JPH0785680B2 - Synchronous motor speed controller - Google Patents

Synchronous motor speed controller

Info

Publication number
JPH0785680B2
JPH0785680B2 JP59042591A JP4259184A JPH0785680B2 JP H0785680 B2 JPH0785680 B2 JP H0785680B2 JP 59042591 A JP59042591 A JP 59042591A JP 4259184 A JP4259184 A JP 4259184A JP H0785680 B2 JPH0785680 B2 JP H0785680B2
Authority
JP
Japan
Prior art keywords
command
current
phase
converter
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59042591A
Other languages
Japanese (ja)
Other versions
JPS60187283A (en
Inventor
孝行 松井
俊昭 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59042591A priority Critical patent/JPH0785680B2/en
Publication of JPS60187283A publication Critical patent/JPS60187283A/en
Publication of JPH0785680B2 publication Critical patent/JPH0785680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は同期電動機の速度制御装置に係り、特に回転検
出器を用いることなく該電動機の速度を制御する同期電
動機の速度制御装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a speed controller for a synchronous motor, and more particularly to a speed controller for a synchronous motor that controls the speed of the motor without using a rotation detector.

〔発明の背景〕[Background of the Invention]

この種の同期電動機の速度制御装置としては、同期電動
機を周波数変換器を用いて速度制御するサイリスタモー
タ装置が知られている。かかる速度制御装置は、同期電
動機に可変周波数の交流を供給する変換器と、該変換器
から出力される交流の値(大きさ)及びその周波数を制
御する信号を形成する変換器制御回路とから構成されて
いる。このような速度制御装置は、電動機の誘導起電力
に対して電動機電流を所定の位相に制御すると共に、回
転速度を制御するためにどうしても位置検出器や速度検
出器などの回転センサを前記電動機の軸端に取付ける必
要がある。しかしながら、かかる速度制御装置によれ
ば、これらの回転センサを電動機に取付ける必要があ
り、そのため工数や部品点数が増加すること、該センサ
から変換装置までの信号ケーブルが必要であり、このた
めの工数や部品点数が増加すること、回転センサを悪環
境下に置くため信頼性に欠ける点があつたことなどの不
都合があつた。
As a speed control device for this type of synchronous motor, there is known a thyristor motor device that controls the speed of the synchronous motor using a frequency converter. Such a speed control device includes a converter that supplies a variable frequency alternating current to a synchronous motor, and a converter control circuit that forms a value (amount) of the alternating current output from the converter and a signal that controls the frequency. It is configured. Such a speed control device controls the electric motor current to a predetermined phase with respect to the induced electromotive force of the electric motor, and in order to control the rotational speed, a rotation sensor such as a position detector or a speed detector is inevitably installed in the electric motor. Need to be attached to the shaft end. However, according to such a speed control device, it is necessary to attach these rotation sensors to the electric motor, which increases man-hours and the number of parts, and a signal cable from the sensor to the conversion device is required. In addition, there were inconveniences such as an increase in the number of parts, the number of parts, and lack of reliability because the rotation sensor was placed in a bad environment.

〔発明の目的〕[Object of the Invention]

本発明は上述の不都合な点に鑑みてなされたものであ
り、その目的は、回転センサを用いることなく電動機の
速度制御の行なうことのできる同期電動機の速度制御装
置を提供することにある。
The present invention has been made in view of the above disadvantages, and an object of the present invention is to provide a speed control device for a synchronous motor capable of controlling the speed of the electric motor without using a rotation sensor.

〔発明の概要〕[Outline of Invention]

