JPH0470879B2 - - Google Patents

Info

Publication number
JPH0470879B2
JPH0470879B2 JP58069589A JP6958983A JPH0470879B2 JP H0470879 B2 JPH0470879 B2 JP H0470879B2 JP 58069589 A JP58069589 A JP 58069589A JP 6958983 A JP6958983 A JP 6958983A JP H0470879 B2 JPH0470879 B2 JP H0470879B2
Authority
JP
Japan
Prior art keywords
phase
energized
signal
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58069589A
Other languages
Japanese (ja)
Other versions
JPS59194694A (en
Inventor
Koji Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58069589A priority Critical patent/JPS59194694A/en
Publication of JPS59194694A publication Critical patent/JPS59194694A/en
Publication of JPH0470879B2 publication Critical patent/JPH0470879B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は3相両方向通電形ブラシレス直流モー
タの駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a drive circuit for a three-phase bidirectional current-carrying brushless DC motor.

背景技術とその問題点 ブラシレス直流モータのトルクリツプルを低減
させる方法として、従来から界磁を形成するため
のロータマグネツトを台形波状の着磁パターンに
して、通電区域におけるコイルの鎖交磁束をほぼ
一定にする方法が用いられている。しかしこの方
法では、通電区域における鎖交磁束を完全に一定
にすることは困難であつて、台形波の肩部付近で
トルクを落ち込みが生じ、これによつてトルクリ
ツプルが生ずる。また台形波状の着磁パターンに
することによつて有効な磁束が減少し、モータの
出力が低下することがある。
BACKGROUND TECHNOLOGY AND PROBLEMS As a method of reducing torque ripple in brushless DC motors, conventionally, the rotor magnet used to form the field is made into a trapezoidal wave-like magnetization pattern, and the magnetic flux linkage of the coil in the energized area is kept almost constant. The following method is used. However, with this method, it is difficult to make the flux linkage completely constant in the energized area, and a drop in torque occurs near the shoulder of the trapezoidal wave, resulting in torque ripple. Further, by forming a trapezoidal wave-like magnetization pattern, the effective magnetic flux may be reduced, and the output of the motor may be reduced.

界磁波形とは無関係な一定トルクを得る方法と
して、コイル鎖交磁Bを検出しその1/Bに比例
した駆動電流を流してトルク(鎖交磁束×電流)
を一定とする駆動方式が提案されている。コイル
鎖交磁束の検出方法としては、ホール素子等の感
磁性検出素子を用いる方法と、モータ駆動コイル
で検出コイルを重ね巻きする方法が通常用いられ
ている。これらの方法はモータと駆動回路との間
の結合線の本数が検出素子または検出コイルの分
だけ多くなる問題がある。なおホール素子等の検
出素子で検出する場合、ロータの回転位置を検出
して各相の駆動コイルの通電切換信号を得る検出
素子とコイル鎖交磁束検出素子とを兼用すること
が考えられるが、通電切換のタイミングの関係
上、ロータ位置検出素子と駆動コイルとが同相で
配置されることが少なく、従つて、駆動コイルの
鎖交磁束を検出することが実質的に困難である場
合が多い。
As a method to obtain a constant torque that is independent of the field waveform, the coil flux linkage B is detected and a drive current proportional to 1/B is applied to generate the torque (linkage flux x current).
A driving method has been proposed that keeps the constant. As a method for detecting coil linkage magnetic flux, a method using a magnetically sensitive detection element such as a Hall element, and a method in which a detection coil is wound overlappingly with a motor drive coil are generally used. These methods have a problem in that the number of coupling wires between the motor and the drive circuit increases by the number of detection elements or detection coils. Note that when detecting with a detection element such as a Hall element, it is conceivable to use the detection element that detects the rotational position of the rotor and obtains the energization switching signal of the drive coil of each phase and the coil flux linkage detection element. Due to the timing of energization switching, the rotor position detection element and the drive coil are rarely arranged in the same phase, and therefore, it is often substantially difficult to detect the interlinkage magnetic flux of the drive coil.

またホール素子等で鎖交磁束を検出する場合、
検出素子の出力にDCオフセツトやドリフトが含
まれていてこれらを回路的に補正する手段が必要
となる上、点の検出であるためロータマグネツト
に対して所定の対向面積(コイル面積)を有する
コイルの鎖交磁束を正確に代表することが困難で
ある。
In addition, when detecting magnetic flux linkage with a Hall element, etc.,
The output of the detection element includes DC offset and drift, which requires a means to correct them in a circuit, and since it is point detection, it has a predetermined area facing the rotor magnet (coil area). It is difficult to accurately represent the flux linkage of the coil.

