JPS58172989A - Torque controller for induction motor - Google Patents

Torque controller for induction motor

Info

Publication number
JPS58172989A
JPS58172989A JP57056235A JP5623582A JPS58172989A JP S58172989 A JPS58172989 A JP S58172989A JP 57056235 A JP57056235 A JP 57056235A JP 5623582 A JP5623582 A JP 5623582A JP S58172989 A JPS58172989 A JP S58172989A
Authority
JP
Japan
Prior art keywords
primary
frequency
torque
command
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57056235A
Other languages
Japanese (ja)
Inventor
Yasuhiko Hosokawa
細川靖彦
Masahiko Akamatsu
赤松昌彦
Kazuo Ikeda
池田和郎
Hideaki Tomei
矢野禎成
Sadanari Yano
留井英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57056235A priority Critical patent/JPS58172989A/en
Publication of JPS58172989A publication Critical patent/JPS58172989A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/048Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using AC supply for only the rotor circuit or only the stator circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/047V/F converter, wherein the voltage is controlled proportionally with the frequency

Abstract

PURPOSE:To enhance the controlling accuracy of a torque by dividing the secondary input by the magnitude of a frequency command to obtain the torque generated from an induction motor and feeding back and collating the generated torque with the torque command. CONSTITUTION:A primary input calculator 22 calculates the primary input of a motor 5 from the outputs of a voltage detector 20 and a current detector 21. A primary copper loss calculator 23 calculates the primary copper loss of the motor 5 from the output of the detector 21 and the preset resistance of the primary coil of the motor 5. The outputs of the primary input calculator 22 and the primary copper loss calculator 23 are added by an adder 24. The output of the adder 24 is supplied through a filter 25 to a divider 26. The divider 26 divides the output of the filter 26 by the frequency command. This output and the torque command are collated with each other and the deviation between both is applied to a slip frequency controller 27. The controller 27 outputs a slip frequency command corresponding to the polarity and magnitude of the input.

Description

【発明の詳細な説明】 この発明は、トルク指令に従って一次電圧0周波数の両
者を制御する誘導゛電a機のトルク制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a torque control device for an induction electric machine that controls both a primary voltage and a zero frequency according to a torque command.

第1図に、この糧のトルク制御装置の従来例を示す。図
において、1は3相の交流電源、2は順変換器、3は直
流フィルタ、4は逆変換器、5は3相(U、V、W相)
の誘導電動機(以下、モータと云う。)である。6はト
ルク指令(信号)τSを定数倍するすべり周波数演算器
で、これが出力するすべり周波数指令f8は、回転周波
数検出器7により検出されるモータ5の回転周波数fm
と加算され、周波数指令(信号)f+ となる。周波数
指令f、は、発振器8でパルス信号に変換された後、分
局器9、パルス増巾器10を介して周波数制御信号とし
て逆変換器4に与えられ、かくして、逆変換器4の出力
周波数が制御される。周波数指令f、は、また、比例増
巾器11で定数倍された後、電圧補正値(信号)△Vs
と加算されて電圧指令(信号)Vs となる。電圧指令
Vsは、直流電圧検出器12からの直流電圧Vdと図示
極性に加算され、両者の偏差(Vs−Vd)が電圧制御
器13に与えられる。電圧制御器13の出力は電流指令
(信号)Isとなり、変流器14、整流器15を介して
取出された順変換器2の入力電流IAと突合わされて電
流制御器16に入力される。電流制御器16が出力する
電流制御信号idにより位相制御器17のゲートパルス
位相が制御され、順変換器2の出力が制御される。なお
、電圧補正値ΔvIIはモータ5の一次抵抗(−次巻線
の抵抗)R8による電圧降下分を補償する為のもので、
周波数f、の関数として定められる。
FIG. 1 shows a conventional example of this torque control device. In the figure, 1 is a 3-phase AC power supply, 2 is a forward converter, 3 is a DC filter, 4 is an inverse converter, and 5 is a 3-phase (U, V, W phase)
This is an induction motor (hereinafter referred to as a motor). 6 is a slip frequency calculator that multiplies the torque command (signal) τS by a constant, and the slip frequency command f8 outputted by this calculator is equal to the rotation frequency fm of the motor 5 detected by the rotation frequency detector 7.
and becomes the frequency command (signal) f+. The frequency command f is converted into a pulse signal by an oscillator 8, and then given to the inverter 4 as a frequency control signal via a divider 9 and a pulse amplifier 10, thus changing the output frequency of the inverter 4. is controlled. The frequency command f is also multiplied by a constant in the proportional amplifier 11, and then the voltage correction value (signal) △Vs
is added to the voltage command (signal) Vs. The voltage command Vs is added to the DC voltage Vd from the DC voltage detector 12 and the illustrated polarity, and the deviation (Vs-Vd) between the two is given to the voltage controller 13. The output of the voltage controller 13 becomes a current command (signal) Is, which is matched with the input current IA of the forward converter 2 taken out via the current transformer 14 and rectifier 15 and input to the current controller 16. The gate pulse phase of the phase controller 17 is controlled by the current control signal id output by the current controller 16, and the output of the forward converter 2 is controlled. Note that the voltage correction value ΔvII is to compensate for the voltage drop due to the primary resistance (resistance of the negative winding) R8 of the motor 5.
It is determined as a function of the frequency f.

