JPS5845279B2 - Semiconductor motor control device - Google Patents

Semiconductor motor control device

Info

Publication number
JPS5845279B2
JPS5845279B2 JP47065011A JP6501172A JPS5845279B2 JP S5845279 B2 JPS5845279 B2 JP S5845279B2 JP 47065011 A JP47065011 A JP 47065011A JP 6501172 A JP6501172 A JP 6501172A JP S5845279 B2 JPS5845279 B2 JP S5845279B2
Authority
JP
Japan
Prior art keywords
synchronous motor
armature
signal
output
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP47065011A
Other languages
Japanese (ja)
Other versions
JPS4925411A (en
Inventor
広 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP47065011A priority Critical patent/JPS5845279B2/en
Publication of JPS4925411A publication Critical patent/JPS4925411A/ja
Publication of JPS5845279B2 publication Critical patent/JPS5845279B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は同期電動機の電機子と界磁との相対位置に応じ
て、電機子巻線に流れる電流を制御整流器を用いて制御
する半導体電動機に係り、特に力率及び効率の良好な状
態で運転を行うようにした半導体電動機の制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor motor that uses a controlled rectifier to control the current flowing through an armature winding according to the relative position between the armature and the field of the synchronous motor, and particularly relates to a semiconductor motor that controls the current flowing through the armature winding using a controlled rectifier. The present invention relates to a control device for a semiconductor motor that operates in a highly efficient state.

同期電動機の電機子と界磁との相対位置に応じて電機子
巻線に流れる電流を制御して電動トルク又は制動トルク
を発生するようにした半導体電動機に於いて、最も効率
良く電動トルクを発生するためには実効界磁束に対して
電機子電流の位相がπ/2遅れている必要がある。
A semiconductor motor that generates electric torque or braking torque by controlling the current flowing through the armature winding according to the relative position of the armature of the synchronous motor and the field, and generates electric torque most efficiently. In order to do this, the phase of the armature current must be delayed by π/2 with respect to the effective field flux.

又最も効率良く制動トルクを発生するためには実効界磁
束に対し電機子電流の位相がπ/2進んでいる必要があ
る。
Furthermore, in order to generate braking torque most efficiently, the phase of the armature current must lead the effective field flux by π/2.

ところで、従来電機子と界磁との機械的相対位置を検出
するために、近接スイッチ、ホール素子、感磁性素子、
或は光電素子等のスイッチング素子を用いていた。
By the way, in order to detect the mechanical relative position between the armature and the field, a proximity switch, a Hall element, a magnetically sensitive element,
Alternatively, a switching element such as a photoelectric element was used.

しかし、実効界磁束は界磁巻線に流れる電流による磁束
と、電機子巻線に流れる電流による磁束のベクトル和に
なり、しかも両者の間にはほぼπ/2の位相差があるた
め、実効磁束の位相は電機子電流の犬、小によりかなり
影響を受けることになる。
However, the effective field magnetic flux is the vector sum of the magnetic flux due to the current flowing in the field winding and the magnetic flux due to the current flowing in the armature winding, and there is a phase difference of approximately π/2 between the two, so the effective field flux is The phase of the magnetic flux will be significantly affected by the magnitude of the armature current.

従って単に電機子と界磁との機械的相対位置のみを検出
して電機子電流を制御していた従来方式に於いては、充
分な性能が得られなかった。
Therefore, in the conventional system in which the armature current was controlled by simply detecting the relative mechanical position between the armature and the field, sufficient performance could not be obtained.

従って本発明の目的は前述の点に鑑みなされたものであ
って、交流回転電機例えばセルシン或は交流発電機等を
用いて同期電動機の電機子と界磁との機械的相対位置を
検出し、電機子電流値に応じて前記検出された信号の位
相をシフトすることにより電機子と、実効界磁束との相
対位置を検出し、この検出信号で電機子電流の位相を制
御し、電機子電流の大小にかかわらず電機子電流と実効
界磁束との位相を常にπ/2に保持し力率及び効率の最
も良好な状態で運転することが出来る半導体電動機の制
御装置を提供することにある。
Therefore, an object of the present invention has been made in view of the above points, and is to detect the relative mechanical position between the armature of a synchronous motor and a field using an AC rotating electrical machine, such as a celsine or an alternating current generator. By shifting the phase of the detected signal according to the armature current value, the relative position between the armature and the effective field flux is detected, and this detection signal is used to control the phase of the armature current, thereby adjusting the armature current. It is an object of the present invention to provide a control device for a semiconductor motor that can always maintain the phase of armature current and effective field flux at π/2 regardless of the magnitude of the current and operate the semiconductor motor in a state with the best power factor and efficiency.