本発明は、同期電動機に可変周波数の交流を供給する変
換器(1)と、該変換器から出力される交流の値及びそ
の周波数を回転速度指令に基づいて制御する変換器制御
回路(6)とを含んでなる同期電動機の速度制御装置に
おいて、前記変換器制御回路(6)は、変換器の出力交
流の周波数指令(kω1)を入力し、該周波数指令に応
じた周波数の2相正弦波信号を発振する発振手段(12)
と、前記同期電動機の電動機電圧を検出する電圧検出手
段(4)と、該検出された電動機電圧と前記2相正弦波
信号に基づいて、前記同期電動機のトルクに関係する有
効分電流と同位相の第1の電圧成分(em′)と、前記同
期電動機の磁束量に関係する無効分電流と同位相の第2
の電圧成分(et′)とを検出する電圧成分検出手段(9,
10)と、前記回転速度指令と前記第2の電圧成分
(et′)との偏差を求め、該偏差を低減すべくその偏差
に応じた前記有効分電流の指令▲(i* t)▼を出力する速
度偏差増巾手段(8)と、前記回転速度指令に前記第1
の電圧成分(em′)を極性を反転して加算し、前記周波
数指令(kω1)として前記発振手段に入力する加算手
段(11)と、該加算手段から出力される周波数指令と前
記第2の電圧成分(et′)の偏差を求め、該偏差を低減
すべくその偏差に応じて前記無効分電流の指令▲(i* m)
▼を生成する電流増巾手段(13)と、該無効分電流の指
令▲(i* m)▼と前記有効分電流の指令▲(i* t)▼と前記2
相正弦波信号とに基づいて3相の電流指令を出力する相
数変換手段(14,15)と、該変換手段から出力される電
流指令に応じて前記変換器を駆動する変換器駆動回路
(16,17)とを備えて構成したことを特徴とする。
The present invention relates to a converter (1) for supplying a variable frequency alternating current to a synchronous motor, and a converter control circuit (6) for controlling the value of the alternating current output from the converter and its frequency based on a rotation speed command. In the speed control device for a synchronous motor, the converter control circuit (6) receives the frequency command (kω 1 ) of the output AC of the converter, and outputs a two-phase sine wave having a frequency corresponding to the frequency command. Oscillating means for oscillating a wave signal (12)
Voltage detecting means (4) for detecting the motor voltage of the synchronous motor, and the same phase as the effective component current related to the torque of the synchronous motor based on the detected motor voltage and the two-phase sine wave signal. Of the first voltage component (e m ′) of the second and the second component of the same phase as the reactive current related to the amount of magnetic flux of the synchronous motor.
Voltage component (e t ′) of the voltage component detection means (9,
10) and the deviation between the rotation speed command and the second voltage component (e t ′), and the effective component current command ▲ (i * t ) ▼ corresponding to the deviation to reduce the deviation. And a speed deviation increasing means (8) for outputting
Voltage component (e m ′) of which the polarity is inverted and added, and is input to the oscillating means as the frequency command (kω 1 ), and the frequency command output from the adding means and the first The deviation of the voltage component (e t ′) of 2 is obtained, and in order to reduce the deviation, the reactive current command ▲ (i * m ) is calculated according to the deviation.
A current increasing means (13) for generating ▼, a command ▲ (i * m ) ▼ of the reactive current and a command ▲ (i * t ) ▼ of the active current and
A phase number conversion means (14, 15) for outputting a current command of three phases based on the phase sine wave signal, and a converter drive circuit for driving the converter according to the current command output from the conversion means ( 16, 17) and is configured.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る同期電動機の速度制御装置の一実
施例を示すブロック図である。図において、1は可変周
波数の交流を出力する変換器であり、この変換器1はゲ
ートターンオフサイリスタ{Gate Turn−off Thyristor
(以下、GTOという)}あるいはトランジスタとダイオ
ードなどでPWMインバータとして構成されている。2は
同期電動機であり、固定子2Aと、回転子(この場合界磁
巻線である)2Bとを含んで構成されている。3は回転速
度指令回路、4は電動機電圧検出用変圧器、5はインバ
ータ1の出力電流の瞬時値を検出するための電流検出器
である。また、この回転速度指令回路3からの回転速度
指令100を取り込んだ変換器制御回路6は、この指令100
を基に変換器1から出力される交流の大きさ及びその周
波数を制御する制御信号200を形成し出力できるように
構成されている。この変換器制御回路6は、速度指令信
号の変化率を制御するための変化率制限器7と、速度指
令信号100と後述する電動機電圧の基本波成分であつて
無効分電流の位相基準信号と90度位相の異なる成分との
偏差をとりその偏差信号▲i* t▼を増巾する速度偏差増
巾器8と、電動機電圧の基本波成分であつて無効分電流
の位相基準信号と90度位相の異なる成分を検出するため
の電圧成分検出器9と、電動機電圧の基本波成分であつ
て無効分電流の位相基準信号に対して同位相の成分を検
出するための電圧成分検出器10と、電圧成分検出器10及
び変化率制限器7の出力信号を加算し、周波数指令信号
(Kω1)を出力する加算器11と、周波数指令信号Kω1
に比例した周波数をもつ2相正弦波信号を出力する発振
器12と、加算器11の出力信号と電圧成分検出器9の出力
信号との偏差に応じて無効分電流指令信号▲i* m▼を出
力する増巾器13と、増巾器13からの無効分電流指令信号
▲i* m▼及び増巾器8からの有効分電流指令信号▲i* t
と発振器12の出力信号を乗算し、2相の電流指令パター
ン信号▲i α▼及び▲i β▼を出力する座標変換器
14と、信号▲i α▼及び▲i β▼に基づいて3相の
電流指令パターン信号▲i* u,i* v,i* w▼を出力する相
数変換器15と、電流指令パターン信号と電流検出器5か
の電流検出信号を比較し、インバータ1のGTOをオン,
オフ制御するためのPWM(制御)信号200を形成する信号
を出力する比較器16と、GTOにゲート信号(制御信号)2
00を与えるためのゲート回路17とを含んで構成されてい
る。なお、電流検出器5と、ゲート回路17と比較器16と
はU相出力に対応した回路であり、V相及びW相のそれ
ぞれに対応しては同様の回路があるが、それらは図示を
省略してある。
FIG. 1 is a block diagram showing an embodiment of a speed control device for a synchronous motor according to the present invention. In the figure, 1 is a converter that outputs an alternating current of a variable frequency, and this converter 1 is a gate turn-off thyristor.
(Hereinafter, referred to as GTO)} Or it is configured as a PWM inverter with transistors and diodes. Reference numeral 2 denotes a synchronous motor, which includes a stator 2A and a rotor (in this case, a field winding) 2B. 3 is a rotation speed command circuit, 4 is a motor voltage detecting transformer, and 5 is a current detector for detecting an instantaneous value of the output current of the inverter 1. Further, the converter control circuit 6 that has received the rotation speed command 100 from the rotation speed command circuit 3 is
The control signal 200 for controlling the magnitude and frequency of the alternating current output from the converter 1 can be formed and output based on the above. This converter control circuit 6 includes a rate-of-change limiter 7 for controlling the rate of change of the speed command signal, a speed command signal 100, and a phase reference signal of a reactive current, which is a fundamental wave component of a motor voltage described later. 90 degree The speed deviation amplifier 8 which takes the deviation from the phase difference component and increases the deviation signal ▲ i * t ▼, and the phase reference signal of the reactive current and the phase reference signal of the reactive current of 90 degrees. A voltage component detector 9 for detecting a component having a different phase, and a voltage component detector 10 for detecting a component of the fundamental wave component of the motor voltage that is in phase with the phase reference signal of the reactive current. , An adder 11 for adding the output signals of the voltage component detector 10 and the change rate limiter 7 and outputting a frequency command signal (Kω 1 ), and a frequency command signal Kω 1
An oscillator 12 which outputs a two-phase sine wave signal having a frequency proportional to, and a reactive current command signal ▲ i * m ▼ depending on the deviation between the output signal of the adder 11 and the output signal of the voltage component detector 9. Outputting amplifier 13 and reactive current command signal ▲ i * m ▼ from amplifier 13 and active current command signal ▲ i * t ▼ from amplifier 8.
And a signal output from the oscillator 12 are multiplied to output a two-phase current command pattern signal ▲ i * α ▼ and ▲ i * β
14, a phase number converter 15 that outputs three-phase current command pattern signals ▲ i * u , i * v , i * w ▼ based on the signals ▲ i * α ▼ and ▲ i * β ▼, and the current command. Compare the pattern signal with the current detection signal from the current detector 5, and turn on the GTO of the inverter 1.
Comparator 16 that outputs a signal that forms PWM (control) signal 200 for off control, and gate signal (control signal) 2 to GTO
And a gate circuit 17 for giving 00. The current detector 5, the gate circuit 17, and the comparator 16 are circuits corresponding to the U-phase output, and there are similar circuits corresponding to the V-phase and the W-phase, respectively. Omitted.

