JPS6330236Y2 - - Google Patents

Info

Publication number
JPS6330236Y2
JPS6330236Y2 JP11032481U JP11032481U JPS6330236Y2 JP S6330236 Y2 JPS6330236 Y2 JP S6330236Y2 JP 11032481 U JP11032481 U JP 11032481U JP 11032481 U JP11032481 U JP 11032481U JP S6330236 Y2 JPS6330236 Y2 JP S6330236Y2
Authority
JP
Japan
Prior art keywords
current
slip frequency
transient
frequency
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11032481U
Other languages
Japanese (ja)
Other versions
JPS5822099U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11032481U priority Critical patent/JPS5822099U/en
Publication of JPS5822099U publication Critical patent/JPS5822099U/en
Application granted granted Critical
Publication of JPS6330236Y2 publication Critical patent/JPS6330236Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【考案の詳細な説明】 本考案は電動機の一次電流の大きさとその周波
数を制御する高速応制御系を有してなる誘導電動
機の制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a control device for an induction motor having a high-speed response control system for controlling the magnitude and frequency of the motor's primary current.

一般に電圧形インバータを用いて高速応のすべ
り周波数制御を行う誘導電動機の制御装置におい
ては、駆動対象の電動機の一次電流を検出しこの
大きさが所望の値となるよう制御するだけでな
く、その周波数も検出値が所望のものとなるよう
制御する必要がある。しかしサイリスタの転流に
よつて可変周波数の交流に変換するインバータに
おいて、一次電流がリツプルの多い歪み電流の波
形態様になるために制御対象の電流基本波成分の
周波数を遅れなく検出することは難しく、過渡時
の各電流位相の変化を補償する方式が実用上採用
されるものとなつている。
In general, an induction motor control device that uses a voltage source inverter to perform high-speed response slip frequency control not only detects the primary current of the motor to be driven and controls this magnitude to a desired value. The frequency also needs to be controlled so that the detected value becomes a desired value. However, in an inverter that converts alternating current to variable frequency through thyristor commutation, it is difficult to detect the frequency of the fundamental current component of the current to be controlled without delay because the primary current has a distorted current waveform with many ripples. , a system that compensates for changes in each current phase during transient periods has become practically adopted.

しかしながら、この種の過渡時補償方式におい
ては、定常的なすべり周波数ωs1のほかこれにト
ルク電流または磁化電流成分の変化による位相補
償を行う過渡的なすべり周波数ωs2と電流の力率
変化を補償する過渡的なすべり周波数ωs3とを加
え、全体のすべり周波数を演算指令しているため
にその演算構成が複雑となる。また力率角または
それに関連する電圧との同相成分電流、無効成分
電流の変換に難点があつた。
However, in this type of transient compensation method, in addition to the steady slip frequency ω s1 , there is also a transient slip frequency ω s2 that performs phase compensation due to changes in the torque current or magnetizing current component, and a change in the power factor of the current. Since the transient slip frequency ω s3 to be compensated is added and the entire slip frequency is calculated, the calculation configuration becomes complicated. Further, there was a difficulty in converting the in-phase component current and the reactive component current to the power factor angle or the voltage related thereto.

本考案は上述したような点に着目しなされたも
ので、速応性が劣ることなくすべり周波数の演算
構成がより簡素化されてなる誘導電動機の制御装
置を提供するものである。
The present invention has been developed with the above-mentioned points in mind, and it is an object of the present invention to provide a control device for an induction motor in which the calculation structure of the slip frequency is simplified without deteriorating the quick response.

