120 250 100 44 910 Cu N2 30 120 250 100 45 950 Ag-Pd Air 30 120 250 100 46 950 Ag-Pd Air 30 100 200 80 47 930 Ag-Pd Air 40 100 250 120 48 960 Ag-Pd Air 40 100 250 120 49 900 Ag Air 40 100 250 120 50 900 Cu N2 40 80 200 80 ───────────────────────────────────
【0020】
【表9】 試料番号35〜50の特性 ────────────────────────────── 試料 比誘電率 熱膨張率 抗折強度 絶縁抵抗 番号 (×10-7deg-1) (kg/cm2) (Ω・cm) ────────────────────────────── 35 5.7 48 2500 >1013 36 5.6 50 2600 >1013 37 5.6 51 2700 >1013 38 6.0 53 2800 >1013 39 6.5 45 2500 >1013 40 6.4 47 2500 >1013 41 6.2 49 2400 >1013 42 6.0 51 2300 >1013 43 6.5 48 2400 >1013 44 6.3 50 2400 >1013 45 6.2 51 2300 >1013 46 6.2 51 2300 >1013 47 6.5 50 2400 >1013 48 6.3 52 2300 >1013 49 6.2 54 2200 >1013 50 6.3 55 2100 >1013 ──────────────────────────────
【0021】なお、本発明の範囲をはずれた場合には以
下のような理由で所望の基板特性を得ることができな
い。 (1)アルミナが12重量%未満の場合、抗折強度が2
000kg/cm2未満となり不充分となる。また5
9.6重量%を越えると1000℃以下の温度で焼結が
不充分となり、その結果、絶縁抵抗が低下するとともに
抗折強度も2000kg/cm2未満となる。更に誘電
率も7を越えるため高速化に不利となり、実用的な多層
ガラスセラミック基板が得られない。 (2)Xが10重量%未満の場合、誘電率が7を越えて
しまう。また30重量%を越えると焼結が不充分とな
り、絶縁抵抗を低下させ、抗折強度も2000kg/c
2未満に低下してしまう。 (3)ホウケイ酸系ガラスが18重量%未満の場合、X
粒子間の空隙を占有するに十分なガラス相を得ることが
できなくなるため、強度が低下するとともに信頼性が得
られない。69.6重量%を越えるとガラスの本来持つ
強度が支配的となり抗折強度2000kg/cm2未満
になってしまう。 (4)アノーサイト結晶が1重量%未満の場合、アノー
サイト結晶による強度補強効果がなくなり抗折強度20
00kg/cm2以上が得られない。また、アノーサイ
ト結晶が40重量%を越えると多層ガラスセラミック基
板の収縮性が不均一になり信頼性が低下する。 (5)原料粉末として用いるホウケイ酸系ガラス粉末が
70重量%未満の場合、アルミナ、アノーサイト生成が
不均一で小量となり強度が低下する。90重量%を越え
る場合には焼成時のガラス軟化反応が進むため焼成基板
の寸法安定性が悪くなり、実用的な基板が得られない。 (6)原料粉末として用いるホウケイ酸系ガラスのカル
シウム組成が酸化物換算表記に従ったとき酸化カルシウ
ムで5重量%未満のときは、焼成時にアノーサイト結晶
がほとんど生成されない。
【0022】
【発明の効果】以上説明したように、本発明の多層ガラ
スセラミック基板は、容易に高密度で微細な配線を形成
することができるばかりでなく、特性上も優れ、かつ、
実用に供されるために必要な機械的強度も充分満足する
実装基板である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/46 H 6921−4E T 6921−4E

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 ガラスセラミック層が、アルミナ、
    ムライト,石英ガラス,α−石英およびコーディエライ
    トの中から選ばれる少なくとも1種、ホウケイ酸系ガ
    ラス、およびアノーサイト結晶からなる無機組成物で
    あって、該組成物は、アルミナ12〜59.6重量%、
    ムライト,石英ガラス,α−石英およびコーディエライ
    トの中から選ばれる少なくとも1種10〜30重量%、
    ホウケイ酸系ガラス18〜69.6重量%、アノーサイ
    ト結晶1〜40重量%の組成範囲で総量100%になる
    ように構成され、複数の導体層を上記ガラスセラミック
    層を介して積層したことを特徴とする多層ガラスセラミ
    ック基板。
  2. 【請求項2】 請求項1記載の多層ガラスセラミック基
    板の製造方法であって、原料粉末に、ムライト,石英ガ
    ラス,α−石英およびコーディエライトの中から選ばれ
    る少なくとも1種の粉末10〜30重量%および有機ア
    ルミネートコーティングしたホウケイ酸系ガラス粉末7
    0〜90重量%で総量100%になるように混合した混
    合粉末を用いることを特徴とする多層ガラスセラミック
    基板の製造方法。
  3. 【請求項3】 ホウケイ酸系ガラス粉末のガラス組成
    が、酸化物換算表記で、SiO2:40〜75重量%、
    23:5〜40重量%、PbO:0〜30重量%、C
    aO:5〜30重量%、BaO:0.1〜20重量%、
    Al23:0〜30重量%、M1O:0〜5重量%、M2
    2O:0.1〜5重量%、M32:0.1〜5重量%
    (ただし、M1はMgおよびZnから選択される少なく
    とも1種、M2はLi,NaおよびKから選択される少
    なくとも1種、M3はTiおよびZrから選択される少
    なくとも1種を示す。)である請求項2記載の多層ガラ
    スセラミック基板の製造方法。
JP5163786A 1993-06-10 1993-06-10 多層ガラスセラミック基板およびその製造方法 Expired - Lifetime JPH0816021B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5163786A JPH0816021B2 (ja) 1993-06-10 1993-06-10 多層ガラスセラミック基板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5163786A JPH0816021B2 (ja) 1993-06-10 1993-06-10 多層ガラスセラミック基板およびその製造方法

Publications (2)

Publication Number Publication Date
JPH06345530A true JPH06345530A (ja) 1994-12-20
JPH0816021B2 JPH0816021B2 (ja) 1996-02-21

Family

ID=15780685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5163786A Expired - Lifetime JPH0816021B2 (ja) 1993-06-10 1993-06-10 多層ガラスセラミック基板およびその製造方法

Country Status (1)

Country Link
JP (1) JPH0816021B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171640A (ja) * 1997-12-09 1999-06-29 Murata Mfg Co Ltd 低温焼結基板組成物
JP2000327428A (ja) * 1999-05-14 2000-11-28 Nec Corp 低温焼成ガラスセラミックスとその製造方法
US6348424B1 (en) 1998-11-11 2002-02-19 Nec Corporation Low-temperature calcined glass ceramic and a manufacturing process therefor
US6818574B2 (en) * 1999-12-16 2004-11-16 Tokuyama Corporation Jointed body of glass-ceramic and aluminum nitride sintered compact and method for producing the same
JP2007176741A (ja) * 2005-12-28 2007-07-12 Kyocera Corp セラミック焼結体及び配線基板
JP2016204247A (ja) * 2015-04-16 2016-12-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. セラミックパッケージのための絶縁体組成物及びその製造方法
WO2017115702A1 (ja) 2015-12-28 2017-07-06 日立金属株式会社 誘電体セラミックスの製造方法および誘電体セラミックス
JP2017218368A (ja) * 2016-06-07 2017-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 絶縁体組成物及びこれを用いた電子部品の製造方法
JP2018165224A (ja) * 2017-03-28 2018-10-25 佐賀県 多孔質セラミックス
CN112876198A (zh) * 2021-03-31 2021-06-01 武汉钢铁有限公司 一种免烧焦罐衬板用涂料及其使用方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171640A (ja) * 1997-12-09 1999-06-29 Murata Mfg Co Ltd 低温焼結基板組成物
US6348424B1 (en) 1998-11-11 2002-02-19 Nec Corporation Low-temperature calcined glass ceramic and a manufacturing process therefor
JP2000327428A (ja) * 1999-05-14 2000-11-28 Nec Corp 低温焼成ガラスセラミックスとその製造方法
US6818574B2 (en) * 1999-12-16 2004-11-16 Tokuyama Corporation Jointed body of glass-ceramic and aluminum nitride sintered compact and method for producing the same
JP2007176741A (ja) * 2005-12-28 2007-07-12 Kyocera Corp セラミック焼結体及び配線基板
JP2016204247A (ja) * 2015-04-16 2016-12-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. セラミックパッケージのための絶縁体組成物及びその製造方法
WO2017115702A1 (ja) 2015-12-28 2017-07-06 日立金属株式会社 誘電体セラミックスの製造方法および誘電体セラミックス
US10696596B2 (en) 2015-12-28 2020-06-30 Hitachi Metals, Ltd. Method for producing dielectric ceramic, and dielectric ceramic
JP2017218368A (ja) * 2016-06-07 2017-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 絶縁体組成物及びこれを用いた電子部品の製造方法
JP2018165224A (ja) * 2017-03-28 2018-10-25 佐賀県 多孔質セラミックス
CN112876198A (zh) * 2021-03-31 2021-06-01 武汉钢铁有限公司 一种免烧焦罐衬板用涂料及其使用方法
CN112876198B (zh) * 2021-03-31 2022-02-18 武汉钢铁有限公司 一种免烧焦罐衬板用涂料及其使用方法

Also Published As

Publication number Publication date
JPH0816021B2 (ja) 1996-02-21

Similar Documents

Publication Publication Date Title
US4861646A (en) Co-fired metal-ceramic package
EP0163155B1 (en) Low temperature fired ceramics
JPS6244879B2 (ja)
US5206190A (en) Dielectric composition containing cordierite and glass
JPH04243962A (ja) 多層セラミックパッケージ用低誘電性無機組成物、及びその調製方法
JP3528037B2 (ja) ガラスセラミック基板の製造方法
US5989484A (en) Multilayer glass ceramic substrate and process for producing the same
JPH06305770A (ja) 多層ガラスセラミック基板とその製造方法
JPH05211005A (ja) 誘電体組成物
JPH06345530A (ja) 多層ガラスセラミック基板およびその製造方法
US5260119A (en) Low dielectric inorganic composition for multilayer ceramic package
JPH10194828A (ja) 低温焼成セラミックス多層基板とその製造方法
JPH0758454A (ja) ガラスセラミックス多層基板
JP2513382B2 (ja) 多層ガラスセラミック基板の製造方法
JP2872273B2 (ja) セラミツク基板材料
EP0204261A2 (en) Multilayer wiring board and method of manufacturing the same
JP2504351B2 (ja) 多層ガラスセラミック基板とその製造方法
JP2712930B2 (ja) 多層ガラスセラミック基板とその製造方法
JPH06112604A (ja) 多層ガラスセラミック基板とその製造方法
JP2504350B2 (ja) 多層ガラスセラミック基板とその製造方法
JP2504349B2 (ja) 多層ガラスセラミック基板とその製造方法
JP2723710B2 (ja) 多層ガラスセラミック基板及びその製造方法
JP3125500B2 (ja) セラミックス基板
JP2652229B2 (ja) 積層回路セラミック基板
JPH068189B2 (ja) 酸化物誘電体材料

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 18

EXPY Cancellation because of completion of term