次に、上述のように構成された実施例の動作を説明する
が、その前に先ず本発明の原理について述べる。
Next, the operation of the embodiment configured as described above will be described, but before that, the principle of the present invention will be described first.

同期電動機の直交回転磁界座標系の1つの軸をm′軸、
それに直交する軸をt′と仮定して横軸及び縦軸にと
り、このm′軸を電動機の磁束軸に一致するように制御
すれば、各軸の電流成分im′及びit′はそれぞれ電動機
の磁束量に関係する無効分電流成分im及び電動機のトル
クに関係する有効分電流成分itに対応する。
One axis of the orthogonal rotating magnetic field coordinate system of the synchronous motor is m ′ axis,
'Represented by the horizontal and vertical axes assuming this m' an axis orthogonal to it t is controlled so as to coincide with the magnetic flux axis of the motor shaft, current components i m 'and i t' each of the axes It corresponds to the reactive component current component i m related to the amount of magnetic flux of the motor and the active component current component i t related to the torque of the motor.

そこで、速度制御回路の信号によつてit′を制御し、電
圧制御回路の信号によつてim′を制御するならば、電動
機を所定の速度と電圧に制御できることになる。
Therefore, if i t ′ is controlled by the signal of the speed control circuit and i m ′ is controlled by the signal of the voltage control circuit, the electric motor can be controlled to a predetermined speed and voltage.

ところで、インバータの出力周波数(電流の位相)は、
従来技術においては位置検出器の信号に基づいて決定さ
れていた。しかしながら、本発明は、これに代えて電動
機に印加される電圧を検出する電圧検出器4からの信号
を用いることにより、周波数を決定するようにしたもの
である。
By the way, the output frequency (phase of current) of the inverter is
In the prior art, it was determined based on the signal from the position detector. However, in the present invention, instead of this, the frequency is determined by using the signal from the voltage detector 4 which detects the voltage applied to the electric motor.

それでは、本発明で用いるm′軸を電動機の磁束軸に一
致させる制御について、以下に説明することとする。
Now, the control for matching the m'axis used in the present invention with the magnetic flux axis of the electric motor will be described below.

第2図(I)及び(II)は、増巾器8からの有効分電流
指令▲i* t▼が一定かつ無効分電流指令▲i* m▼を0とし
た場合におけるm′軸と磁極軸(直軸)との位相差に対
する電動機の各磁束の変化特性を示す特性図である。こ
こに、φm′,φt′,はm′,t′軸方向の各磁束成分、
φはφm′,φt′のベクトル合成磁束である。また、第
2図(I)及び(II)は、電流指令▲i* t▼が正の定格
値及び電流指令▲i* m▼が零であつて、かつ電動運転で
定格トルクを発生する場合、及び無負荷で運転されてい
る場合をそれぞれ示す図である。
FIGS. 2 (I) and (II) show the m ′ axis and the magnetic pole when the active component current command ▲ i * t ▼ from the amplifier 8 is constant and the reactive component current command ▲ i * m ▼ is set to 0. It is a characteristic view which shows the change characteristic of each magnetic flux of an electric motor with respect to the phase difference with an axis (straight axis). Where φ m ′ and φ t ′ are the magnetic flux components in the m ′ and t ′ axis directions,
φ is the vector composite magnetic flux of φ m ′ and φ t ′. Further, FIGS. 2 (I) and (II) show that the current command ▲ i * t ▼ is a positive rated value and the current command ▲ i * m ▼ is zero, and the rated torque is generated in electric operation. FIG. 3 is a diagram showing a case where the vehicle is operated with no load, and FIG.