以下本発明の一実施例を図面を参照して説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すブロック図で、図中1
0は同期電動機で界磁巻線11は図示しない励磁装置に
よって附勢され、その電機子巻線12は周知の半導体変
換装置13で附勢される。
FIG. 1 is a block diagram showing one embodiment of the present invention.
0 is a synchronous motor whose field winding 11 is energized by an excitation device (not shown), and whose armature winding 12 is energized by a well-known semiconductor converter 13.

Aは同期電動機の電機子12と界磁11との機械的相対
位置を検出する第1の装置であって、この第1の装置A
の出力信号及び後述する同期電動機10の電機子電流に
関係した信号Kが印加される第2の装置は電機子電流に
応じて変化する同期電動機10の実効界磁束の位相変化
を検出する。
A is a first device that detects the mechanical relative position between the armature 12 of the synchronous motor and the field 11, and this first device A
A second device to which an output signal of the synchronous motor 10 and a signal K related to the armature current of the synchronous motor 10, which will be described later, is applied detects a phase change in the effective field flux of the synchronous motor 10, which changes in accordance with the armature current.

次に前記第1、第2の装置の詳細を説明するに、14は
セルシン発信器(以後単にセルシンと記すで三相巻線1
5及び励磁巻線16を備え、この励磁巻線16は励磁電
源17によって附勢される。
Next, to explain the details of the first and second devices, reference numeral 14 is a Sersin oscillator (hereinafter simply referred to as Sersin), and a three-phase winding 1.
5 and an excitation winding 16, which is energized by an excitation power supply 17.

前記セルシン14は同期電動機10に機械的に連結され
、同期電動機10の電機子巻線12とセルシン14の三
相巻線15の出力とは電気的位相及び周波数が等しくな
るように結合される。
The Sershin 14 is mechanically connected to the synchronous motor 10, and the armature winding 12 of the synchronous motor 10 and the output of the three-phase winding 15 of the Sershin 14 are coupled so that their electrical phases and frequencies are equal.

又同期電動機10の回転によって生ずる周波数に対し励
磁電源1Tの周波数は充分大きいものを使用する。
Also, the frequency of the excitation power source 1T is sufficiently large compared to the frequency generated by the rotation of the synchronous motor 10.

セルシン14の三相巻線15のそれぞれの出力端を各別
に抵抗器18,19.20を介し接地電位母線21に接
続し、接地電位に対しそれぞれの相電圧を取り出しとの
相電圧を夫々同期整流器22゜23.24に印加する。
The respective output ends of the three-phase winding 15 of the Sershin 14 are connected to the ground potential bus 21 via resistors 18, 19, and 20 separately, and the phase voltages are synchronized with each other by taking out each phase voltage with respect to the ground potential. Apply to rectifier 22°23.24.

同期整流器22,23゜24は励磁電源17からの信号
を受は励磁電源17に同期してセルシン14の三相巻線
出力を同期整流する。
The synchronous rectifiers 22, 23, and 24 receive signals from the excitation power source 17 and synchronously rectify the three-phase winding output of the Sershin 14 in synchronization with the excitation power source 17.

同期整流器22,23.24の出力を励磁電源170周
波数に対し充分平滑効果を有する平滑回路25.26.
27にそれぞれ印加する。
The outputs of the synchronous rectifiers 22, 23, 24 are smoothed by smoothing circuits 25, 26, .
27 respectively.

掛算器28の一方の入力に平滑回路270出力W1、掛
算器29の一方の入力に平滑回路25の出力U1掛算器
30の一方の入力に平滑回路260出力v1 をそれぞ
れ加え、掛算器28゜29.30の他方の入力に共通に
信号Kを印加する。
The output W1 of the smoothing circuit 270 is added to one input of the multiplier 28, the output U of the smoothing circuit 25 is added to one input of the multiplier 29, and the output v1 of the smoothing circuit 260 is added to one input of the multiplier 30. A signal K is commonly applied to the other input of .30.