一方、モータ駆動コイルに重ね巻きされた検出
コイルで鎖交磁束を検出する場合、モータの巻線
構造が複雑になる上、駆動巻線の巻スペースが減
少して効率が低下する問題がある。
On the other hand, when detecting interlinkage magnetic flux with a detection coil wound over the motor drive coil, there are problems in that the winding structure of the motor becomes complicated and the winding space of the drive winding decreases, resulting in a decrease in efficiency.

発明の目的 本発明は上述の問題にかがみ、特別な検出素子
や検出コイルを設けることなく、各駆動コイルの
実際鎖交磁束に極めて近い信号を検出してその逆
数に比例した電流を各コイルに流し、これによつ
てトルクリツプルの無い一定トルクを得るように
することを目的とする。
Purpose of the Invention The present invention solves the above-mentioned problems by detecting a signal extremely close to the actual interlinkage flux of each drive coil and applying a current proportional to the reciprocal of the signal to each coil without providing any special detection element or detection coil. The purpose of this is to obtain constant torque without torque ripple.

発明の概要 本発明は、通電相が2相ずつ互にオーバーラツ
プしている3相両方向通電形ブラシレスモータに
おいて、3相コイルの夫々の誘起電圧を検出する
回路と、検出された信号を積分し、通電2相の積
分信号を互に加算し、加算された信号から非通電
相の積分信号の2倍レベルの信号を減算すること
により、通電2相の合成鎖交磁束の近似信号を得
る回路と、上記近似信号の逆数に比例した駆動電
流を通電相に流す回路とを具備させたものであ
る。
SUMMARY OF THE INVENTION The present invention provides a three-phase bidirectional current-carrying brushless motor in which two current-carrying phases overlap each other. A circuit that obtains an approximate signal of the composite flux linkage of two energized phases by adding integral signals of two energized phases and subtracting a signal with twice the level of the integral signal of a non-energized phase from the added signal. , and a circuit for causing a drive current proportional to the reciprocal of the approximate signal to flow through the energized phase.

実施例 以下本発明の実施例を図面を参照して説明す
る。
Embodiments Examples of the present invention will be described below with reference to the drawings.

第1図は本発明によるブラシレスモータ駆動回
路の原理を示す回路図である。第1図においてモ
ータ1の駆動電流iはシリーズ制御トランジスタ
2によつて制御される。このトランジスタ2の電
流は微小抵抗Rによつて検出され、検出電圧iR
が電圧−電流変換回路3に帰還されることによ
り、電圧−電流変換回路3の入力制御電圧Vc
応じた電流i=Vc/Rが流される。一方、モー
タ1の駆動コイルの誘起電圧が誘送電圧検出回路
4で検出され、検出出力に基いて鎖交磁束近似回
路5で通電相の鎖交磁束近似信号Eが形成され
る。この近似信号Eは掛算器6に与えられ、駆動
電流検出電圧iRと掛算される。掛算結果、iREは
オペアンプ7に与えられてトルク指令電圧V(例
えば速度サーボ電圧)と比較され、V=iREとな
るように制御電圧Vc、即ち電流i(=Vc/R)が制 御される。
FIG. 1 is a circuit diagram showing the principle of a brushless motor drive circuit according to the present invention. In FIG. 1, the drive current i of the motor 1 is controlled by a series control transistor 2. In FIG. The current of this transistor 2 is detected by a minute resistor R, and the detection voltage iR
is fed back to the voltage-current conversion circuit 3, so that a current i=V c /R corresponding to the input control voltage V c of the voltage-current conversion circuit 3 is caused to flow. On the other hand, the induced voltage of the drive coil of the motor 1 is detected by the induced voltage detection circuit 4, and the flux linkage approximation circuit 5 generates the flux linkage approximation signal E of the energized phase based on the detection output. This approximate signal E is given to a multiplier 6 and multiplied by the drive current detection voltage iR. The multiplication result, iRE, is given to the operational amplifier 7 and compared with the torque command voltage V (for example, speed servo voltage), and the control voltage V c , that is, the current i (=V c /R) is controlled so that V = iRE. Ru.