以下、図(I)から順に説明する。Hereinafter, description will be sequentially given from FIG.

図(I)において、×印の動作点は、磁束成分φt′=
0、すなわち、m′軸が電動機の磁束軸と一致する正規
の動作点である。
In FIG. (I), the operating point indicated by X is the magnetic flux component φ t ′ =
0, that is, the normal operating point where the m ′ axis coincides with the magnetic flux axis of the electric motor.

ところで、φt′はこの正規の動作点を境にして、正負
に符号が反転する。そこで、磁束成分φt′が正の時
は、電動機周波数f1を上げて磁極軸(直軸)からm′軸
までの位相角度θ′を増加方向に、逆に磁束成分φt
が負の時は、該周波数f1を下げるようにして位相角度
θ′を減少方向に修正制御すれば、動作点は常に図示×
印に移り、磁束成分φt′=0が保たれる。
By the way, the sign of φ t ′ is inverted between positive and negative at the boundary of this normal operating point. Therefore, when the magnetic flux component φ t ′ is positive, the motor frequency f 1 is increased to increase the phase angle θ ′ from the magnetic pole axis (straight axis) to the m ′ axis in the increasing direction, and conversely, the magnetic flux component φ t ′.
Is negative, if the frequency f 1 is lowered and the phase angle θ ′ is corrected and controlled to decrease, the operating point is always shown in the figure.
Moving to the mark, the magnetic flux component φ t ′ = 0 is maintained.

また、磁束成分φm′(φt′=0では全磁束φrに一致
する)を所定値に制御することは次のように行なう。す
なわち、磁束成分φm′は電流成分im′に応じて変化す
るため、磁束成分φm′を検出し、所定値からの変動に
応じて電流成分im′を制御し、磁束成分φm′を所定値
に保てばよい。
Further, the control of the magnetic flux component φ m ′ (which corresponds to the total magnetic flux φ r when φ t ′ = 0) is performed as follows. That is, since the magnetic flux component φ m ′ changes according to the current component i m ′, the magnetic flux component φ m ′ is detected, the current component i m ′ is controlled according to the variation from the predetermined value, and the magnetic flux component φ m ′. It is sufficient to keep ′ at a predetermined value.

第2図(II)に示す場合についても特性は図(I)の場
合と同様であり、前述と同様の制御を行なえばよい。
The characteristics shown in FIG. 2 (II) are the same as those in FIG. 2 (I), and the same control as described above may be performed.

以上のようにして、磁束一定の運転が行なわれる。この
とき、電動機2の誘導起電力(これは、電動機電圧の基
本波成分であつて無効分電流の位相基準信号と90度位相
の異なる電圧成分である。)は、電動機周波数すなわち
回転速度に比例する。本発明は、この現像を利用し、電
動機2の誘導起電力を検出し、この検出信号を速度制御
回路にフイードバツクすることによつて、速度制御を行
なうようにしたものである。
As described above, the operation with a constant magnetic flux is performed. At this time, the induced electromotive force of the electric motor 2 (this is a fundamental wave component of the electric motor voltage and a voltage component having a phase difference of 90 degrees from the phase reference signal of the reactive current) is proportional to the electric motor frequency, that is, the rotation speed. To do. The present invention utilizes this development to detect the induced electromotive force of the electric motor 2 and feed the detection signal to the speed control circuit to perform speed control.

以上、本発明の動作原理を説明した。The operating principle of the present invention has been described above.

次に、本発明の一実施例である第1図の回路の動作を説
明する。
Next, the operation of the circuit of FIG. 1 which is an embodiment of the present invention will be described.

電圧成分検出器9,10において、次式に従い電動機電圧の
2軸成分、すなわち、無効分電流の位相基準信号に対し
て90度位相の異なる電圧成分et′及び同位相の成分em
を各々検出する。
In the voltage component detectors 9 and 10, biaxial components of the motor voltage are calculated according to the following equations, that is, a voltage component e t ′ and a component e m ′ of the same phase which are 90 degrees different in phase from the phase reference signal of the reactive current
Are detected respectively.

ここに、vα=vu em′:検出器10の出力信号 et′:検出器9の出力信号 vu,vv,vw:電動機各相電圧 cosω:U相の無効分電流の位相基準信号 上述の演算は、例えば乗算器及び加算器を用いて実現で
きる。
Where v α = v u e m ′: Output signal of detector 10 et ′: Output signal of detector 9 v u , v v , v w : Motor phase voltage cosω 1 t : phase reference signal of reactive current of U phase The above-described calculation can be realized by using, for example, a multiplier and an adder.