ここで本考案の詳細説明に当り、まず位相補償
とすべり周波数の関係を第1図に示すベクトル図
を参照して説明する。すなわち、第1図aは回転
磁界を与える磁化電流成分I0を基準としてそれと
直交してトルクを発生する二次電流成分がI21
らI22に変化する推移を示し、変化前を点線で変
化後を実線で示している。かくの如く一次電流
I11,I12はこれらの合成ベクトルとしてそれぞれ
与えられ、この一次電流I11,I12と基準の磁化電
流成分I0の相差角もφq1からφq2につまりΔφqだけ
変化する。さらに、第1図bは第1図aに示した
変化後のベクトル関係をより明確にしたものであ
つて、磁化電流成分I0および二次電流成分I22すな
わち一次電流I12の直交成分電流を、いわゆる誘
導機の等価回路で示されるギヤツプ部の励磁電流
I0Gおよび一次換算の二次電流I22′を二次回路の内
部相差角φ〓22で補正したものである。ここにトル
クを発生する二次回路は二次抵抗r2で代表されて
その二次電流変化前後の誘起電圧E21,E22と二次
電流成分I21,I22とは同様になる。
To explain the present invention in detail, first, the relationship between phase compensation and slip frequency will be explained with reference to the vector diagram shown in FIG. In other words, Figure 1a shows the transition in which the secondary current component that generates torque perpendicular to the magnetizing current component I0 , which provides a rotating magnetic field, changes from I21 to I22 , with the dotted line indicating the state before the change. The rear is shown by a solid line. Primary current like this
I 11 and I 12 are given as their combined vectors, and the phase difference angle between the primary currents I 11 and I 12 and the reference magnetizing current component I 0 also changes from φ q1 to φ q2 , that is, by Δφ q . Furthermore, FIG. 1b shows the vector relationship after the change shown in FIG . 1a more clearly . is the excitation current at the gap shown in the equivalent circuit of an induction machine.
I 0G and the primary converted secondary current I 22 ′ are corrected by the internal phase difference angle φ〓 22 of the secondary circuit. The secondary circuit that generates torque is represented by the secondary resistor r 2 , and the induced voltages E 21 and E 22 and the secondary current components I 21 and I 22 before and after the change in the secondary current are the same.

また第1図aに示す如く、一次回路の誘起電圧
E11,E12と端子電圧V11,V12の電圧関係におい
てはそれぞれ内部相差角φ〓1,φ〓2をもち、Δφ〓だ
けの相差角の差を有する。つまり二次電流変化前
後の定常状態間では前記電流の相差角、内部相差
角ともΔφq,Δφ〓だけ位相がずれているため、電
流指令の変化に応じてこれらの位相もその変化に
見合うだけ位相調整し得ることにより、定常状態
における位相関係を満足しながら電流を制御で
き、過渡状態を発生することなくさらに磁化電流
成分と二次電流成分の相互作用なく、速やかな制
御が可能となる。これらの位相角の時間的変化は
周知のように角速度として与えられ、従来電流指
令変化時の位相補償をその単位時間当りの角速度
すなわち前記すべり周波数ωs2,ωs3もまたつぎの
(1),(2)式として制御されるものとなつていた。
In addition, as shown in Figure 1a, the induced voltage in the primary circuit
In the voltage relationship between E 11 and E 12 and the terminal voltages V 11 and V 12 , they have internal phase difference angles φ〓 1 and φ〓 2 , respectively, and have a phase difference angle difference of Δφ〓. In other words, between the steady state before and after the change in the secondary current, both the phase difference angle and the internal phase difference angle of the current are out of phase by Δφ q and Δφ〓, so as the current command changes, these phases also change according to the change. By being able to adjust the phase, the current can be controlled while satisfying the phase relationship in a steady state, and rapid control is possible without generating a transient state and without interaction between the magnetizing current component and the secondary current component. As is well known, the temporal changes in these phase angles are given as angular velocities, and conventionally the phase compensation when the current command changes is calculated as follows .
It was supposed to be controlled using equations (1) and (2).

ωs2=d/dtφq=d/dttan-1I2/I0 …(1) ωs3=d/dtφ1=d/dttan-1Isio/Icps …(2) ただしφ1は電動機の一次側の力率角であり、
Icps,Isioは第1図bに示すようにそれぞれ一次回
路の端子電圧V11と同相成分およびそれに直交す
る無効成分電流である。なお前記(1),(2)式は瞬時
瞬時を考慮することとして変化前後を表わすサフ
イツクスの記号を省略し示している。またこの
(1),(2)式にて、相差角φqおよび力率角φ1の変化
のない状態すなわち一次電流の各成分のI0,I2
Icps,Isioの変化のない定常状態ではこれらの時間
的変化もなく、したがつてωs1,ωs2が零となつて
過渡時のみ作用するものである。
ω s2 = d/d t φ q = d/d t tan -1 I 2 /I 0 …(1) ω s3 = d/d t φ 1 = d/d t tan -1 I sio /I cps …( 2) However, φ 1 is the power factor angle on the primary side of the motor,
As shown in FIG. 1b, I cps and I sio are the in-phase component and the reactive component current orthogonal to the terminal voltage V 11 of the primary circuit, respectively. Note that in equations (1) and (2) above, the suffix symbols representing before and after the change are omitted because the instantaneous is taken into account. Also this
In equations (1) and (2), the state where the phase difference angle φ q and the power factor angle φ 1 do not change, that is, I 0 , I 2 , of each component of the primary current,
In a steady state where I cps and I sio do not change, there are no temporal changes in these, so ω s1 and ω s2 become zero and act only during transient times.

