JPS5937894A - Variable speed driving system for synchronous machine - Google Patents

Variable speed driving system for synchronous machine

Info

Publication number
JPS5937894A
JPS5937894A JP57146089A JP14608982A JPS5937894A JP S5937894 A JPS5937894 A JP S5937894A JP 57146089 A JP57146089 A JP 57146089A JP 14608982 A JP14608982 A JP 14608982A JP S5937894 A JPS5937894 A JP S5937894A
Authority
JP
Japan
Prior art keywords
command value
magnetic flux
armature
current
synchronous machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57146089A
Other languages
Japanese (ja)
Inventor
Kazuya Endo
遠藤 和弥
Hiroshi Osawa
博 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57146089A priority Critical patent/JPS5937894A/en
Publication of JPS5937894A publication Critical patent/JPS5937894A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Abstract

PURPOSE:To enable to control a vector without necessity of a magnetic flux detector or arithmetic circuit by employing a damperless synchronous machine. CONSTITUTION:A field current instruction value if* is obtained by calculating a torque current component instruction value iT* and a magnetic flux instruction value phi*. The phase difference phi1 of an armature coil crossing magnetic vector is calculated by a phi1 calculator 10. An arithmetic unit 8 obtains an armature current command value from a deviation angle theta to the armature coil axis of a field pole, the phase difference phi1 of the crossing magnetic flux vector, and torque current component instruction value iT*. This instruction value is compared with the actual value, and a frequency converter 1 is controlled so that the difference becomes zero. The field current instruction value if* is compared with the actual value, and a variable DC voltae power source 2 is controlled so that the difference bocomes zero.

Description

【発明の詳細な説明】 本発明は同期機、特に同期電動機の可変速駆動方式に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable speed drive system for a synchronous machine, particularly a synchronous motor.

近年、同期電動機について、その供給電力が交流であシ
ながら、あたかも直流機であるかのように取シ扱うこと
のできる新しい可変速駆動方式として、ベクトル制御方
式が知られるに至っている(例えば、特開昭55−14
1993号公報、特開昭55−144793号公報等参
照)。
In recent years, the vector control method has become known as a new variable speed drive method for synchronous motors that can be handled as if it were a DC machine even though the power supplied to it is AC (for example, Japanese Unexamined Patent Publication No. 55-14
1993, JP-A-55-144793, etc.).

かかる従来のベクトル制御方式は、磁束検出器を用いて
直接検出するかあるいは同期電動機の電圧・電流から演
算によって得られた電機子鎖交磁束を基準にとシ、これ
が常に±の指令値と一致するように、電機子電流と界磁
電流を制御する方式によるものである。すなわち、電機
子電流を電機子鎖交磁束と同相の磁束分電流とこれと直
交したトルク分電流に分解してこれらを独立に制御する
ことによって電動機発生トルクを制御し、直流機と同等
の制御性を得ようとする方式である。
Such conventional vector control methods are based on the armature linkage flux, which is directly detected using a magnetic flux detector or calculated from the voltage and current of the synchronous motor, and this always matches the ± command value. This is based on a method that controls the armature current and field current. In other words, by decomposing the armature current into a magnetic flux current that is in phase with the armature interlinkage flux and a torque current that is orthogonal to this, and controlling these independently, the motor generated torque is controlled, and the control is equivalent to that of a DC machine. This is a method of trying to gain sex.

ここで、界磁電流と磁束分電流は、上述のようにして得
られた電機子鎖交磁束をフィードバックし、磁束の指令
値と突合せ、両者が一致するよ5に制御されている。し
かしこの方式では、電機子鎖交磁束を求めそれを基準に
制御を行なうため、磁束の検出回路あるいは演算回路を
必要とし、また磁束のフィードバック制御ループが構成
されているため制御回路は極めて複雑外ものになるとい
う欠点があった。
Here, the field current and the magnetic flux component current are controlled to 5 by feeding back the armature interlinkage magnetic flux obtained as described above and comparing it with the command value of the magnetic flux so that the two match. However, in this method, the armature flux linkage is determined and control is performed based on it, which requires a magnetic flux detection circuit or an arithmetic circuit, and since a magnetic flux feedback control loop is configured, the control circuit is extremely complex. It had the disadvantage of becoming a thing.