信号em′,et′は電動機の漏れインピーダンス降下の影
響を無視すれば、前述したφm′,φt′と次式の関係が
ある。
The signals e m ′ and e t ′ have the following relationship with φ m ′ and φ t ′ described above, ignoring the influence of the leakage impedance drop of the motor.

すなわち、信号em′より磁束成分φt′相当の信号が検
出される。信号em′は、変化率制限器7の出力信号と共
に加算器11に加えられる。このとき信号em′が負
(φt′>0に相当)の場合は、加算器11の出力信号が
大、すなわち、インバータ出力周波数が上昇する極性に
て加算されることになる。このようにして、前述した原
理に従い常にem′=0(φt′=0)となるよう電動機
周波数f1が制御され、そして、磁極軸からm′軸までの
位相角度θ′は正規動作点の値に制御される。
That is, the signal e m 'from a magnetic flux component phi t' worth of signal is detected. Signal e m 'is applied to the adder 11 together with the output signal of the change rate limiter 7. At this time, the signal e m 'is negative (phi t' in the case of corresponding to> 0), the output signal of the adder 11 is large, i.e., so that the inverter output frequency is added by the polarity increases. In this way, the motor frequency f 1 is controlled so that e m ′ = 0 (φ t ′ = 0) is always maintained according to the above-mentioned principle, and the phase angle θ ′ from the magnetic pole axis to the m ′ axis is the normal operation. Controlled by the value of the point.

また、誘導起電力et′(φm′)と電流指令▲i* m▼は比
例関係にあるため、もし誘導起電力et′が所定値より小
であれ、電流指令▲i* m▼を増加方向に、逆に誘導起電
力et′が所定値より大であれば、電流指令▲i* m▼を減
少方向に変化させることにより、誘導起電力et′を所定
値に制御できる。そこで、増巾器13において、増巾器11
の出力信号と信号et′との偏差に応じて、電流指令▲i*
m▼を制御することにより、次式の関係が得られる。
In addition, since the induced electromotive force e t ′ (φ m ′) is proportional to the current command ▲ i * m ▼, if the induced electromotive force e t ′ is smaller than the predetermined value, the current command ▲ i * m ▼ If the induced electromotive force e t ′ is larger than the predetermined value, the induced electromotive force e t ′ can be controlled to the predetermined value by changing the current command ▲ i * m ▼ in the decreasing direction. . Therefore, in the thickener 13, the thickener 11
Depending on the output signal from the deviation between the signal e t ', the current command ▲ i *
By controlling m ▼, the following relationship is obtained.

k1ω1−et′=0 ……(3) あるいは、et′/ω1=k1 ……(4) ここに、k1:比例定数 すなわち、磁束成分φm′(=et′/ω1)を自動的に所
定値に保つことができる。
k 1 ω 1 −e t ′ = 0 (3) or et ′ / ω 1 = k 1 …… (4) where k 1 : proportional constant, that is, the magnetic flux component φ m ′ (= e t ′ / Ω 1 ) can be automatically kept at a predetermined value.

一方、誘導起電力et′は、第(2)式に示すように、磁
束成分φm′及び角周波数ω1に比例する。そこで、前述
した制御により磁束成分φm′が一定値に保たれるの
で、誘導起電力et′はω1に比例する。したがつて、変
化率制限器7からの回転速度指令信号と信号et′とを突
合せ、その偏差に応じて有効分電流指令▲i* t▼を変え
ることにより、回転速度を指令値に応じて制御すること
ができる。
On the other hand, the induced electromotive force e t ′ is proportional to the magnetic flux component φ m ′ and the angular frequency ω 1 , as shown in the equation (2). Therefore, since the magnetic flux component φ m ′ is maintained at a constant value by the above-described control, the induced electromotive force e t ′ is proportional to ω 1 . Therefore, by matching the rotation speed command signal from the rate-of-change limiter 7 and the signal e t ′, and changing the active current command ▲ i * t ▼ according to the deviation, the rotation speed can be adjusted according to the command value. Can be controlled.

したがつて、本実施例によれば、回転センサを用いるこ
となく安定な周波数制御が行なえ、かつ高精度な速度制
御が行なえる利点がある。
Therefore, according to this embodiment, there is an advantage that stable frequency control can be performed without using a rotation sensor and highly accurate speed control can be performed.

