JPH0632581B2 - Induction motor controller - Google Patents

Induction motor controller

Info

Publication number
JPH0632581B2
JPH0632581B2 JP59075239A JP7523984A JPH0632581B2 JP H0632581 B2 JPH0632581 B2 JP H0632581B2 JP 59075239 A JP59075239 A JP 59075239A JP 7523984 A JP7523984 A JP 7523984A JP H0632581 B2 JPH0632581 B2 JP H0632581B2
Authority
JP
Japan
Prior art keywords
angular frequency
induction motor
command
deviation
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59075239A
Other languages
Japanese (ja)
Other versions
JPS60219984A (en
Inventor
英彦 杉本
一史 石井
伸三 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59075239A priority Critical patent/JPH0632581B2/en
Publication of JPS60219984A publication Critical patent/JPS60219984A/en
Publication of JPH0632581B2 publication Critical patent/JPH0632581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control
    • H02P21/09Field phase angle calculation based on rotor voltage equation by adding slip frequency and speed proportional frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は可変周波数・可変電圧電源等により給電され
る誘導電動機制御装置に係り、特にベクトル制御の原理
に基づいた制御装置に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an induction motor controller fed by a variable frequency / variable voltage power source or the like, and more particularly to a controller based on the principle of vector control.

〔従来の技術〕[Conventional technology]

第1図は例えば特願昭58-230979号に示された従来の誘
導電動機制御装置のブロック線図であり、図においては
(1)はPWMインバータ、(3)は誘導電動機(2)の回転速度検
出器、(4a),(4b),(4c)はそれぞれ誘導電動機(2)のU
相、V相、W相の一次電流に応答した電流帰還信号iu,i
v,iwを出力する電流検出器、(5)は上記電流帰還信号iu,
iv,iwを誘導電動機(2)の同期角周波数(二次鎖交磁束ベ
クトルの角周波数)ωで回転し互いに直交する回転座標
系の二軸成分(d軸一次電流成分idesおよびq軸一
次電流成分iqesと呼称する)に変換する三相→二相変換
回路、(6)は上記d軸一次電流成分idesおよびq
一次電流成分iqesに関係してすべり角周波数の指令(電
気角表示)pω を演算するすべり角周波数指令演算
回路、(7)は誘導電動機の回転子角周波数ωを極対数
p倍する係数乗算回路、(8)は上記すべり角周波数指令
演算回路(6)の出力として生成される上記すべり角周波
数指令pω と上記係数乗算回路(7)の出力pω
加算し上記同期角周波数ωを生成する加算器、(9)は上
記同期角周波数ωを積分して二次鎖交磁束ベクトルの位
相角指令θを出力する位相角演算回路、(10)は位相角指
令θに応答した正弦波信号sinθおよび余弦波信号cosθ
を出力する関数発生器、(11),(12)はそれぞれ上記d
軸一次電流成分idesと、励磁電流指令 およびq軸一次電流成分iqesとトルク電流指令 とを比較する比較器、(13),(14)はそれぞれ比較器(11)
および(12)により検出された励磁電流偏差 およびトルク電流偏差 を増幅し、誘導電動機(2)のd軸一次電流成分(励磁
電流)idesおよびq軸一次電流成分(トルク電流)iq
esが常に所定の上記励磁電流指令 および上記トルク電流指令 に等しくなるように一次電圧指令のd軸成分 および一次電圧指令のq軸成分▲v* q▼を制御す
る演算回路、(15)は上記一次電圧指令のd軸成分 およびq軸成分 を三相の電圧指令▲v* u▼,▲v* v▼,▲v* w▼に変換
する二相→三相変換回路である。
FIG. 1 is a block diagram of a conventional induction motor controller shown in Japanese Patent Application No. 58-230979, for example.
(1) is a PWM inverter, (3) is a rotation speed detector of the induction motor (2), (4a), (4b), (4c) are U of the induction motor (2), respectively.
Current feedback signals i u , i in response to primary currents of V, V and W phases
current detector that outputs v , i w , (5) is the current feedback signal i u ,
i v, synchronous angular frequency (secondary flux linkage the angular frequency of the vector) rotating coordinate system of the two-axis component that rotates perpendicular to each other with omega (d e axis primary current component i w the induction motor (2) id e s and q e axis primary current component iq e s and referred to) is converted to a three-phase → two-phase conversion circuit (6) for the d e-axis primary current component id e s and q e axis primary current component iq e s Related to a slip angular frequency command calculation circuit that calculates a slip angular frequency command (electrical angle display) pω s * , (7) is a coefficient multiplication circuit that multiplies the rotor angular frequency ω r of the induction motor by the number of pole pairs, ( 8) adds the slip angular frequency command pω s * generated as the output of the slip angular frequency command calculation circuit (6) and the output pω r of the coefficient multiplication circuit (7) to generate the synchronous angular frequency ω An adder, (9) is a phase angle output that integrates the synchronous angular frequency ω and outputs the phase angle command θ of the secondary flux linkage vector. Arithmetic circuit, (10) is a sine wave signal sin θ and a cosine wave signal cos θ in response to the phase angle command θ
And outputs the function generator (11), (12) each of the d e
A shaft primary current component id e s, the excitation current command And q e- axis primary current component iq e s and torque current command Comparator for comparing with, and (13) and (14) are comparators (11) respectively
Excitation current deviation detected by (12) and And torque current deviation Amplifying the, d e axis primary current component of the induction motor (2) (excitation current) id e s and q e axis primary current component (torque current) iq
e s is always the prescribed excitation current command And the above torque current command D e axis component of the primary voltage command to be equal to And an arithmetic circuit for controlling the q e- axis component ▲ v * q es s of the primary voltage command, (15) is the d e- axis component of the primary voltage command And q e axis component Is a two-phase to three-phase conversion circuit that converts the three-phase voltage commands ▲ v * u ▼, ▲ v * v ▼, and ▲ v * w ▼.