平滑回路25,26.27の出力を各別に抵抗器31,
32.33を介し演算増幅器34゜35.36に加え、
更に演算増幅器34,35゜36に掛算器28,29,
30の出力をそれぞれ抵抗器37.38,39を介して
印加する。
The outputs of the smoothing circuits 25, 26 and 27 are connected to resistors 31 and 27 respectively.
In addition to the operational amplifier 34° 35.36 through 32.33,
Furthermore, the operational amplifiers 34, 35° 36 are provided with multipliers 28, 29,
30 outputs are applied through resistors 37, 38 and 39, respectively.

又演算増幅器34,35.36に並列に帰還抵抗器40
.41.42をそれぞれ接続し、演算増幅器34.35
,36の出力をそれぞれU3.■3゜W3 とし、こ
の信号U3. U3. W3 で電機子電流の位相を制
御する。
Also, a feedback resistor 40 is connected in parallel to the operational amplifiers 34, 35, and 36.
.. Connect 41.42 and operational amplifier 34.35 respectively.
, 36 respectively to U3. ■3°W3, and this signal U3. U3. W3 controls the phase of armature current.

又抵抗器31〜33.37〜39.40〜42の抵抗値
を1とする。
Further, the resistance values of the resistors 31 to 33, 37 to 39, 40 to 42 are set to 1.

以下前述構成から成る本発明の詳細な説明する。The present invention having the above configuration will be described in detail below.

全同期電動機10が成る速度で回転していて、電機子巻
線12の電気的角周波数をω(rad/5ec)とすれ
ば、セルシン14の三相巻線15の電気的角周波数も同
様にω(rad /sec )となるように前述したよ
うに結合されているから例えばセルシン14のU相巻線
の出力は第2図aに実線で示すような波形となる。
If all the synchronous motors 10 are rotating at a speed of Since they are coupled as described above so that ω (rad/sec), for example, the output of the U-phase winding of the Selsyn 14 has a waveform as shown by the solid line in FIG. 2a.

この波形が同期整流器22で同期整流されることによっ
て第2図すの実線で示す波形に変換され、これを平滑回
路25を通す事により第2図Cに示す波形U1 とな
る。
This waveform is synchronously rectified by the synchronous rectifier 22 and converted into the waveform shown by the solid line in FIG. 2, and by passing it through the smoothing circuit 25, it becomes the waveform U1 shown in FIG. 2C.

又平滑回路26の出力■、及び平滑回路27の出力W1
も同様に電気角周波数がω(rad/5ec)の正弦
波形となり、それぞれの出力U1j V、 、 Wlは
下式で表わされる。
Also, the output ■ of the smoothing circuit 26 and the output W1 of the smoothing circuit 27
Similarly, the electrical angular frequency becomes a sinusoidal waveform of ω (rad/5ec), and the respective outputs U1j V, , Wl are expressed by the following formulas.

この出力U1. Vl、wlは同期電動機の電機子と界
磁の機械的相対位置を示す。
This output U1. Vl and wl indicate the mechanical relative positions of the armature of the synchronous motor and the field.

即ち、第1図の同期電動機10のU相の電機子巻線と界
磁巻線11の機械的相対位置は、今同期電動機10の界
磁巻線11が固定で電機子巻線12が時計方向に電気角
周波数ωで回転しているものと仮定し、U相巻線が図示
位置で界磁束と鎖交しないものとすればこの位置が第3
図に示すP1位置となる。
That is, the mechanical relative positions of the U-phase armature winding and field winding 11 of the synchronous motor 10 in FIG. Assuming that the U-phase winding is rotating at the electrical angular frequency ω in the direction shown in the figure, and that it does not interlink with the field flux at the position shown, this position is
This is the P1 position shown in the figure.

U相巻線が図示位置より時計方向に−だげ回転した位置
がP2 となり、P2位置より更に時計方向に−だげ回
転した位置がP8 となり、又P3位置より更に時計方
向に−だげ回転した位置がP4 で、U相巻線が図示位
置より2πだげ回転した位置がP、となる。
P2 is the position where the U-phase winding is rotated clockwise from the position shown, P8 is the position where the U-phase winding is further rotated clockwise from the P2 position, and P8 is the position where the U-phase winding is rotated further clockwise from the P3 position. The position where the U-phase winding is rotated by 2π from the illustrated position is P4.