第3図は、本発明の他の実施例を示す回路図である。本
実施例は、電源側コンバータと電動機側インバータとが
直流回路を介して接続されてなる変換器を用いた駆動シ
ステムへの適用例である。第3図において、変換器は、
電動機へ供給する電流の大きさを制御するコンバータ21
と、直流リアクトル22と、電動機周波数と電流位相を制
御するインバータ23とを備えている。また、本実施例が
第1図に示す実施例と異なるところは、変換器制御回路
6′が、電圧成分検出器9と、電圧成分検出器10と、加
算器11と、発振器12と、増巾器8及び増巾器13からの出
力信号を基に電流位相指令を演算する回路24と、発振器
12からの出力信号を基準に演算回路24からの指令信号に
基づいてインバータ23の転流タイミングを決定する位相
制御回路25と、増巾器8及び増巾器13からの出力信号を
基に電流指令信号I*を演算する演算回路26と、演算回路
26の出力信号と電流検出器5の出力信号との偏差を増巾
する増巾器27と、増巾器27からの出力信号に応じてコン
バータ21の点弧位相を決定する回路28とから構成されて
いる。
FIG. 3 is a circuit diagram showing another embodiment of the present invention. This embodiment is an application example to a drive system using a converter in which a power supply side converter and a motor side inverter are connected via a DC circuit. In FIG. 3, the converter is
Converter 21 that controls the magnitude of the current supplied to the motor
A DC reactor 22 and an inverter 23 for controlling the motor frequency and current phase. Further, the difference of this embodiment from the embodiment shown in FIG. 1 is that the converter control circuit 6'includes a voltage component detector 9, a voltage component detector 10, an adder 11, an oscillator 12, and an amplifier. Circuit 24 for calculating a current phase command based on the output signals from the amplifier 8 and the amplifier 13, and an oscillator.
Based on the output signal from 12 as a reference, the phase control circuit 25 which determines the commutation timing of the inverter 23 based on the command signal from the arithmetic circuit 24, and the current based on the output signals from the amplifiers 8 and 13 An arithmetic circuit 26 that calculates the command signal I * and an arithmetic circuit
The amplifier 27 is configured to widen the deviation between the output signal of 26 and the output signal of the current detector 5, and the circuit 28 for determining the firing phase of the converter 21 according to the output signal from the amplifier 27. Has been done.

次に、上記実施例の動作を説明する。Next, the operation of the above embodiment will be described.

電圧成分検出器9,10では、前記第(1)式に従い電動機
2の電圧の2軸成分、すなわち、無効分電流の位相基準
信号に対して90度位相の異なる電圧成分et′及び同位相
の成分em′をそれぞれ検出する。両成分em′,et′は、
電動機の漏れインビーダンス降下の影響を無視すれば、
前記第(2)式の関係があるので、この信号em′により
φt′相当の信号が検出できる。信号em′は回転速度指
令回路3からの出力指令信号100と共に加算器11に加え
られる。このとき、em′が負(φt′>0に相当)の場
合は、加算器11の出力信号が大、すなわち、インバータ
出力周波数が上昇する極性にて加算される。このように
して、前述した原理に従い常にem′=0(φt′=0)
となるように周波数f1が制御され、そして磁極軸(直
軸)からm′軸までの位相角度θ′は正規動作点の値に
制御される。
In the voltage component detectors 9 and 10, the biaxial components of the voltage of the electric motor 2 according to the equation (1), that is, the voltage component e t ′ and the same phase which are different in phase by 90 degrees with respect to the phase reference signal of the reactive current Each of the components e m ′ of is detected. Both components e m ′ and e t ′ are
Ignoring the effect of motor leakage impedance drop,
Since there is the second (2) of the relationship, 'by phi t' this signal e m corresponding signal can be detected. Signal e m 'is applied to the adder 11 together with the output command signal 100 from the rotation speed command circuit 3. In this case, if e m 'is negative (phi t' equivalent to> 0), the output signal of the adder 11 is large, that is, added by the polarity inverter output frequency is increased. In this way, in accordance with the above-mentioned principle, e m ′ = 0 (φ t ′ = 0)
The frequency f 1 is controlled so that the phase angle θ ′ from the magnetic pole axis (straight axis) to the m ′ axis is controlled to the value of the normal operating point.

また、誘導起電力et′(φm′)と電流指令▲i* m▼は比
例関係にあるため、もし誘導起電力et′が所定値より小
であれば電流指令▲i* m▼を増加方向に、逆に誘導起電
力et′が所定値より大であれば減少方向に変化させるこ
とにより、誘導起電力et′を所定値に制御することがで
きる。そこで、増巾器13において増巾器11の出力信号と
信号et′との偏差に応じて電流指令▲i* m▼を制御する
ことにより磁束成分φm′を所定値に保つことができ
る。
In addition, since the induced electromotive force e t ′ (φ m ′) and the current command ▲ i * m ▼ are in a proportional relationship, if the induced electromotive force e t ′ is smaller than the predetermined value, the current command ▲ i * m ▼ The induced electromotive force e t ′ can be controlled to a predetermined value by changing the induced electromotive force e t ′ in the increasing direction and conversely, when the induced electromotive force e t ′ is larger than the predetermined value, in the decreasing direction. Therefore, the magnetic flux component φ m ′ can be maintained at a predetermined value by controlling the current command ▲ i * m ▼ in the amplifier 13 according to the deviation between the output signal of the amplifier 11 and the signal e t ′. .

一方、誘導起電力et′は、第(2)式に示すように、磁
束成分φm′及び角周波数ω1に比例するが、前述したよ
うに制御することにより、磁束成分φm′は一定値に保
たれるので、誘導起電力et′は角周波数ω1に比例す
る。したがつて、回転速度指令回路3からの出力信号と
信号et′とを突合せ、その偏差に応じて有効分電流指令
▲i* t▼を変えることにより、回転速度を指令値に応じ
て制御することができる。
On the other hand, the induced electromotive force e t ′ is proportional to the magnetic flux component φ m ′ and the angular frequency ω 1 as shown in the equation (2), but by controlling as described above, the magnetic flux component φ m ′ is Since it is maintained at a constant value, the induced electromotive force e t ′ is proportional to the angular frequency ω 1 . Therefore, by controlling the output signal from the rotation speed command circuit 3 and the signal e t ′ and changing the active component current command ▲ i * t ▼ according to the deviation, the rotation speed is controlled according to the command value. can do.