従来の誘導電動機制御装置は上記のように構成され、電
流検出器(4a),(4b),(4c)で出力される電流帰還信号iu,i
v,iwを式に基づいて誘導電動機(2)の上記d軸一次
電流成分idsおよび上記q軸一次電流成分iq
sに変換し、それらが、それぞれの指令である上記励磁
電流成分 および上記トルク電流成分 に一致するように一次電圧の上記座標系の二軸成分 および を制御し、式に基づいてそれらを三相電圧指令▲v* u
▼,▲v* v▼,▲v* w▼に変換し、PWMインバータ(1)を
介して誘導電動機(2)を制御している。
The conventional induction motor control device is configured as described above, the current feedback signal i u , i output by the current detector (4a), (4b), (4c)
v, the d e-axis primary current component i w the induction motor based on the equation (2) id e s and the q e axis primary current component iq e
s, and these are the respective exciting current components that are the respective commands. And the above torque current component The biaxial component of the above coordinate system of the primary voltage to match and Control and control them based on the formula three-phase voltage command ▲ v * u
It is converted into ▼, ▲ v * v ▼, and ▲ v * w ▼, and the induction motor (2) is controlled via the PWM inverter (1).

しかしながら、上記のような実施例の誘導電動機制御装
置では、制御要素である誘導電動機の回転子角周波数を
検知するために誘導電動機の回転速度検出器(3)が必要
であり、誘導電動機本来の小形・堅牢・メンテナンスフ
リーという特長が薄れている。
However, in the induction motor control device of the embodiment as described above, the rotation speed detector (3) of the induction motor is necessary to detect the rotor angular frequency of the induction motor that is the control element, and the induction motor original The features of small size, robustness, and maintenance-free have faded.