本発明は、上述のような従来技術における欠点を改善す
るためになされたものであシ、従って本発明の目的は、
磁束の検出回路や演算回路を必要とせず、制御回路を簡
素化することの可能な、しかも直流機と同等な制御特性
の得られる同期電動機の可変速駆動方式を提供すること
にある。
The present invention has been made to improve the drawbacks of the prior art as described above, and therefore, an object of the present invention is to
An object of the present invention is to provide a variable speed drive system for a synchronous motor that does not require a magnetic flux detection circuit or an arithmetic circuit, can simplify a control circuit, and can obtain control characteristics equivalent to a direct current machine.

さて、突極形同期機の回転子磁極片に設けられる制動巻
線(ダンパー巻線)は、界磁@線に対するじゃへい効果
とか乱調防止とか、色々と有用な効果をもたらすが、反
面、界磁電流が変化した場合、そのことによる磁束変化
は直ちには現われず、制動巻線のもつ時定数に従って時
間遅れをもって磁束変化が現われることとなシ、界磁電
流と磁束が、過渡時においては、1対1の関係で対応し
なく々るという欠点がある。そこで、制動巻線を除去し
たダンパーレスの同期機を想定すると、界磁電流の変化
はそのまま磁束の変化となって現われ、界磁電流と磁束
とが常にはy1対1の関係で対応すると考えられる。
Now, the damper winding installed on the rotor pole piece of a salient pole type synchronous machine has various useful effects such as blocking the field @ wire and preventing disturbance, but on the other hand, it When the magnetic current changes, the resulting magnetic flux change does not appear immediately, but appears with a time delay according to the time constant of the damper winding.When the field current and magnetic flux are transient, The disadvantage is that one-on-one correspondence is no longer possible. Therefore, assuming a damperless synchronous machine with the damper winding removed, changes in the field current will directly appear as changes in the magnetic flux, and the field current and magnetic flux will always correspond in a y1:1 relationship. It will be done.

従って、かかる同期機においては、界磁電流に着目して
いれば、それによシ磁束の大きさも分かるので、そのベ
クトル制御に際しても、磁束の検出を必要とせず、それ
故、磁束の検出回路や演算回路も不要となる。
Therefore, in such a synchronous machine, if you pay attention to the field current, you can also know the magnitude of the magnetic flux, so there is no need to detect the magnetic flux when performing vector control, and therefore, there is no need to use a magnetic flux detection circuit or An arithmetic circuit is also not required.

更に、同期機を有効に利用する為には、磁束一定(基底
速度以上では逆起電カ一定)で、かつ負荷力率を1にす
る必要がある。ところで同期機の発生トルクは電機子鎖
交磁束ベクトル1と電機子電流ベクトルiとのベクトル
積で与えられ、Fとiが直交するときiHすべて有効分
になり、このとき定常的には電動機力率が1になるとと
もに、過渡的にも最も電動機が効果的に用いられること
になる。また磁束が一定に保たれるとき、電機子電流の
大きさとトルクは比例し、直流機と同等の制御特性を得
ることが可能となる。
Furthermore, in order to effectively utilize a synchronous machine, it is necessary to keep the magnetic flux constant (the back electromotive force is constant above the base speed) and to make the load power factor 1. By the way, the generated torque of a synchronous machine is given by the vector product of the armature flux linkage vector 1 and the armature current vector i, and when F and i are orthogonal, all iH becomes an effective component, and in this case, the electric motor power steadily When the ratio becomes 1, the electric motor is used most effectively even in a transient manner. Furthermore, when the magnetic flux is kept constant, the magnitude of the armature current and the torque are proportional, making it possible to obtain control characteristics equivalent to those of a DC machine.

以上の観点に立ち、本発明では、ダンパーレス同期機の
如き、界磁電流と磁束とが常にはg1対1の関係にある
同期機を対象とし、電機子鎖交磁束の指令値F≠(指令
値には矢印を付す)と、電機子電流lのうち電機子鎖交
磁束に直交する成分の指令4rlL i# (平行する
成分の指令値i−は常に零とする)を与えることにより
、磁束の検出回路や演算回路を要しない簡素な制御回路
を用い、直流機と同等な制御特性の得られる同期機の可
変速駆動方式を実現しようとするものである。
In view of the above, the present invention targets a synchronous machine such as a damperless synchronous machine where the field current and magnetic flux always have a g1:1 relationship, and the armature flux linkage command value F≠( (The command value is marked with an arrow) and the command 4rlL i# of the component perpendicular to the armature interlinkage flux of the armature current l (the command value i- of the parallel component is always zero). Using a simple control circuit that does not require a magnetic flux detection circuit or an arithmetic circuit, the aim is to realize a variable speed drive system for a synchronous machine that provides control characteristics equivalent to those of a DC machine.