演算回路24は無効分電流指令信号▲i* m▼と有効分電流
指令信号▲i* t▼に基づいて、第4図に示すt′軸対す
る電流iの位相角φを指令する信号を出力する。その位
相角φは次式にて示される。
The arithmetic circuit 24 outputs a signal for instructing the phase angle φ of the current i with respect to the t'axis shown in FIG. 4 based on the reactive current command signal ▲ i * m ▼ and the active current command signal ▲ i * t ▼. To do. The phase angle φ is shown by the following equation.

この位相指令信号と発振器12からの出力信号に基づいて
インバータ23の転流タイミングが位相制御回路25におい
て決定され、同時に制御進み角βが設定される。しかし
て、インバータ23は位相制御回路25からの信号により点
弧制御される。
The commutation timing of the inverter 23 is determined in the phase control circuit 25 based on this phase command signal and the output signal from the oscillator 12, and at the same time, the control advance angle β is set. Thus, the inverter 23 is ignition-controlled by the signal from the phase control circuit 25.

また、電動機電流の指令値I*を無効分電流指令信号▲i*
m▼と有効分電流指令信号▲i* t▼より演算回路26で求
め、この電動機電流指令信号と電流検出器5からの出力
信号との偏差を増巾器27で増巾し、これに応じてコンバ
ータ21の点弧位相を制御して電流を調節する。
In addition, the command value I * of the motor current is set to the reactive current command signal ▲ i *
The calculation circuit 26 calculates from m ▼ and the effective component current command signal ▲ i * t ▼, and the deviation between this motor current command signal and the output signal from the current detector 5 is increased by the amplifier 27, and in response to this, The ignition phase of the converter 21 is controlled to adjust the current.

したがつて、本実施例によれば、前記実施例と同様に回
転センサを用いることなく、可変速時において脱調する
ことがなく、安定な周波数制御が行なえ、かつ高精度な
速度制御が行なえる。また、本実施例によれば、回転セ
ンサがないので悪環境の中でも使用することができる。
Therefore, according to this embodiment, similarly to the above-mentioned embodiment, without using the rotation sensor, there is no step out at the time of variable speed, stable frequency control can be performed, and highly accurate speed control can be performed. It Further, according to the present embodiment, since there is no rotation sensor, it can be used even in a bad environment.