従って電機子電流が小さい時はU相巻線においてはP2
の位置で正の最大電流が流れるようにし、又P4位置に
来た時は負の最大電流′が流れるような正弦波電流を流
せば実効界磁束に対して電機子電流の位相がほぼ−だげ
遅れ最大トルクを出せる。
Therefore, when the armature current is small, P2 in the U-phase winding
If we make a sinusoidal current flow so that the maximum positive current flows at the position P4, and the maximum negative current flows when it reaches the P4 position, the phase of the armature current will be approximately - with respect to the effective field flux. Maximum torque can be produced with a delay.

しかしながら前述したように実効界磁束は界磁巻線に流
れる電流による磁束と、電機子巻線に流れる電流による
磁束のベクトル和となるため電機子電流が大きくなると
実効界磁束の位相は変化するため、この位相の変化した
分、電機子電流の位相を11脚して補償する必要がある
However, as mentioned above, the effective field flux is the vector sum of the magnetic flux due to the current flowing in the field winding and the magnetic flux due to the current flowing in the armature winding, so as the armature current increases, the phase of the effective field flux changes. , it is necessary to compensate for this phase change by increasing the phase of the armature current by 11 legs.

演算増幅器34,35.36の各出力U3゜V8j W
8は前記電機子電流の位相を制御するために用いる信号
であって、この出力U3# V3jW3は次のようにし
て抽出される。
Each output U3°V8j W of operational amplifiers 34, 35, and 36
8 is a signal used to control the phase of the armature current, and this output U3#V3jW3 is extracted as follows.

即ち、平滑回路25,26.27の各出力U1 svl
、W1ハ前記(1)、(2)、(3)式ノヨうに表わさ
れ、掛算器28には前記W1 と信号Kが印加される
ため掛算器28の出力W2は トナル。
That is, each output U1 svl of the smoothing circuits 25, 26, 27
, W1 are expressed by the above equations (1), (2), and (3), and since the above W1 and the signal K are applied to the multiplier 28, the output W2 of the multiplier 28 is a tonal.

前述U1j V□# W1# U2# V2jW2及び
−U3.−V3.−W3の関係を示すと第3図のように
なる。
The aforementioned U1j V□# W1# U2# V2jW2 and -U3. -V3. -W3 relationship is shown in FIG. 3.

しかして、(11)を及び(12或はKの関数であるか
らAの値及びθの値はKの変化に従って第4図に示すよ
うに変化する。
Therefore, since (11) and (12) are functions of K, the value of A and the value of θ change as shown in FIG. 4 as K changes.

即ち、Kの値をOから1まで変化させるとθはOから−
まで変化することになる。
That is, when the value of K is changed from O to 1, θ changes from O to -
will change until.

例えばに=0.5とすれば(12式より7丁X0.5
1 π θ=tm 1− =tan 2−0.5 J”’X−71桶・ 第3図の−U3.−V3.−W3の波形はに=0.5の
ときの波形で各々U□ j Vl、 Wlに対しπ て−進み位相となる。
For example, if = 0.5 (from formula 12, 7 guns x 0.5
1 π θ=tm 1- =tan 2-0.5 J"' j Vl and Wl have a -leading phase by π.

このように、Kの値を変えることにより演算増幅器34
,35.36の出力−U3.−V3.−W3の位相を平
滑回路25゜26.27の出力U1j V1# Wlに
対してOから−の範囲で変えることが出来る。
In this way, by changing the value of K, the operational amplifier 34
, 35.36 output-U3. -V3. The phase of -W3 can be changed in the range from 0 to - with respect to the output U1j V1# Wl of the smoothing circuit 25°26.27.

ここで電機子電流の増大に伴って実効界磁束の位相の変
化をもう一度考えてみると、この位相の変化は電動機の
磁気回路の特性等の影響によりその位相変化は電機子電
流に正比例はしないが電動機が決まると電機子電流に対
応した位相変化は知ることが出来る。
If we consider again the change in the phase of the effective field flux as the armature current increases, this phase change is not directly proportional to the armature current due to the effects of the characteristics of the motor's magnetic circuit. Once the motor is determined, the phase change corresponding to the armature current can be found.

例えば電機子電流が工、の時実効界磁束の位相がθだげ
変化することがわかれば電機子電流の位相もθだげ進ま
せればこの実効界磁束の位相変化を補償出来る。
For example, if it is known that the phase of the effective field flux changes by θ when the armature current is Δ, then this phase change in the effective field flux can be compensated for by advancing the phase of the armature current by θ.