以下、本発明の動作原理を説明する。The operating principle of the present invention will be explained below.

第1図は、同期電動機における諸量のベクトル図である
。同図において、d軸は界磁磁極の中心線上にとった軸
(磁極軸)であり、このd軸と、これに直交するq軸と
を固定軸としている。これに対し、電機子が回転してい
ると考え、電機子巻線におけるa相(三相のうちの一つ
)の巻線の中心軸を考え、このa相巻線中心軸とd軸と
のなす角度をθとする。a相巻線中心軸は回転軸である
から、電動機の回転につれてθの値は変化する。
FIG. 1 is a vector diagram of various quantities in a synchronous motor. In the figure, the d-axis is an axis (magnetic pole axis) taken on the center line of the field magnetic pole, and the d-axis and the q-axis perpendicular thereto are fixed axes. On the other hand, assuming that the armature is rotating, and considering the central axis of the a-phase (one of three phases) winding in the armature winding, the central axis of the a-phase winding and the d-axis are Let the angle formed by θ be θ. Since the a-phase winding center axis is a rotation axis, the value of θ changes as the motor rotates.

電機子鎖交磁束(有効磁束)ベクトルVの方向にとった
M軸(磁束軸)とこれに直交するT軸は固定軸である。
The M axis (magnetic flux axis) taken in the direction of the armature interlinkage magnetic flux (effective magnetic flux) vector V and the T axis perpendicular to this are fixed axes.

M軸とd軸のなす角度をΦ1とする。Let Φ1 be the angle formed by the M axis and the d axis.

そのほか、v′fは界磁電流ifによってできる電機子
鎖交磁束ベクトル、FTは電機子電流ITによってでき
る反作用磁束ベクトルであυ、Ff4CFTが干渉する
結果、実質的に存在する有効磁束はWとなる。jTqは
右のq軸成分、νTdはd軸成分である。
In addition, v'f is the armature linkage flux vector created by the field current if, FT is the reaction flux vector created by the armature current IT, υ, and as a result of the interference of Ff4CFT, the effective magnetic flux that actually exists is W. Become. jTq is the right q-axis component, and νTd is the d-axis component.

なお、電機子電流1は、一般には、電機子鎖交磁束Wに
平行な成分IMと直交する成分1Tとに分解されるが、
本発明においては、平行な成分iMt;j。
Note that the armature current 1 is generally decomposed into a component IM parallel to the armature interlinkage flux W and a component 1T perpendicular to the armature interlinkage flux W.
In the present invention, the parallel components iMt;j.

軸成分であシ、ITdはITのd軸成分である。ITd is the d-axis component of IT.

第1図に示したベクトル諸量の関係から、次の各式が導
かれる。
The following equations are derived from the relationships among the vector quantities shown in FIG.

FsinΦ!−4’Tq −(に+Laσ) 1TcO3Φ1  ・・・・・・・
・・・・・(1)但しM(1t I’4q、 ”  d
q@電4電子1子(1)式よシ (2)式の関係からΦ1の正弦,余弦は次のようになる
FsinΦ! -4'Tq -(+Laσ) 1TcO3Φ1 ・・・・・・・・・
・・・・・・(1) However, M(1t I'4q, ” d
From the relationship between equation (1) and equation (2), the sine and cosine of Φ1 are as follows.

また第1図より FcosΦt =Wt − FTd −M(1 if(Md +La,y)IT”の1−(5
)の関係があり、(5)弐K (3) 、 (4)式を
代入し整理すると次のようになる。
Also, from Fig. 1, FcosΦt = Wt - FTd - M (1 if (Md + La, y) IT")
), and by substituting and rearranging equations (5)2K (3) and (4), we get the following.

またd+q@成分の電流1d 、 tq は(3) 、
 (4)式より次代で与えられる。
Also, the current 1d and tq of d+q@ component is (3),
From equation (4), it is given in the next generation.

以上を基に、以下、本発明の詳細な説明する。Based on the above, the present invention will be described in detail below.

第2図は本発明の一実施例を示すブロック図である。同
図において、1は同期電動機の電機子回路に電力を供給
する周波数変換器であシ、2Fi同御形変換器である。
FIG. 2 is a block diagram showing one embodiment of the present invention. In the figure, 1 is a frequency converter that supplies power to the armature circuit of a synchronous motor, and is a 2Fi homogeneous converter.

周波数変換器1としては、例えばザイクロコンバータ等
が用いられる。6,7は、6が同期電動機3の電機子電
流を、7が界磁電流を、それぞれ所望値に一致させるよ
うに動作する電流調節器(ACR)である。9は同期電
動機3の回転速度Nを所望値N%に一致させるための速
度調節器(ASR)であり、調節器9の出力はトルク電
流指令値iT−%.に和尚する。10はΦ1演算器であ
り、その演算式は、前記(2)式よシ、次式で与えられ
る。
As the frequency converter 1, for example, a zychroconverter or the like is used. Reference numerals 6 and 7 designate current regulators (ACRs) that operate so that 6 and 7 match the armature current and field current of the synchronous motor 3 to desired values, respectively. 9 is a speed regulator (ASR) for making the rotational speed N of the synchronous motor 3 match a desired value N%, and the output of the regulator 9 is the torque current command value iT-%. to become a monk. 10 is a Φ1 arithmetic unit, and its arithmetic expression is given by the following expression, similar to the above-mentioned expression (2).

但しに1=当+I・aσ なお州は電機子鎖交磁束指令値であシ、界磁弱め制御を
行々5場合には回転数に応じて制御される。11は界磁
電流指令値( Ifx)の演n器であシ、その演算式は
前記(6)式より次のようになる。
However, 1=current+I・aσ Note that the state is the armature linkage magnetic flux command value, and when field weakening control is performed, it is controlled according to the rotation speed. Reference numeral 11 is a calculator for the field current command value (Ifx), and its calculation formula is as follows from the above equation (6).

但しに2=Md K3= (Md +Lag)(Mq +Laσ)K4 
= (Mq + Laσ)′ 8は17%,Φ1と磁極位置検出器4からの信号θ8.
10,11の各演算器は、例えば入出力の関数をディジ
タルメモリー回路に記憶し、入力に従って読出しする方
法で実現するか、あるいは加算器や乗算器等のアナログ
回路、又は前記ディジタル回路とアナログ回路を併用す
ることによって構成される。動作については、改めて説
明するまでもなく明らかであろう。
However, 2=Md K3= (Md +Lag) (Mq +Laσ)K4
= (Mq + Laσ)' 8 is 17%, Φ1 and the signal θ8 from the magnetic pole position detector 4.
Each of the arithmetic units 10 and 11 can be realized, for example, by storing input/output functions in a digital memory circuit and reading them out according to the input, or by using an analog circuit such as an adder or a multiplier, or by combining the digital circuit and an analog circuit. It is constructed by using together. The operation will be obvious without further explanation.

第3図は本発明の他の実施例を示すブロック図である。FIG. 3 is a block diagram showing another embodiment of the present invention.

同図に示した実施例は、第2図におけるΦ1演算器10
のイ(#)に、電流指令値IT苦のd、q軸成分、1T
d7.ITq■を演算する回路10を設け、3相電流演
算器8において、” T d”t i T 層とθから
3相電流指令値1.+ 、 ibv 、 1c4を算出
するようにした実施例であシ、他の点では、第2図の実
施例と変わる所がない。
The embodiment shown in FIG.
In A (#), the d and q axis components of the current command value IT, 1T
d7. A circuit 10 for calculating ITq■ is provided, and a three-phase current calculator 8 calculates the three-phase current command value 1 from the "T d"t i T layer and θ. +, ibv, and 1c4 are calculated; in other respects, there is no difference from the embodiment shown in FIG.

第3図において、トルク電流指令値6込および磁束指令
値J−Xよシ演算器10′によってd、q軸成分の電流
指令値!Td” 、 IT、苦が求められる・その演算
式は前記(7) 、 (s)式より次の様になる。
In FIG. 3, the torque current command value 6 included and the magnetic flux command value J-X are calculated by the calculator 10' to calculate the current command values for the d and q axis components! Td'', IT, and Kukaku are calculated.The calculation formula is as follows from the above equations (7) and (s).

演算器8′打1.’!Td%+ ITq”と磁極位置検
出器4からの信号θから同期電動機の各相電流指令値1
a■。
Arithmetic unit 8' stroke 1. '! Td% + ITq” and the signal θ from the magnetic pole position detector 4, each phase current command value 1 of the synchronous motor is determined.
a■.

ib%、l。■を演算する演q−器であシ、その演算式
%式% 本実施例のその他の構成および動作は第2図に示した実
施例のそれと同じであるから説明は省く。
ib%, l. (1) is a q-operator which calculates (2), and its calculation formula (%) is used.The rest of the structure and operation of this embodiment are the same as those of the embodiment shown in FIG. 2, so a description thereof will be omitted.

本発明によれば、電流制御形周波数変換器による同期機
の可変速駆動システムにおいて、磁束検出器や演算回路
を用いて複雑な磁束のフィードバック制御ループを構成
することなく、簡単な制御回路のもとで、電機子鎖交磁
束一定かつ電動機力率1という高効率の可変速運転を実
現できる0
According to the present invention, in a variable speed drive system for a synchronous machine using a current-controlled frequency converter, a simple control circuit can be used without constructing a complex magnetic flux feedback control loop using a magnetic flux detector or an arithmetic circuit. This enables highly efficient variable speed operation with constant armature flux linkage and motor power factor of 1.

【図面の簡単な説明】[Brief explanation of drawings]

/Hi’(1図は同期電動機における諸量のベクトル図
、第2図および第3図はそれぞれ本発明の一実施例を示
すブロック図、である。 符号説明 1・・・・・・電流制御形周波数変換器、2・・・・・
・電流制御形整流器、3・・・・・・同期電動機、4・
・・・・・磁極位置検出器、5・・・・・・速度検出器
、6,7・・・・・・電流調節器、8,8′・・・・・
・3相電流指令値演算器、9・・・・・・速度調節器、
10・・・・・・Φ1演算器、10・・・・・・ITd
”+ ’Tq”演q−器、11・・・・・・if黄演算
器代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎   清 第1図 ′lr申由 l′F′曳・申山
/Hi' (Figure 1 is a vector diagram of various quantities in a synchronous motor, and Figures 2 and 3 are block diagrams each showing an embodiment of the present invention. Description of symbols 1...Current control Type frequency converter, 2...
・Current control rectifier, 3...Synchronous motor, 4.
...Magnetic pole position detector, 5...Speed detector, 6,7...Current regulator, 8,8'...
・3-phase current command value calculator, 9...speed regulator,
10...Φ1 computing unit, 10...ITd
``+ 'Tq'' operator q- device, 11... if yellow operator agent Patent attorney Akio Namiki Agent Patent attorney Kiyoshi Matsuzaki Figure 1 'lr Shinyu l'F' Hiki Shin Mountain

Claims (1)

【特許請求の範囲】 1)同期機の電機子回路には、電流を操作量とする可変
周波可変電圧電源から給電し、界磁回路には、電流を操
作量とする直流可変電圧電源から給電し、電機子電流の
トルク電流成分指令値i−と電機子巻線に鎖交する磁束
の指令値1■とを与えられて前記同期機を可変速駆動す
る同期機の可変速駆動方式であって、前記トルク電流成
分指令値iT+と磁束の指令値F−%とから界磁電流指
令値lf黄を演算によって求めて出力する第1の要素と
、同じ(前記トルク電流成分指令値l−と磁束の指令値
1とから界磁極の磁極方向に対する電機子巻線鎖交磁束
ベクトルの位相差Φ1を演算によって求めて出力する第
2の要素と、前記界磁極の電機子巻線軸に対する偏位角
θを検出して出力する磁極位置検出器と、前記トルク電
流成分指令値I$と前記第2の要素から出力される鎖交
磁束ベクトルの位相差Φ1と前記位置検出器から出力さ
れる便位角θとから電機子電流指令値を演算によって求
めて出力する第3の要素と、前記第1の要素から出力さ
れた界磁電流指令値If黄をその実際値と比較し、その
差が零となるよ5に前記直流可変電圧電源を制御する手
段と、前記第3の要素から出力された電機子電流指令値
をその実際値と比較し、その差が零となるように前記可
変周波可変電圧電源を制御する手段とを有して成ること
を特徴とする同期機の可変速駆動方式。 2、特許請求の範囲第1項に記載の可変速駆動方式にお
いて、前記第2の要素が、前記トルク電流成分指令値l
T−にと磁束の指令値W%とからトルク電流成分のd軸
成分指令値!Td”とq軸成分指令値ITq−4を求め
て出力する要素であシ、前記第3の要素が前記iTd”
 、 ITq苦およびθから電機子電流指令値を演算に
よシ求めて出力する要素であることを特徴とする同期機
の可変速駆動方式。
[Claims] 1) The armature circuit of the synchronous machine is supplied with power from a variable frequency variable voltage power supply that uses current as the manipulated variable, and the field circuit is supplied with power from a DC variable voltage power supply that uses current as the manipulated variable. This is a variable speed drive system for a synchronous machine in which the synchronous machine is driven at a variable speed by being given a torque current component command value i of the armature current and a command value 1 of the magnetic flux interlinked with the armature winding. The first element, which calculates and outputs the field current command value lfyellow from the torque current component command value iT+ and the magnetic flux command value F-%, is the same (the torque current component command value l- and A second element that calculates and outputs the phase difference Φ1 of the armature winding flux linkage vector with respect to the magnetic pole direction of the field pole from the magnetic flux command value 1, and the deviation angle of the field pole with respect to the armature winding axis. a magnetic pole position detector that detects and outputs θ; a phase difference Φ1 between the torque current component command value I$ and the interlinkage magnetic flux vector output from the second element; and a toilet position output from the position detector. The third element which calculates and outputs the armature current command value from the angle θ and the field current command value If output from the first element is compared with its actual value, and the difference is zero. 5, the means for controlling the DC variable voltage power supply compares the armature current command value outputted from the third element with its actual value, and controls the variable frequency control so that the difference becomes zero. A variable speed drive system for a synchronous machine, characterized in that it comprises means for controlling a voltage power supply. 2. In the variable speed drive system according to claim 1, the second element comprises: The torque current component command value l
d-axis component command value of torque current component from T- and magnetic flux command value W%! Td" and the q-axis component command value ITq-4 are determined and outputted, and the third element is the iTd"
A variable speed drive system for a synchronous machine, characterized in that the element is an element that calculates and outputs an armature current command value from ITq and θ.
JP57146089A 1982-08-25 1982-08-25 Variable speed driving system for synchronous machine Pending JPS5937894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146089A JPS5937894A (en) 1982-08-25 1982-08-25 Variable speed driving system for synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146089A JPS5937894A (en) 1982-08-25 1982-08-25 Variable speed driving system for synchronous machine

Publications (1)

Publication Number Publication Date
JPS5937894A true JPS5937894A (en) 1984-03-01

Family

ID=15399878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146089A Pending JPS5937894A (en) 1982-08-25 1982-08-25 Variable speed driving system for synchronous machine

Country Status (1)

Country Link
JP (1) JPS5937894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133590A (en) * 1987-08-07 1989-05-25 Abb Stroemberg Drives Oy Torque control of synchronous machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133590A (en) * 1987-08-07 1989-05-25 Abb Stroemberg Drives Oy Torque control of synchronous machine

Similar Documents

Publication Publication Date Title
US4361791A (en) Apparatus for controlling a PWM inverter-permanent magnet synchronous motor drive
JPS58123394A (en) Controller for ac motor
JP3064671B2 (en) Control circuit of power converter
KR860001242B1 (en) Current control apparatus for electric power systems
JPS5949797B2 (en) AC machine current control method
JPH0773438B2 (en) Variable speed controller for induction motor
JPS5937894A (en) Variable speed driving system for synchronous machine
JPH0632581B2 (en) Induction motor controller
US7053584B2 (en) Motor driving device
JP3173022B2 (en) Control device for brushless DC motor
JP2708649B2 (en) Cyclo converter control device
JPS6152176A (en) Vector controlling method of induction motor
JPH1118498A (en) Controller for servo motor
JP3124019B2 (en) Induction motor control device
JPH0546794B2 (en)
JPH0793839B2 (en) Induction motor controller
JPH0634724A (en) Motor constant identifying method in vector control device for induction motor
JPS5996888A (en) Controller for induction motor
JPS6198185A (en) Controller for driving synchronous motor
JPH0785680B2 (en) Synchronous motor speed controller
JPH0667256B2 (en) Cycloconverter control device
JP2001169598A (en) Control device of synchronous motor
JPH0470879B2 (en)
JPS6295987A (en) Controller for ac motor
JPH0332313B2 (en)