したがつて、かかるすべり周波数の過渡時は、 として与えられるものであり、結局これよりさら
に定常的なすべり周波数ωs1と回転周波数ωoを加
えてインバータ周波数の指令信号が得られるもの
となる。つぎにすべり周波数補償方式高速応制御
系を有する従来例の誘導電動機の制御装置を第2
図に示す。
Therefore, during the transient period of such slip frequency, After all, the command signal for the inverter frequency can be obtained by adding the more steady slip frequency ω s1 and the rotational frequency ω o . Next, we will introduce a conventional induction motor control system with a high-speed response control system using slip frequency compensation.
As shown in the figure.

第2図において、電圧形インバータ1は電圧指
令V〓および周波数指令〓が与えられるゲート
制御器2よりゲート信号を得て、直流電源3より
供給される直流電力を可変電圧・可変周波数の交
流電力に変換して誘導電動機4を駆動する。この
誘導電動機4の回転速度は、設定器5の設定値
n〓と速度検出器6より送出される実回転速度n
が比較器7で比較され、所定の速度となるよう調
節器8で制御される。その調節器8の出力信号は
トルクに比例する二次電流I2の指令となり、また
設定器5′で設定される磁化電流成分I0の指令が
与えられて演算器9,10,11,12より演算
出力が送出されるものとなる。
In FIG. 2, a voltage source inverter 1 receives a gate signal from a gate controller 2 to which a voltage command V〓 and a frequency command〓 are given, and converts the DC power supplied from a DC power supply 3 into variable voltage/variable frequency AC power. to drive the induction motor 4. The rotational speed of this induction motor 4 is the setting value of the setting device 5.
n〓 and the actual rotational speed n sent from the speed detector 6
are compared by a comparator 7, and controlled by a regulator 8 to achieve a predetermined speed. The output signal of the regulator 8 becomes a command for the secondary current I 2 proportional to the torque, and the command for the magnetizing current component I 0 set by the setting device 5' is given to the arithmetic units 9, 10, 11, 12. The calculation output will be sent out.

ここに、一次電流I1の大きさ、定常的なすべり
周波数ωs1、二次電流および磁化電流変化に対す
る位相補償のためのすべり周波数ωs2、力率角変
化に対するすべり周波数ωs3は、それぞれ(4)式、
(5)式、(1)式、(2)式より信号発生されるものとな
る。なお13は前記I2,I0より端子電圧と同期成
分、無効成分信号に変換する座標変換器である。
Here, the magnitude of the primary current I 1 , the steady slip frequency ω s1 , the slip frequency ω s2 for phase compensation against changes in the secondary current and magnetizing current, and the slip frequency ω s3 against changes in the power factor angle are expressed as ( 4) Equation,
The signal is generated from equations (5), (1), and (2). Note that 13 is a coordinate converter that converts the above-mentioned I 2 and I 0 into terminal voltage, synchronous component, and reactive component signals.

I1=√(02+(22 …(4) ωs1=r2/L2・I2/I0 …(5) さて演算器11,12出力のωs2,ωs3が加算器
14にて加算され、この加算器14出力と演算器
10出力のωs1が加算器14′で加えられ、さらに
加算器14″にて回転周波数ωoが加算され、結局
周波数指令〓が与えられることになる。一方電
流検出器15より整流器16を介して一次電流の
大きさの検出信号が得られ、この整流器16出力
が演算器9で得られた一次電流指令値のI1〓と比
較器7′にて比較される。このI1〓を所望の電流
値となるよう調節器8′で調節され、電圧指令
V〓としてゲート制御器2に信号発生される。
I 1 = √ ( 0 ) 2 + ( 2 ) 2 ... (4) ω s1 = r 2 /L 2 · I 2 / I 0 ... (5) Now, ω s2 and ω s3 of the outputs of computing units 11 and 12 are added. The output of the adder 14 and the output of the calculator 10, ω s1 , are added together in the adder 14', and the adder 14'' adds the rotational frequency ωo , and finally the frequency command 〓 is given. On the other hand, a detection signal indicating the magnitude of the primary current is obtained from the current detector 15 via the rectifier 16, and the output of the rectifier 16 is compared with the primary current command value I 1 〓 obtained by the calculator 9. This I 1 〓 is adjusted to the desired current value by the regulator 8', and the voltage command is
A signal is generated to the gate controller 2 as V〓.