この結果、通電相の鎖交磁束に逆比例し且つト
ルク指令電圧Vに比例した電流i=V/REが流れ、 鎖交磁束波形とは無関係の一定トルク(電流×磁
束)が得られる。
As a result, a current i=V/RE flows that is inversely proportional to the interlinkage magnetic flux of the energized phase and proportional to the torque command voltage V, and a constant torque (current x magnetic flux) that is unrelated to the interlinkage flux waveform is obtained.

次に第2図は第1図の原理回路を具体化する場
合に考えられるブラシレスモータ駆動回路の回路
図であり、第3図及び第4図、第5図は第2図の
回路の動作を説明するための波形図及びベクトル
図である。
Next, Fig. 2 is a circuit diagram of a brushless motor drive circuit that can be considered when embodying the principle circuit shown in Fig. 1, and Figs. 3, 4, and 5 show the operation of the circuit shown in Fig. 2. They are a waveform diagram and a vector diagram for explanation.

このモータは3相両方向通電形ブラシレスモー
タであり、この3相コイル11〜13はY結線さ
れ、プシユプル接続されたスイツチングトランジ
スタ14,14′、15,15′、16,16′に
よつて駆動される。第3図a〜cは各相の鎖交磁
束Ba、Bb、Bcに示している。各相はその鎖交磁
束の正及び負の最大位置を中心とする120℃の区
間ごとに第3図a,b,cの斜線部で示すように
正方向及び負方向に交互に通電される。従つて各
相の通電角は互に60°ずつオーバーラツプし、常
に2つの相のコイルに電流が流されて、2相の合
成トルクが順次発生する。例えば第2図において
トランジスタ16と14′がオンとなつていると
A相コイル11及びB相コイル12に電流が流れ
る。このときC相コイル13は通電されない。
This motor is a three-phase bidirectional current-carrying brushless motor, and the three-phase coils 11 to 13 are Y-connected and driven by push-pull connected switching transistors 14, 14', 15, 15', 16, 16'. be done. Figures 3a to 3c show the interlinkage magnetic fluxes Ba, Bb, and Bc of each phase. Each phase is energized alternately in the positive and negative directions, as shown by the shaded areas in Figure 3 a, b, and c, for each 120°C interval centered on the maximum positive and negative positions of its interlinkage magnetic flux. . Therefore, the conduction angles of each phase overlap each other by 60 degrees, current is always passed through the coils of the two phases, and a composite torque of the two phases is generated sequentially. For example, in FIG. 2, when transistors 16 and 14' are on, current flows through A-phase coil 11 and B-phase coil 12. At this time, the C-phase coil 13 is not energized.

各スイツチングトランジスタ14,14′〜1
6,16′に与えらえるスイツチング信号は、例
えばホール素子のようなロータ位置検出器17の
出力に基いてスイツチ回路18において形成され
る。
Each switching transistor 14, 14'-1
The switching signals applied to 6 and 16' are formed in a switch circuit 18 based on the output of a rotor position detector 17, such as a Hall element.

ロータマグネツトによる界磁波形が正弦波であ
るとすると、第4図aのベクトル図に示すように
通電相(例えばA相及びB相)の鎖交磁束の合成
ベクトルは基本波成分についてB1a−B1b=B1ab
となり、この磁束B1abと駆動電流iとの積に比
例したトルクが発生する。
Assuming that the field waveform generated by the rotor magnet is a sine wave, the composite vector of the flux linkages of the energized phases (for example, A phase and B phase) is B 1 for the fundamental wave component, as shown in the vector diagram of Fig. 4a. a−B 1 b=B 1 ab
Therefore, a torque proportional to the product of this magnetic flux B 1 ab and the drive current i is generated.

第4図aから明らかなように通電相の合成鎖交
磁束(B1ab)は非通電相の鎖交磁束(Bc)に対
して90°進み位相である。即ち、通電相の鎖交磁
束がsinθ及びsin(θ+120°)とすると、その合成
磁束は3sin(θ+240°+90°)となる。θ+240°は
非通電相の位相と合致している。従つて非通電相
コイルの誘起電圧を検出して90°進相させた信号
でもつてトルク発生に関与している通電2相の合
成鎖交磁束を近似することができる。
As is clear from FIG. 4a, the composite flux linkage (B 1 ab) of the energized phase is 90° ahead of the flux linkage (B c ) of the non-energized phase. That is, if the interlinkage magnetic fluxes of the energized phase are sin θ and sin (θ+120°), the combined magnetic flux is 3 sin (θ+240°+90°). θ+240° matches the phase of the non-energized phase. Therefore, the composite interlinkage flux of the two energized phases involved in torque generation can be approximated by a signal obtained by detecting the induced voltage of the non-energized phase coil and advancing the phase by 90 degrees.