〔発明の効果〕 以上述べたように本実施例によれば、回転センサが不要
となり、悪環境下で使用する場合でも高精度な速度制御
が可能となるという効果がある。
[Effects of the Invention] As described above, according to the present embodiment, there is an effect that a rotation sensor is not required and highly accurate speed control is possible even when used in a bad environment.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る同期電動機の速度制御装置の一実
施例を示す回路図、第2図(I)及び(II)は本発明の
原理を説明するために示す特性図、第3図は本発明の他
の実施例を示す回路図、第4図は本発明の他の実施例を
説明するために示すベクトル図である。 1……変換器(インバータ)、2……同期電動機、3…
…速度指令回路、4……電圧検出器、5……電流検出
器、6……変換器制御回路、8……速度偏差増巾器、9,
10……電圧成分検出器、11……周波数指令信号を出力す
る加算器、12……発振器、13……無効分電流指令信号を
出力する増巾器。
FIG. 1 is a circuit diagram showing an embodiment of a speed control device for a synchronous motor according to the present invention, FIGS. 2 (I) and (II) are characteristic diagrams shown for explaining the principle of the present invention, and FIG. Is a circuit diagram showing another embodiment of the present invention, and FIG. 4 is a vector diagram shown for explaining another embodiment of the present invention. 1 ... Converter (inverter), 2 ... Synchronous motor, 3 ...
... Speed command circuit, 4 ... Voltage detector, 5 ... Current detector, 6 ... Converter control circuit, 8 ... Speed deviation amplifier, 9,
10 …… Voltage component detector, 11 …… Adder that outputs frequency command signal, 12 …… Oscillator, 13 …… Amplifier that outputs reactive current command signal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】同期電動機に可変周波数の交流を供給する
変換器(1)と、該変換器から出力される交流の値及び
その周波数を回転速度指令に基づいて制御する変換器制
御回路(6)とを含んでなる同期電動機の速度制御装置
において、 前記変換器制御回路(6)は、 前記変換器の出力交流の周波数指令(kω1)を入力
し、該周波数指令に応じた周波数の2相正弦波信号を発
振する発振手段(12)と、 前記同期電動機の電動機電圧を検出する電圧検出手段
(4)と、 該検出された電動機電圧と前記2相正弦波信号に基づい
て、前記同期電動機のトルクに関係する有効分電流と同
位相の第1の電圧成分(em′)と、前記同期電動機の磁
束量に関係する無効分電流と同位相の第2の電圧成分
(et′)とを検出する電圧成分検出手段(9,10)と、 前記回転速度指令と前記第2の電圧成分(et′)との偏
差を求め、該偏差を低減すべくその偏差に応じた前記有
効分電流の指令▲(i* t)▼を出力する速度偏差増巾手段
(8)と、 前記回転速度指令に前記第1の電圧成分(em′)を極性
を反転して加算し、前記周波数指令(kω1)として前
記発振手段に入力する加算手段(11)と、 該加算手段から出力される周波数指令と前記第2の電圧
成分(et′)の偏差を求め、該偏差を低減すべくその偏
差に応じて前記無効分電流の指令▲(i* m)▼を生成する
電流増巾手段(13)と、 該無効分電流の指令▲(i* m)▼と前記有効分電流の指令
▲(i* t)▼と前記2相正弦波信号とに基づいて3相の電
流指令を出力する相数変換手段(14,15)と、 該変換手段から出力される電流指令に応じて前記変換器
を駆動する変換器駆動回路(16,17)とを備えてなるこ
とを特徴とする同期電動機の速度制御装置。
1. A converter (1) for supplying a variable frequency alternating current to a synchronous motor, and a converter control circuit (6) for controlling the value of the alternating current output from the converter and its frequency based on a rotational speed command. In the speed control device for a synchronous motor, the converter control circuit (6) inputs the frequency command (kω 1 ) of the output AC of the converter, and outputs the frequency of 2 according to the frequency command. An oscillating means (12) for oscillating a phase sine wave signal, a voltage detecting means (4) for detecting a motor voltage of the synchronous motor, and the synchronization based on the detected motor voltage and the two-phase sine wave signal. A first voltage component (e m ′) in phase with the active component current related to the torque of the motor and a second voltage component (e t ′) in phase with the reactive component current related to the amount of magnetic flux of the synchronous motor. ) Voltage component detection means (9, 10) for detecting Speed serial a deviation between the and the rotational speed command second voltage component (e t '), and outputs the command for the active current ▲ (i * t) ▼ corresponding to the deviation in order to reduce the deviation Deviation increasing means (8) and adding means for adding the first voltage component (e m ′) to the rotation speed command by inverting the polarity and inputting it as the frequency command (kω 1 ) to the oscillating means. (11), the deviation between the frequency command output from the adding means and the second voltage component (e t ′) is obtained, and the command of the reactive current ▲ ( i * m ) ▼ current increasing means (13), the reactive component current command ▲ (i * m ) ▼, the active component current command ▲ (i * t ) ▼, and the two-phase sine wave Phase number conversion means (14, 15) for outputting a three-phase current command based on the signal, and the converter is driven according to the current command output from the conversion means. And a converter drive circuit (16, 17) for controlling the speed of the synchronous motor.
JP59042591A 1984-03-05 1984-03-05 Synchronous motor speed controller Expired - Fee Related JPH0785680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042591A JPH0785680B2 (en) 1984-03-05 1984-03-05 Synchronous motor speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042591A JPH0785680B2 (en) 1984-03-05 1984-03-05 Synchronous motor speed controller

Publications (2)

Publication Number Publication Date
JPS60187283A JPS60187283A (en) 1985-09-24
JPH0785680B2 true JPH0785680B2 (en) 1995-09-13

Family

ID=12640303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042591A Expired - Fee Related JPH0785680B2 (en) 1984-03-05 1984-03-05 Synchronous motor speed controller

Country Status (1)

Country Link
JP (1) JPH0785680B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8698447B2 (en) 2007-09-14 2014-04-15 The Powerwise Group, Inc. Energy saving system and method for devices with rotating or reciprocating masses
CA2771121C (en) * 2009-09-08 2018-05-15 The Powerwise Group, Inc. Energy saving system and method for devices with rotating or reciprocating masses

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162119A (en) * 1978-06-13 1979-12-22 Toshiba Corp Controller of induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162119A (en) * 1978-06-13 1979-12-22 Toshiba Corp Controller of induction motor

Also Published As

Publication number Publication date
JPS60187283A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
US6900613B2 (en) Motor control apparatus
US6414462B2 (en) Speed control apparatus for synchronous reluctance motor
US4792741A (en) Control unit for non-circulating current type cycloconverter
US6812659B2 (en) Apparatus for controlling brushless motor
JPH05308793A (en) Control circuit for power conversion device
JP4088734B2 (en) Control device for permanent magnet type synchronous motor
JPH10229687A (en) Variable speed controller of induction motor
JP2557457Y2 (en) Electric power steering device
JPH10337100A (en) Method and apparatus for controlling buried magnet type synchronous motor
JPH0785680B2 (en) Synchronous motor speed controller
US7053584B2 (en) Motor driving device
JP2004023920A (en) Ac motor controller
JPH0632581B2 (en) Induction motor controller
EP0073839B1 (en) Control device for synchronous motor
JP2708649B2 (en) Cyclo converter control device
JP3124019B2 (en) Induction motor control device
JP3084831B2 (en) Control device for brushless DC motor
JPH09215397A (en) Ac motor controller
JPH11206198A (en) Controlling device of permanent magnet synchronous motor
JP2000262100A (en) Controller for permanent magnet synchronous motor
JP2897301B2 (en) Control method of DC brushless motor
JPS6330236Y2 (en)
JP2001025277A (en) Sensorless controller for synchronous motor
JPH0521999Y2 (en)
JPS6035913B2 (en) Control device for inverter equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees