JP3990044B2 - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
JP3990044B2
JP3990044B2 JP25916998A JP25916998A JP3990044B2 JP 3990044 B2 JP3990044 B2 JP 3990044B2 JP 25916998 A JP25916998 A JP 25916998A JP 25916998 A JP25916998 A JP 25916998A JP 3990044 B2 JP3990044 B2 JP 3990044B2
Authority
JP
Japan
Prior art keywords
magnetic flux
calculator
induction motor
speed
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25916998A
Other languages
Japanese (ja)
Other versions
JP2000078900A (en
Inventor
潔 大石
宣弘 中村
弘和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP25916998A priority Critical patent/JP3990044B2/en
Publication of JP2000078900A publication Critical patent/JP2000078900A/en
Application granted granted Critical
Publication of JP3990044B2 publication Critical patent/JP3990044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,誘導電動機の速度制御システムに関するものである。
【0002】
【従来の技術】
図2に従来技術の一例のブロック線図を示し,以下この図に基づいて説明を行う。誘導電動機2に電力変換器1から電力が供給される。トルク・磁束制御器5は,誘導電動機2のトルクTと一次磁束φ1が所定のトルク指令値T*と一次磁束指令値φ1*に追従するように電力変換器1の出力を制御する一次電圧指令値v1*を出力する。トルク・磁束制御器5に入力される誘導電動機2のトルクTと一次磁束φ1は,トルク・磁束演算器7で演算される。トルク・磁束演算器7には電流検出器4の出力である誘導電動機2の一次電流i1と,二次磁束演算器6の出力である誘導電動機2の二次磁束φ2が入力される。
【0003】
誘導電動機2の二次磁束φ2は,電圧検出器3の出力である誘導電動機2の一次電圧v1と,電流検出器4の出力である誘導電動機2の一次電流i1を用いて二次磁束演算器6で演算される。誘導電動機2の二次電流i2は,二次磁束演算器6の出力である誘導電動機2の二次磁束φ2と,電流検出器4の出力である誘導電動機2の一次電流i1を用いて二次電流演算器10で演算される。
誘導電動機2の回転速度ωmは,二次磁束演算器6の出力である誘導電動機2の二次磁束φ2と,トルク・磁束演算器7の出力である誘導電動機2のトルクTを用いて速度演算器(図示せず)で演算される。
【0004】
また、誘導電動機2の回転速度ωmを速度演算器12では,二次磁束演算器6の出力である誘導電動機2の二次磁束φ2と二次電流演算器10の出力である誘導電動機2の二次電流i2を用いて演算している。速度制御器9は,誘導電動機2の前記それぞれの回転速度ωmが所定の速度指令値ωm*に追従するようにトルク指令値T*を制御する。
【0005】
【発明が解決しようとする課題】
従来技術の速度演算器(図示せず)では,例えば平成元年電気学会全国大会論文誌掲載の「瞬時空間ベクトル理論を応用したVVVFによる誘導電動機の速度センサレスベクトル制御」に記述されているように,誘導電動機2の回転速度ωmを二次磁束φ2の回転速度からすべり速度を差し引くことによって求めている。
すべり速度の演算には誘導電動機2の二次抵抗値の情報が必要であるが,誘導電動機2の温度変化によって二次抵抗値が変動してしまうので速度演算誤差を生じる。ここでは,例えば平成5年電気学会全国大会論文誌掲載の「二次抵抗を用いない誘導機の速度演算法」に記述されている速度演算アルゴリズムを速度演算器12として採用し、図示しない速度演算器とは別に設け,誘導電動機2の温度変化による二次抵抗値変動の影響が速度演算結果に現われないようにしている。
【0006】
速度制御器9に速度演算器12の演算速度をフィードバックし,誘導電動機2の速度制御を実施する。従来技術のトルク・磁束制御器5では,誘導電動機2の一次磁束φ1を所定の一次磁束指令値φ1*に追従させるようにして,誘導電動機2の磁束の大きさが一定になるように制御を行なっている。