かかる制御系におけるベクトル関係において
は、第1図bに示す如く、 φ12=(π/2)+φ〓2−φq2 …(6) であつて、各瞬時を考えた一般式において(6′)
式で与えられるものである。
In the vector relationship in such a control system, as shown in Figure 1b, φ 12 = (π/2) + φ〓 2 −φ q2 ...(6), and in the general equation considering each instant, (6' )
It is given by Eq.

φ1=(π/2)+φ〓−φq …(6′) したがつて(6)′式はつぎのように簡単な形で示
すことができる。
φ 1 =(π/2)+φ〓−φ q (6′) Therefore, equation (6)′ can be expressed in a simple form as follows.

さらにかくの如き(7)式によるものは、同相成
分、無効成分の変換もしくは非線形に変化する力
率角の演算を行う必要がなく、すべり周波数の過
渡補償項が簡単な演算から得られるものである。
すなわち、電動機の内部相差角φ〓は力率角や前述
の電流相差角に比べて比較的少さく、これは電動
機の内部インピーダンスに比例つまり二次電流あ
るいはすべり周波数に比例する量でもある。した
がつていま一次換算の定格二次電流成分をI20
そのときの内部相差角をφ〓0とすれば、任意の二
次電流成分I2における内部相差角φδは、 φ〓=(φ〓0/I20)・I2 …(8) として与えられるものとなる。
Furthermore, the equation (7) as described above does not require conversion of the in-phase component or reactive component or calculation of the non-linearly changing power factor angle, and the transient compensation term for the slip frequency can be obtained by simple calculation. be.
That is, the internal phase difference angle φ of the motor is relatively small compared to the power factor angle and the above-mentioned current phase difference angle, and this is also a quantity proportional to the internal impedance of the motor, that is, proportional to the secondary current or slip frequency. Therefore, the rated secondary current component of the primary conversion is I 20 ,
If the internal phase difference angle at that time is φ〓 0 , then the internal phase difference angle φδ at any secondary current component I 2 is given as φ〓=(φ〓 0 /I 20 )・I 2 …(8) Become something.

またかかる技術思想は第1図aよりも補足する
ことができる。すなわち第1図aにおいて磁化電
流成分I0を基準にとり、この磁化電流成分I0を一
定のまま二次電流指令のI21からI22へ変えても、
二次電流したがつて二次誘起電圧のベクトル位置
は変化せず、端子電圧成分が内部相差角φ〓だけ変
化することがわかる。かくの如き演算構成を有す
る要件が具備されるものの具体例を第3図に示
す。
Further, this technical idea can be supplemented from FIG. 1a. That is, even if the magnetizing current component I 0 is taken as a reference in FIG. 1a and the secondary current command is changed from I 21 to I 22 while keeping this magnetizing current component I 0 constant,
It can be seen that the vector position of the secondary current and therefore the secondary induced voltage does not change, but the terminal voltage component changes by the internal phase difference angle φ. A specific example of a system that satisfies the requirements for such a calculation configuration is shown in FIG.

第3図は本考案の一実施例の制御系統を示すも
のであり、17は内部相差角演算器17a、微分
器17bよりなるすべり周波数過渡項演算部であ
る。図中第2図と同符号のものは同じ機能を有す
る部分を示す。ここにすべり周波数過渡項演算部
17は、前述の過渡補償項を個々に演算すること
なく、例示の如き(8)式の演算を行う内部相差角演
算器17aと内部相差角演算器17a出力の微分
を行う微分器17bから一体化せしめられた演算
出力指令を発生する構成をなし、よつて力率角の
項が除去された簡単な演算を実現するものであ
る。なおかくの如き制御系統の詳細説明は周波数
指令〓の信号発生部分にのみとどめるに、前記
すべり周波数過渡項演算部17の出力とすべり周
波数ωs1が加算器14′にて加算され、さらに加算
器14″で回転周波数ωoが加えられて結局周波数
指令〓を得ることができるものである。
FIG. 3 shows a control system of an embodiment of the present invention, in which 17 is a slip frequency transient term calculation section consisting of an internal phase difference angle calculation unit 17a and a differentiator 17b. In the figure, the same reference numerals as in FIG. 2 indicate parts having the same functions. Here, the slip frequency transient term calculation section 17 operates by calculating the internal phase difference angle calculation unit 17a and the output of the internal phase difference angle calculation unit 17a, which calculates the equation (8) as illustrated, without calculating the above-mentioned transient compensation terms individually. The structure is such that an integrated calculation output command is generated from the differentiator 17b that performs differentiation, thereby realizing a simple calculation in which the power factor angle term is removed. The detailed explanation of the control system will be limited to the signal generation portion of the frequency command 〓, but the output of the slip frequency transient term calculation section 17 and the slip frequency ω s1 are added in an adder 14', and By adding the rotational frequency ω o at 14″, the frequency command 〓 can be obtained.