このように、従来の装置では、低周波数領域におけるモ
ータ5の一次抵抗電圧降下分による影響を防ぐ為に、こ
の電圧降下分に見合う大きさの電圧補正値Δv8 を導
入している。しかし、この補正値△v1を導入した為に
1.モータ5の一次電圧11 (端子電圧)vIと周波数f1との関係は、第2図に実
線で示す如くなり、軽負荷時には過励磁状態となり、重
負荷時には不足励磁状態となって、磁束を一定に保つこ
とができず、発生トルクがトルク指令τSの値からはず
れるようになるという欠点があった。
In this way, in the conventional device, in order to prevent the influence of the primary resistance voltage drop of the motor 5 in the low frequency region, a voltage correction value Δv8 of a size commensurate with this voltage drop is introduced. However, since this correction value Δv1 was introduced, 1. The relationship between the primary voltage 11 (terminal voltage) vI of the motor 5 and the frequency f1 is as shown by the solid line in FIG. There was a drawback that the generated torque could not be maintained at the value of the torque command τS.

この発明は、上記した従来の装置の欠点を除去する為に
なされるもので、誘導電動機の一次電圧と一次電流を検
出し、これらの検出値から誘導電動機の発生トルクを演
算により求め、この発生トルクとトルク指令の差が無く
なるようにすべり周波数を制御することにより、従来に
比して制御精度を^めることかできる誘導電動機のトル
ク制御装置を提供することを目的とする。
This invention was made to eliminate the drawbacks of the conventional devices described above, and it detects the primary voltage and primary current of an induction motor, calculates the torque generated by the induction motor from these detected values, and calculates the torque generated by the induction motor. It is an object of the present invention to provide a torque control device for an induction motor that can improve control accuracy compared to conventional methods by controlling the slip frequency so that there is no difference between torque and torque command.

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図において、第1図のものと同一のものには同一符
号を付しである。図において、20及び21は夫々モー
タ5の一次電圧(線間電圧)Vt及び−次電流(相電流
)I+を検出する為の電圧検出器及び電流検出器、22
Fi−次入力演算器であって、検出された一次電圧V、
と一次電流I。
In FIG. 3, the same components as those in FIG. 1 are given the same reference numerals. In the figure, 20 and 21 are voltage detectors and current detectors for detecting the primary voltage (line voltage) Vt and negative current (phase current) I+ of the motor 5, respectively;
A Fi-order input computing unit, the detected primary voltage V,
and primary current I.

からモータ5の一次人力P、を算出する。23は一次鋼
損演算器であって、検出された一次電流I。
The primary human power P of the motor 5 is calculated from . 23 is a primary steel loss calculation unit, and the detected primary current I.

からモータ5の一次銅損Plcを算出する。−次入力演
算器22と一次鋼損演算器23の出力は加算器24で図
示極性に加算される。該加算器24の出力は、高周波成
分を除去するフィルタ25を介して、割算器26に供給
される。割算器26は、除数として周波数指令f、が入
力され(P 、 −P 、c)/ 11を演算して出力
する。この出力とトルク指令τ3 とが交合わされて両
者の偏差砿τ かすべり周波数制御器27に与えられる
。すべり周波数制御器27は人力(での極性、大きさに
対応したすべり周波数指令f’sを出力し、このすべり
周波数指令f’sと回転周波数fmとが加算されて周波
数指令f、となる。
The primary copper loss Plc of the motor 5 is calculated from - The outputs of the next input calculator 22 and the primary steel loss calculator 23 are added to the illustrated polarity by an adder 24. The output of the adder 24 is supplied to a divider 26 via a filter 25 that removes high frequency components. The divider 26 receives the frequency command f as a divisor, calculates (P, -P, c)/11, and outputs the result. This output and the torque command τ3 are combined and the deviation between them τ is given to the slip frequency controller 27. The slip frequency controller 27 outputs a slip frequency command f's corresponding to the polarity and magnitude of the human input, and this slip frequency command f's and the rotational frequency fm are added to form a frequency command f.