〔発明の概要〕[Outline of Invention]

この発明はかかる欠点を改善する目的でなされたもの
で、誘導電動機のすべり角周波数ωとそのすべり角周
波数指令ω との偏差Δω(=ω −ω)を演
算し、上記偏差が零となるように誘導電動機を制御する
もので、速度検出器を用いないで、しかも直流他励電動
機と同等に制御できる誘導電動機制御装置を提案するも
のである。
The present invention has been made for the purpose of improving such a drawback, and calculates a deviation Δω s (= ω s * −ω s ) between the slip angular frequency ω s of the induction motor and the slip angular frequency command ω s * , The present invention proposes an induction motor control device for controlling an induction motor so that the deviation becomes zero, without using a speed detector, and capable of performing control equivalent to that of a DC separately excited motor.

〔発明の実施例〕Example of Invention

まず、発明の原理を誘導電動機の電圧方程式を用いて説
明する。
First, the principle of the invention will be described using the voltage equation of an induction motor.

誘導電動機の電圧方程式は、二次鎖交磁束の角周波数ω
で回転する直交座標系(d軸−q軸座標系と呼称す
る。)において式で与えられる。
The voltage equation of the induction motor is the angular frequency ω of the secondary flux linkage.
It is given by an equation in a Cartesian coordinate system that is rotated by (referred to as a d e axis-q e axis coordinate system).

ただし、式において、R,Rはそれぞれ誘導電動
機の一次および二次抵抗値を、L,Lはそれぞれ漏
れインダクタンス分を含んだ一次および二次インダクタ
ンス値を、Mは一次巻線二次巻線間の相互インダクタン
ス値を、σはσ=1-M2/LsLrなる漏れ係数を、pは極対
数を、ωはすべり角周波数を、PはP=d/dtなる微分
演算子を、また、 はそれぞれ一次電圧のd軸およびq軸成分を、 はそれぞれ一次電流のd軸およびq軸成分を、 はそれぞれ二次鎖交磁束のd軸およびq軸成分を表
す。
In the equation, R s and R r are the primary and secondary resistance values of the induction motor, L s and L r are the primary and secondary inductance values including the leakage inductance component, and M is the primary winding Mutual inductance between secondary windings, σ is the leakage coefficient σ = 1-M 2 / L s L r , p is the number of pole pairs, ω s is the slip angular frequency, and P is P = d / dt. The differential operator, Are the d e axis and q e axis components of the primary voltage, Are the d e axis and q e axis components of the primary current, Represent the d e axis and q e axis components of the secondary interlinkage magnetic flux, respectively.

式の1行目あるいは2行目より、誘導電動機のすべり
角周波数(電気角表示)が式あるいは式で演算でき
る。
From the first or second line of the equation, the slip angular frequency (electrical angle display) of the induction motor can be calculated by the equation or the equation.

軸二次鎖交磁束を基準とし、即ち二次鎖交磁束ベク
トルの方向をd軸と一致させるようなすべり角周波数
の指令をω とすると、その電気角表示は式より
式で演算できる。
with respect to the d e-axis secondary flux linkage or secondary interlinkage when the direction of the flux vector instruction slip angular frequency as to match the d e axis and omega s *, the electrical angle display the formula from the formula Can be calculated with.

ただし、 はそれぞれ二次鎖交磁束ベクトルの方向をd軸と一致
させたときの、二次鎖交磁束のd軸およびq軸成分
を表し、 である。
However, Represents the time that the direction of each secondary flux linkage vector is matched with d e axis, the d e-axis and q e axis component of the secondary flux linkage, Is.

式より上記すべり角周波数pωとその指令pω
との偏差pΔωは式で与えられる。
From the equation, the slip angular frequency pω s and its command pω s
A deviation pΔω s from * is given by an equation.

また、実際の誘導電動機で予備励磁を行う等して式の
ように仮定できるので、 式より上記すべり角周波数の偏差pΔωを式で
与えても、同様の動作が期待できる。
Also, since it can be assumed as in the formula by performing pre-excitation with an actual induction motor, Even if the deviation pΔω s of the slip angular frequency is given by the equation, the same operation can be expected.