この時,速度演算器12では,誘導電動機2の二次磁束φ2と二次電流i2を用いて誘導電動機2の回転速度ωmの演算を行なっている。実際,速度演算器12において誘導電動機2の回転速度ωmは,二次磁束φ2の時間微分値p(φ2)と二次電流i2の外積演算結果を二次磁束φ2と二次電流i2の内積演算結果で割って求められている。
【0007】
ここで,p()は()内量の時間微分を表わす。トルク・磁束制御器5の制御結果によって誘導電動機2の磁束の大きさが一定値になれば,誘導電動機2の二次磁束φ2と二次電流i2のベクトルが直交するので速度演算器12の出力が零となり,速度演算が不可能となる。一般に,電力変換器1の出力電圧の制御方式にPWMを利用しているのがほとんどで,誘導電動機2の磁束にリップルが生じてその大きさが一定値にならないので,速度演算器12によって速度演算が可能となる。しかしながら,誘導電動機2の磁束の基本波成分に対するリップル成分が小さいので,速度演算器12による速度演算結果の精度の確保が困難となる。また,電力変換器1のスイッチング周波数の高周波数化や制御周期の高速化によるトルク・磁束制御器5の高応答化に伴って誘導電動機2の磁束に生じるリップルが抑制されることから,速度演算器12による速度演算が困難となる。
本発明は上述した点に鑑みて創案されたもので、その目的とするところは、これらの点を解決したインバータ装置を提供することにある。
【0008】
【課題を解決するための手段】
つまり、その目的を達成するための手段は、
誘導電動機に電力を供給する電力変換器により速度センサレスベクトル制御を行うインバータ装置において,前記誘導電動機の一次電圧を検出する電圧検出器と,前記誘導電動機の一次電流を検出する電流検出器と,前記電圧検出器の一次電圧情報と前記電流検出器の一次電流情報から前記誘導電動機の二次磁束を演算する二次磁束演算器と,該二次磁束演算器の演算二次磁束情報と前記電流検出器の一次電流情報から前記誘導電動機の二次電流を演算する二次電流演算器と,該二次電流演算器の演算二次電流情報と前記二次磁束演算器の演算二次磁束情報から前記誘導電動機の回転速度を演算する速度演算器と,前記二次磁束演算器の演算二次磁束情報と前記電流検出器の一次電流情報から前記誘導電動機のトルクと磁束を演算するトルク・磁束演算器と,該トルク・磁束演算器の演算トルク情報と演算磁束情報が所定のトルク指令値と磁束指令値に追従するように前記電力変換器の出力を制御するトルク・磁束制御器と,前記速度演算器の演算速度情報が所定の速度指令値に追従するよう前記トルク指令値を生成する速度制御器と,前記磁束指令値に交流成分を重畳する交流成分発生器を具備することを特徴とするインバータ装置である。
以下、本発明の一実施例を図面に基づいて詳述する。
【0009】
【発明の実施の形態】
図1は本発明の一実施例を示すブロック図であり、図2と同符号の部分は同じ構成、機能を有する部分である。また図2との差異は、交流成分発生器11を設けた点が異なる。
図1において、交流成分発生器11から正弦波関数,三角波関数,及び矩形波関数といった交流成分を出力し,一次磁束指令値φ1*にリップル成分として重畳させる。交流成分発生器11は,ディジタル・フィルタといったディジタル信号処理を用いてソフトウェアで構成することができる。
【0010】
トルク・磁束制御器5の制御結果によって,誘導電動機2の磁束に交流成分発生器11から出力された交流成分に基づいたリップル成分が現われる。誘導電動機2の磁束に生じたリップル成分によって,誘導電動機2の二次磁束φ2と二次電流i2のベクトルが直交するという位相関係が成立しないので,速度演算器12による速度演算が可能となる。
【0011】
【発明の効果】
以上述べたように本発明によれば、交流成分発生器11の出力を一次磁束指令値φ1*に重畳させることによって誘導電動機2の磁束にリップルを生じさせることができるので,速度演算器12による速度演算が確実に行えるようにできる。
交流成分発生器11は,ディジタル・フィルタといったディジタル信号処理を用いてソフトウェアで構成することができるので,既存のシステムに対する拡張性に優れている。
また,交流成分発生器11から出力される交流成分の振幅値が大きくなるように調整することによって,速度演算器12による速度演算結果の精度を向上させることができるので,高精度の速度制御が実現できる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すブロック線図である。
【図2】従来の一例を示すブロック線図である。
【符号の説明】
1 電力変換器
2 誘導電動機
3 電圧検出器
4 電流検出器
5 トルク・磁束制御器
6 二次磁束演算器
7 トルク・磁束演算器
9 速度制御器
10 二次電流演算器
11 交流成分発生器
12 速度演算器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction motor speed control system.