第4図及び第5図に、−次入力演算器22、−次入力演
算器23及びすベク周波数制御器27の一例を夫々示す
FIGS. 4 and 5 show examples of the -order input calculator 22, the -order input calculator 23, and the vector frequency controller 27, respectively.

第4図において、Vuv、 Vvv及びV w uは電
圧検出器20により検出された各相間の一次電圧、Iu
In FIG. 4, Vuv, Vvv and Vwu are the primary voltages between each phase detected by the voltage detector 20, and Iu
.

IW及びIwは電流検出器21により検出された相電流
を示す。201,202及び203はU相、■相、W相
の相電圧Vu(=Vuv−Vvu)、Vv=(Vvw−
Vvv)及びVv(=Vwu−’Vvv)を得る為の減
算器であって、相電圧Vu、’Vv及びVwは夫々乗算
器204,205及び206で相電流Iu。
IW and Iw indicate phase currents detected by the current detector 21. 201, 202, and 203 are the phase voltages Vu (=Vuv−Vvu) of the U phase, ■phase, and W phase, Vv=(Vvw−
Vvv) and Vv (=Vwu-'Vvv), where the phase voltages Vu, 'Vv and Vw are multipliers 204, 205 and 206, respectively, to obtain the phase current Iu.

■マ及びivと掛は合わされる。乗算器204゜205
及び206の夫々の出力Vu I u、 Vv I v
及び7w Iwは加算器207で加算された後、比例増
巾器zoaでに倍され、モータ5の一次入力P。
■Ma, iv and kake are combined. Multiplier 204゜205
and 206's respective outputs Vu I u, Vv I v
and 7w Iw are added by the adder 207 and then multiplied by the proportional amplifier zoa to provide the primary input P of the motor 5.

となる。231,232及び234は自乗器であって、
夫々相電流In、1マ及びIWが入力され、出力は加算
器235で加算される。加算器235の出力は比例増巾
器236でR1倍され、モータ5の一次鋼損P、eとな
る。
becomes. 231, 232 and 234 are square multipliers,
Phase currents In, 1 and IW are input, respectively, and the outputs are added by an adder 235. The output of the adder 235 is multiplied by R1 by the proportional amplifier 236, and becomes the primary steel losses P and e of the motor 5.

第5図において、(ト)は反転増巾器、(’1)+(r
、)は抵抗、(C)はコンデンサであって、トルク偏差
Cτを比例積分し、すべり周波数指令f’aとして出力
する。
In Fig. 5, (g) is an inverting amplifier, ('1) + (r
, ) is a resistor, and (C) is a capacitor, which proportionally integrates the torque deviation Cτ and outputs it as a slip frequency command f'a.

次に、この装置の動作について説明する。Next, the operation of this device will be explained.

一般に、モータ5の鉄損と機械損は一次入力に比べて無
視しうる程度に小さいので、これを無視すると、加算器
24の出力である(P+  Pc)は−モータ5の二次
人力ptに相当し、この二次人力P。
Generally, the iron loss and mechanical loss of the motor 5 are negligibly small compared to the primary input, so if this is ignored, the output of the adder 24 (P+Pc) will be - the secondary human power pt of the motor 5. Equivalent to this secondary human power P.

を周波数指令f、で除算する割算器26の出力は、モー
タ5の発生トルクτと二次入力Ptとの間に下記関係が
成立する為、発生トルクτに相当させることができる。
The output of the divider 26 that divides the frequency command f by the frequency command f can be made to correspond to the generated torque τ since the following relationship holds between the generated torque τ of the motor 5 and the secondary input Pt.

P 2 =W o r     ・・・・・・・・・ 
 (1)但し、Wo:モータ5の同期角速度 今、モータ5が不足励磁となり、発生トルクτがトルク
指令τS より小さくなると、正の偏差Cτが生じ、す
べり周波数制御器27の出力であるすべり周波数指令f
sが、eτに比例して増大するので、自動的にモータ5
の発生トルクTがトルク指令値T8へ制御される。逆に
、モータ5が過励磁になって、τ〉τ8になると、偏差
8τが負となって、すべり周波数指令(fs)が小さく
なる為、発生トルクTがトルク指令値τSへ制御される
P 2 = W o r ・・・・・・・・・
(1) However, Wo: Synchronous angular speed of the motor 5 Now, when the motor 5 is under-excited and the generated torque τ becomes smaller than the torque command τS, a positive deviation Cτ occurs, and the slip frequency which is the output of the slip frequency controller 27 command f
Since s increases in proportion to eτ, motor 5 automatically
The generated torque T is controlled to the torque command value T8. Conversely, when the motor 5 becomes over-excited and τ>τ8, the deviation 8τ becomes negative and the slip frequency command (fs) becomes small, so the generated torque T is controlled to the torque command value τS.