したがつて、式あるいは式で与えられるすべり角周
波数偏差pΔωを制御してやれば、二次鎖交磁束ベク
トルの方向をd軸と一致させることができる。
It was but connexion, do it by controlling the slip angular frequency deviation Piderutaomega s given by the equation or formula, it is possible to the direction of the secondary flux linkage vector to coincide with the d e axis.

このとき、一般式に式で表される誘導電動機のトルク
は式より式となる。
At this time, the torque of the induction motor expressed by the general formula is expressed by the formula.

したがつて、二次鎖交磁束のd軸成分 (これは であるので全二次鎖交磁束でもある。)を一定に制御す
る一定励磁の場合には、トルクTe′は上記q軸一次電
流成分 と時間要素の入らない比例定数 の積となり、上記q軸一次電流成分iqsにより線
形に制御される。
D e axis component of the but connexion, secondary interlinkage flux (this is Therefore, it is also the total secondary interlinkage magnetic flux. ) Is controlled to be constant, the torque Te ′ is the above q e axis primary current component. And proportional constant without time factor Becomes a product, is controlled linearly by the q e axis primary current component iq e s.

以上、誘導電動機の電圧方程式を用いて説明したが、次
にこの電圧方程式から得られた発明の原理を三相誘導電
動機制御装置に適用した構成例について説明する。
The voltage equation of the induction motor has been described above, but a configuration example in which the principle of the invention obtained from this voltage equation is applied to a three-phase induction motor controller will be described next.

第2図はこの発明の基本的な一実施例のブロツク線図で
あり、(1)〜(15)は上記従来装置と全く同一のものであ
る。(16)はすべり角周波数偏差(電気角表示)pΔω
を演算するすべり角周波数偏差演算回路、(17)は上記す
べり角周波数偏差pΔωを積分して同期角周波数指令
ωを生成する同期角周波数指令演算回路であり、例えば
積分制御回路や比例積分回路で構成される。今すべり角
周波数偏差pΔωが正の値であるとすると、これを積
分して生成される同期角周波数指令ωは増加する。これ
につれてすべり角周波数ωは増加するので、すべり角
周波数偏差pΔωは減少する。偏差pΔωが負の値
の時には逆にすべり角周波数偏差pΔωは増加する。
このように動作することにより、すべり角周波数偏差p
Δωを零にすることができる。
FIG. 2 is a block diagram of a basic embodiment of the present invention, in which (1) to (15) are exactly the same as those of the conventional device. (16) Slip angular frequency deviation (electrical angle display) pΔω s
And (17) is a synchronous angular frequency command arithmetic circuit that integrates the slip angular frequency deviation pΔω s to generate a synchronous angular frequency command ω, such as an integration control circuit or a proportional integration circuit. Composed of. Now, assuming that the slip angular frequency deviation pΔω s is a positive value, the synchronous angular frequency command ω generated by integrating this will increase. Since the slip angular frequency ω s increases accordingly, the slip angular frequency deviation pΔω s decreases. On the contrary, when the deviation pΔω s has a negative value, the slip angular frequency deviation pΔω s increases.
By operating in this way, the slip angular frequency deviation p
Δω s can be zero.

第6図は同期角周波数指令演算回路(17)の一例を示すブ
ロック線図であり、第6図(a)は積分制御回路、第6図
(b)は比例積分回路である。積分制御回路はすべり角周
波数偏差pΔωを入力して積分し、同期角周波数指令
ωとして出力するものである。また、比例積分回路も同
様の動作をするのであるが、単に積分するだけでなく、
すべり角周波数偏差pΔωの変化に対して同期角周波
数指令ωが即座に応答できるように構成したものであ
る。
FIG. 6 is a block diagram showing an example of the synchronous angular frequency command calculation circuit (17), and FIG. 6 (a) is an integral control circuit, FIG.
(b) is a proportional-integral circuit. The integral control circuit inputs the slip angular frequency deviation pΔω s , integrates it, and outputs it as a synchronous angular frequency command ω. Also, the proportional-integral circuit operates in the same way, but not only simply integrates,
The synchronous angular frequency command ω is configured to be able to immediately respond to changes in the slip angular frequency deviation pΔω s .