第2図において各相のコイル11〜13の誘起
電圧はスイツチ19〜21を介して導出される。
これらのスイツチ19〜21はスイツチ回路18
の出力によつて制御され、非通電相に対応するス
イツチのみが閉じられる。この結果、各スイツチ
19〜21の共通接続出力より第3図dに示す非
通電相の誘起電圧波形が得られる。この波形は第
3図a〜cの斜線部以外の磁束波形を順次抜出し
たものに対応する。
In FIG. 2, the induced voltages in the coils 11-13 of each phase are derived via switches 19-21.
These switches 19 to 21 are the switch circuit 18
, and only the switch corresponding to the non-energized phase is closed. As a result, the induced voltage waveform of the non-energized phase shown in FIG. 3d is obtained from the common connection output of each switch 19-21. This waveform corresponds to the magnetic flux waveforms other than the shaded areas in FIGS. 3a to 3c, which are sequentially extracted.

検出された誘起電圧波形はオペアンプ22を介
して微分回路23に与えられ、微粉(90°進相)
される。微分回路23の出力(第3図e)の全波
形整流回路24で第3図cの如き整流される。こ
の整流出力は既述の如く通電相の合成鎖交磁束に
対応したものである。全波整流回路24の出力は
鎖交磁束近似信号Eとして掛算器6に与えられ
る。この掛算器6及びオペアプ7,3の制御によ
つて、第3図gのような磁束に逆比例し且つトル
ク指令電圧Vに比例したモータ駆動電流が流され
る。
The detected induced voltage waveform is given to the differentiating circuit 23 via the operational amplifier 22, and the fine powder (90° phase advance) is
be done. The output of the differentiating circuit 23 (FIG. 3e) is rectified by the full waveform rectifying circuit 24 as shown in FIG. 3c. This rectified output corresponds to the composite flux linkage of the energized phase, as described above. The output of the full-wave rectifier circuit 24 is given to the multiplier 6 as the flux linkage approximation signal E. By controlling the multiplier 6 and the operational amplifiers 7 and 3, a motor drive current that is inversely proportional to the magnetic flux and proportional to the torque command voltage V as shown in FIG. 3g is caused to flow.

ところが第2図のブラシレスモータにおいて、
ロータマグネツトによる界磁波形が第3図a,
b,cのような完全な正弦波でなく、例えば台形
波に近い場合には、各相のコイルの鎖交磁束に高
調波成分が含まれる。高調波成分のうちもつとも
スペクトルの大きい第3次高調波を考えると、第
4図bに示すように、A相鎖交磁束B3a=sin3θ
に対して、B相及びC相鎖交磁束はB3b=sin3
(θ+120°)=sin3θ、B3c=sin3(θ+240°)=sin

となり、夫々同相である。従つて通電相(例えば
A、B相)の合成鎖交磁束の第3次高調波成分
(B3ab)は常に零となる。即ち各相の鎖交次束に
第3次高調波が含まれていても、発生するトルク
にはこの成分は本質的に含まれていない。
However, in the brushless motor shown in Figure 2,
The field waveforms generated by the rotor magnet are shown in Figure 3a,
If the waveform is not a perfect sine wave like b and c, but is close to a trapezoidal wave, for example, harmonic components are included in the interlinkage magnetic flux of the coils of each phase. Considering the third harmonic, which has the largest spectrum among the harmonic components, as shown in Figure 4b, the A-phase interlinkage magnetic flux B 3 a = sin3θ
, the B-phase and C-phase interlinkage flux is B 3 b=sin3
(θ+120°)=sin3θ, B 3 c=sin3(θ+240°)=sin

Therefore, they are each in phase. Therefore, the third harmonic component (B 3 ab) of the composite flux linkage of the energized phases (for example, A and B phases) is always zero. That is, even if the third harmonic is included in the interlinkage bundle of each phase, this component is essentially not included in the generated torque.

一方、非通電相の誘起電圧を90°進相にして得
られる鎖交磁束近似信号Eについては、例えば非
通電層がC相の場合には第5図aに示すようにそ
の基本波成分E1cは既述の如く2つの通電相の
(例えばA相、B相)合成鎖交磁束と同相である。
しかし第3次高調波成分E3cは、第5図bに示す
ようにA相及びB相の高調波成分E3a、E3bと同
相の高調波成分E3cを90°進相したものであつて、
これは零にならない上、基本波成分E′1cとの位相
も異なる。一方、A相及びB相の合成鎖交磁束の
第3次高調波成分B3abは既述の如く零である。
従つて鎖交磁束近似信号Eの逆数に比例した駆動
電流中に第3次高調波成分が含まれ、発生トルク
に歪が発生する。
On the other hand, regarding the flux linkage approximation signal E obtained by advancing the induced voltage of the non-energized phase by 90°, for example, when the non-energized layer is in phase C, its fundamental wave component E is as shown in Fig. 5a. 1 c is in phase with the composite interlinkage flux of the two energized phases (for example, A phase and B phase) as described above.
However , the third harmonic component E 3 c leads the harmonic component E 3 c which is in phase with the harmonic components E 3 a and E 3 b of the A phase and B phase by 90 degrees, as shown in Fig. 5b. It is something that has been done,
This does not become zero and is also different in phase from the fundamental wave component E′ 1 c. On the other hand, the third harmonic component B 3 ab of the combined interlinkage flux of the A phase and B phase is zero as described above.
Therefore, a third harmonic component is included in the drive current proportional to the reciprocal of the flux linkage approximation signal E, causing distortion in the generated torque.

次に第6図は上述の問題を解消した本発明の実
施例の3相両方向通電ブラシレスモータの駆動回
路図である。なお第6図において第2図と同一の
部分には同一の符号が付されている。
Next, FIG. 6 is a drive circuit diagram of a three-phase bidirectionally energized brushless motor according to an embodiment of the present invention that solves the above-mentioned problems. In FIG. 6, the same parts as in FIG. 2 are given the same reference numerals.

第6図において、各相のコイル11〜13の誘
起電圧Ea、Eb、Ecはオペアンプ26〜28によ
つてこれらの積分回路29〜31によつて積分さ
れる。これらの積分回路29〜31は第2図の微
分回路23に対応するものであり、誘起電圧Ea
〜Ecを90°移相させる機能を有している。
In FIG. 6, the induced voltages Ea, Eb, and Ec of the coils 11-13 of each phase are integrated by operational amplifiers 26-28 and integration circuits 29-31. These integrating circuits 29 to 31 correspond to the differentiating circuit 23 in FIG.
It has the function of shifting the phase of ~Ec by 90°.

積分回路29〜31の出力E′a、E′b、E′cはス
イツチ回路25において如く選択され、反転倍率
器32及び加算器33に導出される。スイツチ回
路25に各相ごとに3つのスイツチ19a〜19
c、20a〜20c、21a〜21c……を備
え、スイツチ回路18からの制御信号によつて、
非通電相に対応したaのスイツチ、bのスイツチ
またはcのスイツチが各相同時に閉じられる。こ
れによつて非通電相の誘起電圧は反転倍率器32
に導出されて−2倍され、また2つの通電相の誘
起電圧は夫々加算器33に導出されて互に加えら
れる。例えば、C相が非通電相である場合、スイ
ツチ21cを通つて誘起電圧E′cが反転倍率器3
2に導出され、通電相の誘起電圧E′a、E′bはス
イツチ19c,20cを通つて加算器33に導出
される。
The outputs E'a, E'b, and E'c of the integrating circuits 29 to 31 are selected by the switch circuit 25 and outputted to the inverting multiplier 32 and the adder 33. The switch circuit 25 includes three switches 19a to 19 for each phase.
c, 20a to 20c, 21a to 21c..., and by a control signal from the switch circuit 18,
The switch a, the switch b, or the switch c corresponding to the non-energized phase is closed simultaneously for each phase. As a result, the induced voltage of the non-energized phase is reduced by the inverting multiplier 32.
The induced voltages of the two energized phases are respectively derived to an adder 33 and added to each other. For example, when the C phase is a non-energized phase, the induced voltage E'c is applied to the inverting multiplier 3 through the switch 21c.
The induced voltages E'a and E'b of the energized phase are derived to the adder 33 through switches 19c and 20c.

なお通電相の誘起電圧には駆動電流×コイルイ
ンピーダンスの成分が重畳しているので、厳密に
はコイル鎖交磁束そのものではないが、近似的に
は鎖交磁束を代表していると見なせる。
Note that the induced voltage of the energized phase has a component of drive current x coil impedance superimposed on it, so although it is not strictly the coil linkage flux itself, it can be considered to approximately represent the linkage flux.

反転倍率器32及び加算器33の出力は加算器
34で加算され、更に全波整流回路24で整流さ
れて、通電相の合成鎖交磁束に対応した近似信号
Eが形成される。この近似信号に基いて掛算器
6、オペアンプ7,3によつて鎖交磁束の逆数に
比例した駆動電流iが流されるのは第2図と同様
である。
The outputs of the inverting multiplier 32 and the adder 33 are added by an adder 34, and further rectified by a full-wave rectifier circuit 24 to form an approximate signal E corresponding to the composite flux linkage of the energized phase. Based on this approximate signal, the multiplier 6 and operational amplifiers 7 and 3 cause a drive current i proportional to the reciprocal of the interlinkage flux to flow, as in FIG. 2.

第7図a,bは第6図の積分回路29〜31か
ら加算器34までの信号処理(演算)動作を示す
ベクトル図で、第8図a〜cは処理信号の周波数
スペクトル図である。第6図のオペアンプ26〜
28によつて検出され非通電相の誘起電圧(例え
ばEc)、は第8図aのような基本波f1、高調波f3
f5…の成分を有している。これらの高調波成分は
積分回路29〜31を通過することにより第8図
bの如く減衰される。なお通電相の誘起電圧につ
いても同様に積分によつて高調波成分が減衰され
るが、この際、切換通電を行つていることによつ
て不連続波形を呈する誘起電圧検出信号中の歪成
分が除去され、ほぼ正弦波状の誘起電圧検出出力
が得られる。
7a and 7b are vector diagrams showing signal processing (arithmetic) operations from the integrating circuits 29 to 31 to the adder 34 in FIG. 6, and FIGS. 8a to 8c are frequency spectrum diagrams of the processed signals. Operational amplifier 26 in Figure 6
The induced voltage (for example, Ec) of the non-energized phase detected by 28 has a fundamental wave f 1 , a harmonic wave f 3 , and a harmonic wave f 3 as shown in FIG.
It has f 5 ... components. These harmonic components pass through integration circuits 29-31 and are attenuated as shown in FIG. 8b. The harmonic components of the induced voltage in the energized phase are similarly attenuated by integration, but at this time, the distortion components in the induced voltage detection signal that exhibits a discontinuous waveform due to switching energization are As a result, a substantially sinusoidal induced voltage detection output is obtained.

積分回路29〜31の出力のうちの非通電相の
信号は反転倍率器32で−2倍され、2つの通電
相の信号は加算器33で加算され、これらが更に
加算器34で加算される。この結果、基本波成分
については第7図aの如くに∫{(E1a+E1b)−
2E1c}dtの演算が行われて、第4図aに示す合成
鎖交磁束ベルトルB1abと同相の近似信号Eが得
られる。なお積分と加減算とは夫々個別に行われ
ているが、上記演算式に示すように加減算の結果
を積分したのと同等の結果が得られるのは積分の
分配則から明らかである。
Out of the outputs of the integrating circuits 29 to 31, the non-energized phase signal is multiplied by -2 by an inverting multiplier 32, the two energized phase signals are added together in an adder 33, and these are further added together in an adder 34. . As a result, for the fundamental wave component, ∫{(E 1 a + E 1 b) −
2E 1c }dt is performed to obtain an approximate signal E that is in phase with the composite flux linkage belt B 1 ab shown in FIG. 4a. Note that although the integration and addition and subtraction are each performed separately, it is clear from the distribution law of integration that a result equivalent to integrating the result of addition and subtraction can be obtained as shown in the above equation.

各相の誘起電圧の第3次高波成分E3a、E3b、
E3cは既述の如く第7図bのように同相で表われ
る。しかしこれらの同相成分について演算∫
{(E3a+E3b)−2E3c}dtが行われるので、鎖交磁
束近似信号Eの第3次高調波成分は第8図Cに示
すように零となる。この結果、第3次高調波成分
については、通電相の合成鎖交磁束も誘起電圧か
ら近似された磁束近似信号Eも共に零となる。従
つて実際の合成鎖交磁束に極めて近い近似信号が
得られるので、発生トルクの歪成分が著しく減少
し、変動の少ない一定トルクが得られる。
Third-order high wave component of induced voltage of each phase E 3 a, E 3 b,
As mentioned above, E 3 c appears in phase as shown in FIG. 7b. However, the calculation for these in-phase components∫
Since {(E 3 a+E 3 b)−2E 3 c}dt is performed, the third harmonic component of the flux linkage approximation signal E becomes zero as shown in FIG. 8C. As a result, for the third harmonic component, both the composite interlinkage flux of the energized phase and the flux approximation signal E approximated from the induced voltage become zero. Therefore, an approximation signal that is extremely close to the actual combined magnetic flux linkage can be obtained, so that the distortion component of the generated torque is significantly reduced, and a constant torque with little fluctuation can be obtained.

なお上述の第6図の実施例において、鎖交磁束
近似信号Eの逆数演算を行う割算器を設けて、割
算出力1/Eに比例した駆動電流を流すようにし
てもよい。またシリーズ制御トランジスタ2によ
つて電流制御を行う代りに、スイツチングトラン
ジスタ14〜16,14′〜16′に電流制御信号
及びスイツチング信号を与えて、通電切換えと共
に電流制御が行われるようにしてもよい。
In the embodiment shown in FIG. 6 described above, a divider may be provided to perform a reciprocal calculation of the flux linkage approximation signal E, and a drive current proportional to the division output 1/E may be caused to flow. Alternatively, instead of controlling the current using the series control transistor 2, a current control signal and a switching signal may be applied to the switching transistors 14 to 16, 14' to 16' so that the current is controlled at the same time as the current is switched. good.

発明の効果 本発明は上述の如く、3相コイルの誘起電圧を
検出して積分(90°移相)し、通電2相分を加え
た信号から非通電相の2倍レベルの信号を減算し
て通電2相の合成鎖交磁束に対応した近似信号を
得るように構成されているので、各相の誘起電圧
中に同相信号として含まれる第3次高調波成分が
近似信号を生成させる段階で消滅する。従つて、
特別な磁束検出素子や検出コイルを設けることな
く、駆動コイルの実際の合成鎖交磁束に極めて近
い近似信号が得られるから、モータの構造が複雑
となることがない。また近似信号の逆数に比例し
た駆動電流を通電相のコイルに流すことにより、
界磁波形の回転角変動に無関係な一定トルクを得
ることができる上、界磁波形が正弦波でない場合
でも、その歪成分による影響が少ない回転トルク
を得ることができる。
Effects of the Invention As described above, the present invention detects the induced voltage of the three-phase coil, integrates it (90° phase shift), and subtracts the signal at twice the level of the non-energized phase from the signal obtained by adding the two energized phases. Since the structure is configured to obtain an approximate signal corresponding to the composite flux linkage of two energized phases, the third harmonic component included as an in-phase signal in the induced voltage of each phase generates an approximate signal. It disappears. Therefore,
Since an approximation signal extremely close to the actual composite flux linkage of the drive coil can be obtained without providing a special magnetic flux detection element or detection coil, the structure of the motor does not become complicated. In addition, by passing a drive current proportional to the reciprocal of the approximate signal to the coil of the energized phase,
It is possible to obtain a constant torque that is unrelated to rotational angle fluctuations of the field waveform, and even when the field waveform is not a sine wave, it is possible to obtain a rotational torque that is less affected by its distortion components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるブラシレスモータ駆動回
路の原理構成を示す回路図、第2図は第1図の原
理構成を具体化したモータ駆動回路の一例を示す
回路図、第3図は第2図の動作を説明するための
波形図、第4図a,b及び第5図a,bは第3図
の動作を説明するためのベクトル図、第6図は本
発明の実施例を示す3相両方向通電形ブラシレス
モータの駆動回路図、第7図a,bは第6図の信
号演算処理を示すベクトル図、第8図a,b,c
は処理信号の周波数スペクトル図である。 なお図面に用いられた符号において、1……モ
ータ、2……シリーズ制御トランジスタ、3……
電圧−電流変換回路、4……誘起電圧検出回路、
5……鎖交磁束近似回路、6……掛算器、7……
オペアンプ、11,12,13……コイル、19
a,19b,19c……スイツチ、20a,20
b,20c……スイツチ、21a,21b,21
c……スイツチ、29,30,31……積分回
路、32……反転倍率器である。
FIG. 1 is a circuit diagram showing the principle configuration of a brushless motor drive circuit according to the present invention, FIG. 2 is a circuit diagram showing an example of a motor drive circuit embodying the principle configuration of FIG. 1, and FIG. FIG. 4 a, b and FIG. 5 a, b are vector diagrams to explain the operation of FIG. 3. FIG. 6 is a three-phase diagram showing an embodiment of the present invention. A drive circuit diagram of a bidirectional energizing brushless motor, Fig. 7 a, b is a vector diagram showing the signal calculation process of Fig. 6, Fig. 8 a, b, c
is a frequency spectrum diagram of the processed signal. In addition, in the symbols used in the drawings, 1... motor, 2... series control transistor, 3...
Voltage-current conversion circuit, 4...Induced voltage detection circuit,
5...Flux linkage approximation circuit, 6...Multiplier, 7...
Operational amplifier, 11, 12, 13...Coil, 19
a, 19b, 19c... switch, 20a, 20
b, 20c...Switch, 21a, 21b, 21
c...Switch, 29, 30, 31... Integrating circuit, 32... Inverting multiplier.