以上説明したように本考案によれば、すべり周
波数の過渡補償を一体化せしめた簡単な演算構成
を有して高速応制御を行い得る装置を提供でき
る。
As explained above, according to the present invention, it is possible to provide a device that has a simple calculation configuration that integrates transient compensation of slip frequency and can perform high-speed response control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二次電流変化の前後状態を示すベクト
ル図、第2図は従来例の誘導電動機の制御装置を
示す制御系統図、第3図は本考案の一実施例を示
す制御系統図である。 1……電圧形インバータ、4……誘導電動機、
5,5′……設定器、9,10,11,12……
演算器、17……すべり周波数過渡項演算部、
V〓……電圧指令、〓……周波数指令、ωs1
ωs2,ωs3……すべり周波数。
Fig. 1 is a vector diagram showing the before and after states of secondary current change, Fig. 2 is a control system diagram showing a conventional induction motor control device, and Fig. 3 is a control system diagram showing an embodiment of the present invention. be. 1... Voltage type inverter, 4... Induction motor,
5, 5'... Setting device, 9, 10, 11, 12...
Arithmetic unit, 17...Slip frequency transient term computing unit,
V〓……Voltage command, 〓……Frequency command, ω s1 ,
ω s2 , ω s3 ...Slip frequency.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電動機二次電流に対応する指令と磁化電流に対
応する指令の信号、該信号より定常状態における
すべり周波数と過渡時の電流位相変化に対応する
すべり周波数の過渡項とを加えたすべり周波数信
号を与え、誘導電動機のすべり周波数制御を行う
ものにおいて、過渡時のすべり周波数を電動機の
内部相差角の時間的な変化率として与えるように
したことを特徴とする誘導電動機の制御装置。
A command signal corresponding to the motor secondary current, a command signal corresponding to the magnetizing current, and a slip frequency signal obtained by adding the slip frequency in the steady state and the transient term of the slip frequency corresponding to the current phase change during the transient from the signals are given. 1. A control device for an induction motor, which controls the slip frequency of an induction motor, characterized in that the slip frequency during a transient period is given as a temporal rate of change in an internal phase difference angle of the motor.
JP11032481U 1981-07-27 1981-07-27 Induction motor control device Granted JPS5822099U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11032481U JPS5822099U (en) 1981-07-27 1981-07-27 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11032481U JPS5822099U (en) 1981-07-27 1981-07-27 Induction motor control device

Publications (2)

Publication Number Publication Date
JPS5822099U JPS5822099U (en) 1983-02-10
JPS6330236Y2 true JPS6330236Y2 (en) 1988-08-12

Family

ID=29904689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11032481U Granted JPS5822099U (en) 1981-07-27 1981-07-27 Induction motor control device

Country Status (1)

Country Link
JP (1) JPS5822099U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531607B2 (en) * 1984-03-30 1996-09-04 株式会社安川電機 Detection speed correction method

Also Published As

Publication number Publication date
JPS5822099U (en) 1983-02-10

Similar Documents

Publication Publication Date Title
US5206575A (en) Device for controlling an AC motor
US4484128A (en) Vector control system for AC motor drives
JPS58123394A (en) Controller for ac motor
EP1035645B1 (en) Control device of induction motor
JPH05308793A (en) Control circuit for power conversion device
JPS6330236Y2 (en)
JPH09238492A (en) Control equipment of ac motor
JP3489259B2 (en) Permanent magnet type motor control method and control device
JPH0344509B2 (en)
JPS6159071B2 (en)
JP3124019B2 (en) Induction motor control device
JPH03135389A (en) Method and device for controlling voltage type inverter
JPH06319285A (en) Vector controller for induction motor
JPS58172989A (en) Torque controller for induction motor
JPH0315271A (en) Power converter controller and system therefor
JPH083199Y2 (en) Power converter
JPH0667256B2 (en) Cycloconverter control device
JPH0561876B2 (en)
JPH07123800A (en) Vector control system for induction motor
JP3148209B2 (en) Control device for cycloconverter
JP2623821B2 (en) Variable speed drive for salient pole synchronous motor
JPH08224000A (en) Controller for induction motor
JPH0552154B2 (en)
JPH0634724A (en) Motor constant identifying method in vector control device for induction motor
JPH0538143A (en) Controller of cyclo converter