第3図は第2図のすべり角周波数偏差演算回路の一構成
例であり、式に基づいている。
FIG. 3 shows an example of the configuration of the slip angular frequency deviation calculation circuit of FIG. 2, which is based on the equation.

ただし、二次鎖交磁束の二軸成分d軸二次鎖交磁束 軸二次鎖交磁束 は式の1行目、2行目から導出した式で表され、ま
は式の1行目でλqr=0とおいた値であり式に
より示される。
However, the biaxial component of the secondary flux linkage d e- axis secondary flux linkage q e- axis secondary interlinkage magnetic flux Is expressed by the formula derived from the first and second lines of the formula, and Is indicated by Yes equation with the values put the λq e r = 0 in the first line of expression.

また、一次電圧指令の二軸成分 は、式の に相当する。なお、図において微分演算子Pはsに書き
換えている。
Also, the biaxial component of the primary voltage command Is the expression Equivalent to. In the figure, the differential operator P is rewritten as s.

第4図は第2図のすべり角周波数偏差演算回路の他の構
成例であり、式に基づいている。
FIG. 4 is another example of the configuration of the slip angular frequency deviation calculation circuit of FIG. 2, which is based on an equation.

ただし、上記二次鎖交磁束の二軸成分λ,λ
は式で表される。なお、図において微分演算子Pは
sに書き換えてある。また、式、式で示されるすべ
り角周波数の偏差pΔωを与える式はd軸を二次鎖
交磁束の基準としたものであるが、q軸を二次鎖交磁
束の基準にした場合は、式は式に、式は式にそ
れぞれ変更すれば同様の効果が得られる。
However, the biaxial components λ d er and λ q e of the above secondary interlinkage magnetic flux
r is represented by a formula. In the figure, the differential operator P is rewritten as s. Further, the formula, but the formula which gives the deviation Piderutaomega s slip angular frequency of the formula is obtained by the reference secondary flux linkage of d e axis and the q e axis to the reference secondary flux linkage In this case, the same effect can be obtained by changing the expression to the expression and the expression to the expression.

上記のように構成された誘導電動機制御装置はすべり角
周波数偏差を演算し、その偏差を零とするように同期角
周波数指令ωを生成しているため、誘導電動機の回転子
角周波数ωは制御する上で不要であり、その結果とし
て誘導電動機の回転速度検出器は不要となる。
Since the induction motor controller configured as described above calculates the slip angular frequency deviation and generates the synchronous angular frequency command ω so that the deviation is zero, the rotor angular frequency ω r of the induction motor is It is unnecessary for control, and as a result, the rotation speed detector of the induction motor is unnecessary.

第5図は、この発明の他の実施例のブロック線図であ
り、(2)〜(19)は上記この発明の一実施例のものと全く
同一のものである。(20)は式〜式で示される位相指
と電圧指令vを演算する位相指令電圧指令演算回路、
(21)はPAMインバータである。
FIG. 5 is a block diagram of another embodiment of the present invention, and (2) to (19) are exactly the same as those of the embodiment of the present invention. (20) is the phase command given by And a phase command voltage command calculation circuit for calculating the voltage command v * ,
(21) is a PAM inverter.

したがつて、二相→三相変換回路の出力信号 はそれぞれU相、V相、W相のオンオフ信号となる。Therefore, the output signal of the two-phase to three-phase conversion circuit Are U-phase, V-phase, and W-phase on / off signals, respectively.

これによつて、PAMインバータもPWMインバータと同様に
上記誘導電動機の回転子速度検出器を用いないで制御で
きる。
As a result, the PAM inverter can be controlled without using the rotor speed detector of the induction motor, like the PWM inverter.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したとおり、速度検出器を用いない
で、しかも他励直流電動機と同等に誘導電動機を制御で
きるため、かつて他励直流電動機でなくては成し得なか
つた分野で誘導電動機を利用する場合に、誘導電動機の
本来の特長である小形・堅牢・メンテナンスフリー等を
十分に生かした、他励直流電動機よりも性能が向上した
システムを構成できる効果がある。
INDUSTRIAL APPLICABILITY As described above, the present invention can control the induction motor without using the speed detector, and can control the induction motor in the same manner as the separately excited DC motor. When used, it has the effect of being able to construct a system with improved performance over the separately excited DC motor, making full use of the original features of the induction motor, such as small size, robustness, and maintenance-free.

【図面の簡単な説明】 第1図は従来の誘導電動機の制御装置を示すブロック線
図、第2図および第3図はこの発明の一実施例を示すブ
ロック線図、第4図および第5図はこの発明の他の実施
例を示すブロック線図、第6図は同期角周波数指令演算
回路の一例を示すブロック線図である。 図において、(9)……位相角演算回路、(10)……関数発
生器、(5)……座標変換器、(16)……すべり角周波数偏
差演算回路、(17)……同期角周波数指令演算回路、(6)
……すべり角周波数指令演算回路、(18)……すべり角周
波数演算回路、(19)……加算器。 なお、図中同一符号は同一または相当部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a conventional controller for an induction motor, and FIGS. 2 and 3 are block diagrams showing an embodiment of the present invention, FIGS. 4 and 5. 6 is a block diagram showing another embodiment of the present invention, and FIG. 6 is a block diagram showing an example of a synchronous angular frequency command calculation circuit. In the figure, (9) ... phase angle calculation circuit, (10) ... function generator, (5) ... coordinate converter, (16) ... slip angle frequency deviation calculation circuit, (17) ... synchronization angle Frequency command calculation circuit, (6)
...... Slip angular frequency command arithmetic circuit, (18) …… Slip angular frequency arithmetic circuit, (19) …… Adder. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】回転座標系の二軸成分から成る誘導電動機
の一次電圧指令または一次電流指令を操作量として上記
誘導電動機を制御する装置において、上記誘導電動機の
同期角周波数指令ωに応答した位相角指令θを生成する
位相角演算回路、上記位相角指令θに応答した正弦波信
号sinθと余弦波信号cosθとを生成する関数発生器、上
記誘導電動機の一次電流に応答した信号を上記関数発生
器より生成された上記正弦波信号と上記余弦波信号を用
いて上記同期角周波数指令ωで回転し互いに直交する回
転座標系の二軸(d軸,q軸)成分ids,iq
sに変換する座標変換器、上記誘導電動器の一次抵抗
Rs,一次インダクタンスLs,もれ係数σ,二次イン
ダクタンスLr,相互インダクタンスM,上記同期角周
波数指令ω,一次電圧指令vd,vq,及
び上記一次電流ids,iqsとから式1に基づい
て演算される二次鎖交磁束の上記回転座標系の二軸成分
λdr,λqrと、上記一次電流とを用いて、上記
二次鎖交磁束の基準を上記回転座標系の二軸成分のうち
のどちらか一方の成分として、式2で上記誘導電動機の
すべり角周波数指令pω を計算し、式3ですべり角
周波数計算値pωを計算し、さらにその偏差pΔω
(=pω −pω)を演算するすべり角周波数偏差
演算回路、並びに上記偏差Δωを積分して、上記同
期角周波数指令ωを生成する同期角周波数指令演算回路
を備え、上記偏差Δωの正負の値により、上記同期
角周波数指令演算回路で生成する上記同期角周波数指令
ωが増減し、これにつれて上記すべり角周波数ωが増
減することにより、上記偏差pΔωを零にするように
したことを特徴とする誘導電動機制御装置。
1. An apparatus for controlling the induction motor using a primary voltage command or a primary current command of an induction motor composed of biaxial components of a rotating coordinate system as a manipulated variable, in a phase responding to a synchronous angular frequency command ω of the induction motor. A phase angle calculation circuit that generates an angle command θ, a function generator that generates a sine wave signal sin θ and a cosine wave signal cos θ that respond to the phase angle command θ, and a function that generates a signal that responds to the primary current of the induction motor. by using the sine wave signal and the cosine wave signal generated from the vessel biaxial (d e axis, q e axis) of the rotating coordinate system that are orthogonal to each other and rotating at the synchronous angular frequency command ω component id e s, iq
coordinate converter for converting the e s, primary resistance Rs of the induction motor unit, primary inductance Ls, leak factor sigma, secondary inductance Lr, the mutual inductance M, the synchronization angular frequency command omega, primary voltage command vd e s * , vq e s *, and the primary current id e s, iq e s Tokara biaxial components of the rotating coordinate system of the secondary flux linkage that is calculated based on the equation 1 .lambda.d e r, and? Q e r, Using the primary current and the reference of the secondary interlinkage magnetic flux as one of the components of the two axis components of the rotating coordinate system, the slip angular frequency command pω s * of the induction motor is expressed by Equation 2. The slip angular frequency calculation value pω s is calculated by Equation 3, and the deviation pΔω s thereof is calculated.
(= Pω s * −pω s ), a slip angular frequency deviation calculation circuit, and a synchronization angular frequency command calculation circuit that integrates the deviation p Δω s to generate the synchronization angular frequency command ω. The synchronization angular frequency command ω generated by the synchronization angular frequency command calculation circuit increases or decreases depending on the positive or negative value of p Δω s, and the slip angular frequency ω s increases or decreases accordingly, so that the deviation pΔω s becomes zero. An induction motor control device characterized in that
【請求項2】回転座標系の二軸成分から成る誘導電動機
の一次電圧指令または一次電流指令を操作量として上記
誘導電動機を制御する装置において、上記誘導電動機の
同期角周波数指令ωに応答した位相角指令θを生成する
位相角演算回路、上記位相角指令θに応答した正弦波信
号sinθと余弦波信号cosθとを生成する関数発生器、上
記誘導電動機の一次電流に応答した信号を上記関数発生
器より生成された上記正弦波信号と上記余弦波信号を用
いて上記同期角周波数指令ωで回転し互いに直交する回
転座標系の二軸(d軸,q軸)成分ids,iq
sに変換する座標変換器、上記誘導電動機の一次抵抗
Rs,一次インダクタンスLs,もれ係数σ,二次イン
ダクタンスLr,相互インダクタンスM,上記同期角周
波数指令ω,一次電圧指令Vd,Vq,及
び上記一次電流ids,iqsとから式1に基づい
て演算される二次鎖交磁束の上記回転座標系の二軸成分
λdr,λqrと、上記一次電流とを用いて、上記
二次鎖交磁束の基準を上記回転座標系の二軸成分のうち
のどちらか一方の成分として、式4で上記誘導電動機の
すべり角周波数偏差pΔωを演算するすべり角周波数
偏差演算回路、及び上記偏差pΔωを積分して、上記
同期角周波数指令ωを生成する同期角周波数指令演算回
路を備え、上記偏差pΔωの正負の値により、上記同
期角周波数指令演算回路で生成する上記同期角周波数指
令ωが増減し、これにつれて上記すべり角周波数ω
増減することにより、上記偏差pΔωを零にするよう
にしたことを特徴とする誘導電動機制御装置。
2. An apparatus for controlling the induction motor by using a primary voltage command or a primary current command of an induction motor composed of biaxial components of a rotating coordinate system as a manipulated variable, in a phase responding to a synchronous angular frequency command ω of the induction motor. A phase angle calculation circuit that generates an angle command θ, a function generator that generates a sine wave signal sin θ and a cosine wave signal cos θ that respond to the phase angle command θ, and a function that generates a signal that responds to the primary current of the induction motor. by using the sine wave signal and the cosine wave signal generated from the vessel biaxial (d e axis, q e axis) of the rotating coordinate system that are orthogonal to each other and rotating at the synchronous angular frequency command ω component id e s, iq
coordinate converter for converting the e s, primary resistance Rs of the induction motor, the primary inductance Ls, leak factor sigma, secondary inductance Lr, the mutual inductance M, the synchronization angular frequency command omega, primary voltage command Vd e s *, vq e s *, and the primary current id e s, iq e s Tokara biaxial components of the rotating coordinate system of the secondary flux linkage that is calculated based on the equation 1 .lambda.d e r, and? Q e r, the Using the primary current, the slip angular frequency deviation pΔω s of the induction motor is calculated by Equation 4 using the reference of the secondary interlinkage magnetic flux as one of the two axial components of the rotating coordinate system. slip angular frequency deviation calculation circuit, and by integrating the deviation Piderutaomega s, with a synchronous angular frequency command calculation circuit for generating the synchronous angular frequency command omega, the positive and negative value of the deviation Piderutaomega s, the synchronizing angular frequency The synchronous angular frequency command omega increases or decreases generated in decree arithmetic circuit, which as by the slip angular frequency omega s is increased or decreased, the induction motor control device is characterized in that so as to zero the deviation Piderutaomega s .
JP59075239A 1984-04-13 1984-04-13 Induction motor controller Expired - Lifetime JPH0632581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075239A JPH0632581B2 (en) 1984-04-13 1984-04-13 Induction motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075239A JPH0632581B2 (en) 1984-04-13 1984-04-13 Induction motor controller