Claims (1)

【特許請求の範囲】[Claims] 1 通電相が2相ずつ互にオーバーラツプしてい
る3相両方向通電形ブラシレスモータにおいて、
3相コイルの夫々の誘起電圧を検出する回路と、
検出された信号を積分し、通電2相の積分信号を
互に加算し、加算された信号から非通電相の積分
信号の2倍レベルの信号を減算することにより、
通電2相の合成鎖交磁束の近似信号を得る回路
と、上記近似信号の逆数に比例した駆動電流を通
電相に流す回路とを具備する3相両方向通電形ブ
ラシレスモータの駆動回路。
1. In a three-phase bidirectional current-carrying brushless motor in which two current-carrying phases overlap each other,
a circuit that detects the induced voltage of each of the three-phase coils;
By integrating the detected signal, adding together the integrated signals of the two energized phases, and subtracting from the added signal a signal that is twice the level of the integrated signal of the non-energized phase,
A drive circuit for a three-phase bidirectionally energized brushless motor, comprising a circuit that obtains an approximate signal of a composite flux linkage of two energized phases, and a circuit that causes a drive current proportional to the reciprocal of the approximate signal to flow through the energized phases.
JP58069589A 1983-04-20 1983-04-20 Drive circuit of 3-phase bidirectional energization brushless motor Granted JPS59194694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58069589A JPS59194694A (en) 1983-04-20 1983-04-20 Drive circuit of 3-phase bidirectional energization brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58069589A JPS59194694A (en) 1983-04-20 1983-04-20 Drive circuit of 3-phase bidirectional energization brushless motor

Publications (2)

Publication Number Publication Date
JPS59194694A JPS59194694A (en) 1984-11-05
JPH0470879B2 true JPH0470879B2 (en) 1992-11-12

Family

ID=13407160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58069589A Granted JPS59194694A (en) 1983-04-20 1983-04-20 Drive circuit of 3-phase bidirectional energization brushless motor

Country Status (1)

Country Link
JP (1) JPS59194694A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720389B2 (en) * 1984-12-14 1995-03-06 株式会社日立製作所 AC signal generator
US4633150A (en) * 1984-12-25 1986-12-30 Matsushita Electric Industrial Co., Ltd. Driving circuit for brushless DC motors

Also Published As

Publication number Publication date
JPS59194694A (en) 1984-11-05

Similar Documents

Publication Publication Date Title
JPS5850119B2 (en) Control device for commutatorless motor
JPS6143952B2 (en)
US4458193A (en) Method and apparatus for controlling an AC induction motor
JPH0795790A (en) Half-wave rectifying brushless synchronous motor
EP0121792A2 (en) Vector control method and system for an induction motor
US4264853A (en) Commutatorless motor device
JP3395814B2 (en) Drive device for permanent magnet type synchronous motor
JPH0470879B2 (en)
JPS6122795A (en) Controlling method of synchronous motor
JPH0378491A (en) Drive equipped with driving motor
JPS59162794A (en) Control system of synchronous motor
JP2560278B2 (en) Magnetic pole position detector
JPH0632586B2 (en) 3-phase DC motor
JP2644750B2 (en) Control method of voltage source inverter
JPH11220900A (en) Control method of permanent magnet type synchronous motor
JPS6152176A (en) Vector controlling method of induction motor
JPH0632581B2 (en) Induction motor controller
JPS5931319B2 (en) Brush angle lead/lag control device for DC brushless motor
JPH02142383A (en) Brushless motor
JPS5845279B2 (en) Semiconductor motor control device
JP3625944B2 (en) Induction motor drive device
JPH019277Y2 (en)
JPS6035914B2 (en) Control method of induction motor
JPH0568954B2 (en)
JPS6227637B2 (en)