第6図は、この発明の他の実施例を示したもので、第1
図に示した従来装置のすべり周波数指令fs  に、す
べや周波数△f’sを加算した値を回転筒波数fmに加
えて周波数指令f1とした本ので、τ−τBに相当する
すべり周波数△f’sのみをすべり周波数制御器27で
補正する。
FIG. 6 shows another embodiment of the present invention.
The value obtained by adding the slip frequency △f's to the slip frequency command fs of the conventional device shown in the figure is added to the rotating cylinder wave number fm and the frequency command f1 is obtained, so the slip frequency △f corresponding to τ - τB 's only is corrected by the slip frequency controller 27.

なお、前記実施例では、モータ5の一次電圧。In addition, in the said Example, the primary voltage of the motor 5 is.

周波数を制御する為の可変電圧可変周波数!首として、
P、AM型電圧インバータを用いているが、P W M
型の場合にも同様の効果が得られる。
Variable voltage variable frequency to control frequency! As the neck
P, AM type voltage inverter is used, but P W M
A similar effect can be obtained in the case of molds.

以上の如く、この発明によれば、誘導電動機の一次電圧
、−次電流から、誘導電動機二次入力を演算により求め
、該二次入力を周波数指令の大きさで除算して誘導電動
機の発生トルクを得、該発生トルクをフィードバックし
てトルク指令と突合わせる構成としたことにより、従来
に比して、トルクの制御精度を高めることができる。
As described above, according to the present invention, the secondary input of the induction motor is calculated from the primary voltage and the negative current of the induction motor, and the generated torque of the induction motor is calculated by dividing the secondary input by the magnitude of the frequency command. By having a configuration in which the generated torque is fed back and compared with the torque command, the torque control accuracy can be improved compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の誘、、導電動機のトルク制御装置のブロ
ック図、第2図は上記可変速制御装置により運転される
誘導′電動機の一次電圧一周波数関係を示す線図、第3
図はこの発明による誘導電動機のトルク制御装置の実施
例のブロック図、第4図及び第5図は夫々上記実施例に
おける要部の具体例のブロック図及び回路、第6図はこ
の発明の他の実施例の一部を示すブロック図である。 図において、20・・・電圧検出器、21・・・電流検
出器、22・・・−次入力演算器、23・・・−次入力
演算器、24・・・加算器、26・・・割算器。 なお、図中、同一符号は同−又は相当部分を示す。 代理人   葛  野  信  − 第  l  図 第  3  図 ハ         ハ 第1頁の続き 0発 明 者 留井英明 神戸市兵庫区和田崎町1丁目1 番2号三菱電機株式会社制御製 作所内 0発 明 者 矢野禎成 神戸市兵庫区和田崎町1丁目1 番2号三菱電機株式会社制御製 作所内
Fig. 1 is a block diagram of a conventional induction motor torque control device, Fig. 2 is a diagram showing the primary voltage-frequency relationship of the induction motor operated by the variable speed control device, and Fig. 3
The figure is a block diagram of an embodiment of a torque control device for an induction motor according to the present invention, FIGS. 4 and 5 are block diagrams and circuits of specific examples of essential parts in the above embodiment, respectively, and FIG. 6 is a block diagram of an embodiment of a torque control device for an induction motor according to the present invention. FIG. 2 is a block diagram showing a part of an embodiment of the invention. In the figure, 20...voltage detector, 21...current detector, 22...-next input arithmetic unit, 23...-next input arithmetic unit, 24...adder, 26... Divider. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Figure 3 Figure 3 Continued from page 1 0 Inventor Hideaki Tomei Mitsubishi Electric Corporation Control Manufacturing Works, 1-1-2 Wadazaki-cho, Hyogo-ku, Kobe 0 Inventor Sadanari Yano Inside the Mitsubishi Electric Corporation Control Plant, 1-1-2 Wadazaki-cho, Hyogo-ku, Kobe City

Claims (1)