Publications (2)

Publication Number Publication Date
JPS60219984A JPS60219984A (en) 1985-11-02
JPH0632581B2 true JPH0632581B2 (en) 1994-04-27

Family

ID=13570464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075239A Expired - Lifetime JPH0632581B2 (en) 1984-04-13 1984-04-13 Induction motor controller

Country Status (1)

Country Link
JP (1) JPH0632581B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110156B2 (en) * 1986-03-28 1995-11-22 株式会社安川電機 Induction motor controller
JPH0789760B2 (en) * 1986-09-29 1995-09-27 株式会社日立製作所 Vector control method of induction motor
JPS63265586A (en) * 1987-04-23 1988-11-02 Fuji Electric Co Ltd Variable speed driving system for induction motor
JP2585376B2 (en) * 1987-06-12 1997-02-26 株式会社日立製作所 Control method of induction motor
JP5178768B2 (en) 2010-04-06 2013-04-10 三菱電機株式会社 AC rotating machine control device and electric power steering control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953796B2 (en) * 1978-03-14 1984-12-26 株式会社東芝 Induction motor control device
JPS5963998A (en) * 1982-10-04 1984-04-11 Hitachi Ltd Controlling method for induction motor

Also Published As

Publication number Publication date
JPS60219984A (en) 1985-11-02

Similar Documents

Publication Publication Date Title
JP4909797B2 (en) Motor control device
EP0175154A2 (en) Method of controlling inverter-driven induction motor
JPS58123394A (en) Controller for ac motor
JP2001346396A (en) Speed control apparatus for synchronous reluctance motor
JPS5850119B2 (en) Control device for commutatorless motor
JPS6024676B2 (en) Device that controls a permanent magnet synchronous motor
JPH09285199A (en) Control device for induction motor
JP3064671B2 (en) Control circuit of power converter
KR860001242B1 (en) Current control apparatus for electric power systems
JP3656944B2 (en) Control method of synchronous motor
JPH0632581B2 (en) Induction motor controller
JPH0773438B2 (en) Variable speed controller for induction motor
JP2971762B2 (en) Simple vector controller for three-phase induction motor
JP3173022B2 (en) Control device for brushless DC motor
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JPS6159071B2 (en)
JPH0570394B2 (en)
JP2708649B2 (en) Cyclo converter control device
JPH06319285A (en) Vector controller for induction motor
JP2523504B2 (en) Power converter controller
JPS5937894A (en) Variable speed driving system for synchronous machine
JPH0793839B2 (en) Induction motor controller
JPH0667256B2 (en) Cycloconverter control device
JPH0546794B2 (en)
JPH0785680B2 (en) Synchronous motor speed controller