従って、掛算器2B、29,30に与える信号Kを同期
電動機10の電機子電流に比例した信号を第1図に示す
関数発生器FGに加え所定の関数に変換して与えればよ
い。
Therefore, the signal K given to the multipliers 2B, 29, 30 may be converted into a predetermined function by adding a signal proportional to the armature current of the synchronous motor 10 to the function generator FG shown in FIG.

これにより例えば電機子に電流工、が流れば演算増幅器
34,35゜36、−U、 、−V3.−W3の出力に
はUl。
As a result, for example, if a current flows through the armature, the operational amplifiers 34, 35° 36, -U, , -V3. -Ul for the output of W3.

Vl、Wl よりθだげ位相の進んだ信号が得らへこ
の信号−U3j−V3j−W3で同期電動機10の電機
子電流の位相を制御すれば実効界磁束と電機子電流の位
相を常に−に保持して運転することが出来るから電機子
反作用の影響を受けず常に力率及び効率が良好な状態で
運転を行うことが出来る。
Since a signal whose phase is θ more advanced than Vl and Wl is obtained, if the phase of the armature current of the synchronous motor 10 is controlled by this signal -U3j-V3j-W3, the phase of the effective field flux and armature current can always be - Since the motor can be maintained at a constant temperature, the motor can be operated with good power factor and efficiency without being affected by armature reaction.

伺前述説明は同期電動機10が電動トルクを発生する場
合を例として説明したが、例えば制動トルクを発生する
場合には平滑回路25,26゜27の出力U1.V1.
W□に対し演算増幅器34.35,36の出力−U3.
−V3.−W3として遅れ位相の出力を必要とする。
In the above explanation, the case where the synchronous motor 10 generates an electric torque was explained as an example, but when the synchronous motor 10 generates a braking torque, for example, the output U1. V1.
Outputs of operational amplifiers 34, 35, 36 for W□-U3.
-V3. - Requires output of delayed phase as W3.

この場合掛算器28にはVl、掛算器29にはWl、掛
算器30にはUoの信号が加わるように点線のように接
続すればよい。
In this case, the signals may be connected as indicated by dotted lines so that the signal Vl is applied to the multiplier 28, the signal Wl is applied to the multiplier 29, and the signal Uo is applied to the multiplier 30.

そして電動トルクを発生させる時と匍]動トルクを発生
させる時にそれぞれ図示しない切換器等で切換えればよ
い。
Then, when generating the electric torque and when generating the dynamic torque, it is only necessary to switch between them using a switch (not shown) or the like.

セルシンを用いる場合はUl、Vl 、Wlの周波数に
対してセルシンの励磁電源の周波数が充分高い必要があ
るため同期電動機を高速運転する場合ある程度制約され
るが、一方交流発電機を用いると低速時は誘起電圧が低
いため低速運転はある程度制約されるがセルシンを用い
る場合のように励磁周波数による制約がないため高速運
転に適す。
When using a Selsyn, the frequency of the Selsyn excitation power source must be sufficiently high compared to the frequencies of Ul, Vl, and Wl, so there are some restrictions when operating a synchronous motor at high speed.On the other hand, when an AC generator is used, Since the induced voltage is low, low-speed operation is limited to some extent, but unlike when using Cersin, there is no restriction due to excitation frequency, so it is suitable for high-speed operation.

従ってセルシンを用い、低速時はセルシンに交流励磁を
行って、三相巻線に得られる電圧を同期整流して信号U
1.v1.W1 を得、高速時は直流励磁に切換えて交
流発電機として直接信号Ul aVl、Wlを得て零
速度から高速度まで広範囲にわたる制御を行うことが出
来る。
Therefore, when the speed is low, the Selsyn is subjected to AC excitation, and the voltage obtained in the three-phase winding is synchronously rectified to produce the signal U.
1. v1. W1, and at high speeds, it is switched to DC excitation and used as an alternating current generator to directly obtain signals Ul aVl and Wl, making it possible to control over a wide range from zero speed to high speed.

更に又三相同期電動機に限らずそれ以上の多相同期電動
機にも同様に適用出来る。
Furthermore, it can be applied not only to three-phase synchronous motors but also to multi-phase synchronous motors.