【特許請求の範囲】[Claims] トルク指令に従って誘導電動機の一次電圧及び周波数を
制御するトルク制御装置において、上記誘導電動機の一
次電圧を検出する電圧検出器と一次電流を検出する電流
検出器の出力を受けて誘導電動機−次入力を演算する一
次入力演算器、上記電流検出器の出力と予め設定される
誘4m動機−次抵抗から一次鋼損を算出する一次入力演
算器、上記−次入力演算器と上記−次入力演算器の出力
を受けて両川力の差を算出する減算器、該減算器の出力
を上記周波数を指令する周波数指令で除算する割算器、
該割算器の出力と上記トルク指令の差を受けてすべり周
波数指令を演算するすべり周波数制御器を具え、上記周
波数指令が、上記周波数指令と誘導電動機の回転周波数
の加算値として与えられることを特徴とする誘導電動機
のトルク制御装置。
In a torque control device that controls the primary voltage and frequency of an induction motor according to a torque command, the next input to the induction motor is determined by receiving the outputs of a voltage detector that detects the primary voltage of the induction motor and a current detector that detects the primary current. A primary input calculator that calculates the primary steel loss from the output of the current detector and the preset induction resistance of the 4m motor, a primary input calculator that calculates the primary steel loss, the -next input calculator, and the -next input calculator. a subtracter that receives the output and calculates the difference between the two river forces; a divider that divides the output of the subtracter by a frequency command that commands the frequency;
A slip frequency controller is provided which calculates a slip frequency command based on the difference between the output of the divider and the torque command, and the frequency command is given as a sum of the frequency command and the rotational frequency of the induction motor. Features: Torque control device for induction motors.
JP57056235A 1982-04-02 1982-04-02 Torque controller for induction motor Pending JPS58172989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57056235A JPS58172989A (en) 1982-04-02 1982-04-02 Torque controller for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57056235A JPS58172989A (en) 1982-04-02 1982-04-02 Torque controller for induction motor

Publications (1)

Publication Number Publication Date
JPS58172989A true JPS58172989A (en) 1983-10-11

Family

ID=13021436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57056235A Pending JPS58172989A (en) 1982-04-02 1982-04-02 Torque controller for induction motor

Country Status (1)

Country Link
JP (1) JPS58172989A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281785A (en) * 1986-05-27 1987-12-07 Toshiba Corp Driving device for helper of turbine
JPS63124797A (en) * 1986-11-14 1988-05-28 Toshiba Corp Helper drive for turbine
JPS63148883A (en) * 1986-12-12 1988-06-21 Toshiba Corp Helper driving device for turbine
CN107567681A (en) * 2015-03-30 2018-01-09 三菱电机株式会社 Protection device and servomotor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281785A (en) * 1986-05-27 1987-12-07 Toshiba Corp Driving device for helper of turbine
JPS63124797A (en) * 1986-11-14 1988-05-28 Toshiba Corp Helper drive for turbine
JPS63148883A (en) * 1986-12-12 1988-06-21 Toshiba Corp Helper driving device for turbine
CN107567681A (en) * 2015-03-30 2018-01-09 三菱电机株式会社 Protection device and servomotor
CN107567681B (en) * 2015-03-30 2019-01-18 三菱电机株式会社 Protective device and servomotor

Similar Documents

Publication Publication Date Title
EP0510601B1 (en) Parallel operation system of AC output inverters
US4814683A (en) Induction motor control apparatus
JPS58123394A (en) Controller for ac motor
KR880002315A (en) Speed control of electric motor
JPS58133177A (en) Method and device for controlling ac load
JPS58172989A (en) Torque controller for induction motor
US4527109A (en) Control apparatus for thyristor motor
JPH0449356B2 (en)
JP2946106B2 (en) AC motor control method and device
JP2638801B2 (en) Method and apparatus for controlling induction motor system
JPS6330236Y2 (en)
JP3770286B2 (en) Vector control method for induction motor
JP2645159B2 (en) Induction machine control device
JPH0746872A (en) Speed controller for single phase induction motor
SU904178A1 (en) Device for control of asynchronized synchronous machine
JPS58172988A (en) Torque controller for induction motor
JP2909736B2 (en) Induction motor control device
JPH0213555B2 (en)
JP3007989B2 (en) Driving device for stepping motor
JPH0412698A (en) Control method for voltage type pwm inverter
JPH0650953B2 (en) Synchronous motor controller
JPH03135390A (en) Method and device for controlling power converter
JPH0442916B2 (en)
JPH0667256B2 (en) Cycloconverter control device
JPH082198B2 (en) Variable speed controller for induction motor