以上説明のように本発明は電機子電流に応じて変化する
実効界磁束の位相変化を検出し、この検出信号で電機子
電流を制御することによって電機子電流の大小にかかわ
らず電機子電流と実効界磁束との位相を常に−に保持し
て力率及び効果の良好な状態で運転出来る半導体電動機
の制御装置を提供出来る。
As explained above, the present invention detects the phase change of the effective field flux that changes depending on the armature current, and controls the armature current with this detection signal, thereby controlling the armature current regardless of the size of the armature current. It is possible to provide a control device for a semiconductor motor that can operate with good power factor and effectiveness by always maintaining the phase with the effective field flux at -.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図乃
至第4図は本発明の詳細な説明するための図である。 A・・・第1の装置、B・・・第2の装置、10・・・
同期電動機、13・・・変換装置、14・・・セルシン
、17・・・励磁電源、22,23,24・・・同期整
流器、25.26,27・・・平滑回路、28,29,
30・・・掛算器、34,35,36・・・演算増幅器
FIG. 1 is a block diagram showing one embodiment of the invention, and FIGS. 2 to 4 are diagrams for explaining the invention in detail. A...first device, B...second device, 10...
Synchronous motor, 13... Conversion device, 14... Sershin, 17... Excitation power supply, 22, 23, 24... Synchronous rectifier, 25.26, 27... Smoothing circuit, 28, 29,
30... Multiplier, 34, 35, 36... Operational amplifier.

Claims (1)

【特許請求の範囲】 1 半導体変換装置で付勢される同期電動機と、3和室
機子巻線と励磁巻線を有しその回転軸を前記同期電動機
に連結される交流回転電機と、この交流回転電機の励磁
巻線を励磁する高周波励磁電源と、前記3和室機子巻線
の出力を復調するための同期整流回路で構成され前記同
期電動機の電機子と界磁との機械的相対位置に応じた3
相電号を導出する第1の装置と、この第1の装置の出力
信号と前記同期電動機の電機子電流に関係した信号との
乗算信号と、前記第1の装置の出力信号とから前記同期
電動機の電機子電流に応じて変化する前記同期電動機の
実効界磁束に対応した3相電号を導出する第2の装置を
具備し、前記第2の装置の出力信号で前記半導体変換装
置を制御し前記同期電動機の電機子電流と実効界磁束と
の位相を前記同期電動機の電機子電流に応じて制御し得
るようにしたことを特徴とする半導体電動機の制御装置
。 2 半導体変換装置で付勢される同期電動機と、3和室
機子巻線と励磁巻線を有しその回転軸を前記同期電動機
に連結される交流回転電機と、この交流回転電機の励磁
巻線を励磁する高周波励磁電源及び直流励磁電源と、前
記3和室機子巻線の出力を復調するための同期整流回路
と、この同期整流回路を側路し前記交流回転電機の3和
室機子巻線の出力を直接出力する側路回路で構成され前
記同期電動機の電機子と界磁との機械的相対位置に応じ
た3相電号を導出する第1の装置と、この第1の装置の
出力信号と前記同期電動機の電機子電流に関係した信号
との乗算信号と、前記第1の装置の出力信号とから前記
同期電動機の電機子電流に応じて変化する前記同期電動
機の実効界磁束に対応した3相電号を導出する第2の装
置を具備し、前記第2の装置の出力信号で前記半導体変
換装置を制御し前記同期電動機の電機子電流と実効界磁
束との位相を前記同期電動機の電機子電流に応じて制御
し得るようにし、かつ前記同期電動機の低速運転時は前
記交流回転電機の励磁巻線を前記高周波励磁電源で励磁
し、高速運転時は前記直流励磁電源で励磁すると共に前
記同期整流回路を側路し前記交流回転電機の出力を直接
導出するようにしたことを特徴とする半導体電動機の制
御装置。
[Scope of Claims] 1. A synchronous motor energized by a semiconductor conversion device, an AC rotating electric machine having a three-way armature winding and an excitation winding, the rotating shaft of which is connected to the synchronous motor, It is composed of a high-frequency excitation power source that excites the excitation winding of the rotating electric machine, and a synchronous rectifier circuit that demodulates the output of the three Japanese-style armature windings, and is configured to adjust the relative mechanical position of the armature of the synchronous motor and the field. 3 responded
a first device for deriving a phase signal; and a signal obtained by multiplying the output signal of the first device by a signal related to the armature current of the synchronous motor, and the output signal of the first device. a second device for deriving a three-phase electric signal corresponding to an effective magnetic field flux of the synchronous motor that changes according to an armature current of the motor, and controlling the semiconductor conversion device with an output signal of the second device; A control device for a semiconductor motor, characterized in that the phase between the armature current of the synchronous motor and the effective field flux can be controlled in accordance with the armature current of the synchronous motor. 2. A synchronous motor energized by a semiconductor converter, 3. An AC rotating electric machine having a Japanese-style rotor winding and an excitation winding, the rotating shaft of which is connected to the synchronous motor, and the excitation winding of this AC rotating electric machine. a high-frequency excitation power source and a DC excitation power source for exciting the AC rotating electric machine; a synchronous rectifier circuit for demodulating the output of the three Japanese-style armature windings; and a synchronous rectifier circuit for demodulating the output of the three Japanese-style armature windings; a first device configured with a bypass circuit that directly outputs the output of the synchronous motor and derives a three-phase electric signal according to the mechanical relative position between the armature of the synchronous motor and the field; and the output of the first device. A multiplication signal of the signal and a signal related to the armature current of the synchronous motor corresponds to an effective field flux of the synchronous motor that changes according to the armature current of the synchronous motor from the output signal of the first device. a second device for deriving a three-phase electric signal, and controlling the semiconductor conversion device with an output signal of the second device to determine the phase of the armature current and effective field flux of the synchronous motor. The excitation winding of the AC rotating electrical machine is excited by the high frequency excitation power source when the synchronous motor is operating at low speed, and is excited by the DC excitation power source during high speed operation. A control device for a semiconductor motor, characterized in that the synchronous rectifier circuit is bypassed and the output of the AC rotating electric machine is directly derived.
JP47065011A 1972-06-30 1972-06-30 Semiconductor motor control device Expired JPS5845279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP47065011A JPS5845279B2 (en) 1972-06-30 1972-06-30 Semiconductor motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47065011A JPS5845279B2 (en) 1972-06-30 1972-06-30 Semiconductor motor control device

Publications (2)

Publication Number Publication Date
JPS4925411A JPS4925411A (en) 1974-03-06
JPS5845279B2 true JPS5845279B2 (en) 1983-10-07

Family

ID=13274600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP47065011A Expired JPS5845279B2 (en) 1972-06-30 1972-06-30 Semiconductor motor control device

Country Status (1)

Country Link
JP (1) JPS5845279B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105969U (en) * 1979-01-19 1980-07-24
JPS57151292A (en) * 1981-03-16 1982-09-18 Fanuc Ltd Controlling system and device for synchronous motor

Also Published As

Publication number Publication date
JPS4925411A (en) 1974-03-06

Similar Documents

Publication Publication Date Title
US5206575A (en) Device for controlling an AC motor
JPS5850119B2 (en) Control device for commutatorless motor
US4361794A (en) Induction motor drive apparatus
US4060753A (en) Control system for commutatorless motor
US4132931A (en) Control system for a.c. motors
Ishida et al. Steady-state characteristics of a torque and speed control system of an induction motor utilizing rotor slot harmonics for slip frequency sensing
US4112339A (en) Measurement of pulsating torque in a current source inverter motor drive
US4277735A (en) Control apparatus for induction motor
US4074174A (en) Controlling apparatus for asynchronous motors with wound rotor
US3551766A (en) Regulatable and controllable inverter or frequency changer arrangement for feeding ac motors
JPS5845279B2 (en) Semiconductor motor control device
JP2600234B2 (en) Excitation method of superconducting winding
JP2708649B2 (en) Cyclo converter control device
JPH0632581B2 (en) Induction motor controller
JP3990044B2 (en) Inverter device
JPH0470879B2 (en)
JPS6030897B2 (en) speed detection device
JPS6223552B2 (en)
JP2020178508A (en) Inverter device and control method of inverter device
JPS6227637B2 (en)
JPS5936517B2 (en) AC motor control device
JPH0521999Y2 (en)
JPS62203596A (en) Speed controller for 3-phase ac motor
JPS6041837Y2 (en) Control device for commutatorless motor
JPS5923195B2 (en) Thyristor motor control device