[0002]
[Prior art]
FIG. 2 shows a block diagram of an example of the prior art, which will be described below with reference to this figure. Electric power is supplied from the power converter 1 to the induction motor 2. The torque / magnetic flux controller 5 is a primary voltage command for controlling the output of the power converter 1 so that the torque T and the primary magnetic flux φ1 of the induction motor 2 follow a predetermined torque command value T * and a primary magnetic flux command value φ1 *. Outputs the value v1 *. The torque T of the induction motor 2 and the primary magnetic flux φ1 input to the torque / flux controller 5 are calculated by the torque / flux calculator 7. The torque / magnetic flux calculator 7 receives the primary current i1 of the induction motor 2 that is the output of the current detector 4 and the secondary magnetic flux φ2 of the induction motor 2 that is the output of the secondary magnetic flux calculator 6.
[0003]
The secondary magnetic flux φ2 of the induction motor 2 is obtained by using the primary voltage v1 of the induction motor 2 that is the output of the voltage detector 3 and the primary current i1 of the induction motor 2 that is the output of the current detector 4 as a secondary magnetic flux calculator. 6 is calculated. The secondary current i2 of the induction motor 2 is secondary using the secondary magnetic flux φ2 of the induction motor 2 that is the output of the secondary magnetic flux calculator 6 and the primary current i1 of the induction motor 2 that is the output of the current detector 4. Calculated by the current calculator 10.
The rotational speed ωm of the induction motor 2 is calculated using the secondary magnetic flux φ2 of the induction motor 2 that is the output of the secondary magnetic flux calculator 6 and the torque T of the induction motor 2 that is the output of the torque / flux calculator 7. It is calculated by a device (not shown).
[0004]
The speed calculator 12 determines the rotational speed ωm of the induction motor 2 and the secondary magnetic flux φ2 of the induction motor 2 that is the output of the secondary magnetic flux calculator 6 and the second of the induction motor 2 that is the output of the secondary current calculator 10. Calculation is performed using the secondary current i2. The speed controller 9 controls the torque command value T * so that the respective rotational speeds ωm of the induction motor 2 follow a predetermined speed command value ωm *.
[0005]
[Problems to be solved by the invention]
In a conventional speed calculator (not shown), for example, as described in “Speed Sensorless Vector Control of Induction Motor Using VVVF Applying Instantaneous Space Vector Theory” published in the Journal of the National Conference of the Electrical Engineering Society of Japan in 1989. The rotational speed ωm of the induction motor 2 is obtained by subtracting the slip speed from the rotational speed of the secondary magnetic flux φ2.
Information on the secondary resistance value of the induction motor 2 is necessary for the calculation of the sliding speed. However, since the secondary resistance value fluctuates due to a temperature change of the induction motor 2, a speed calculation error occurs. Here, for example, the speed calculation algorithm described in “Speed calculation method of induction machine without using secondary resistance” published in the 1993 National Institute of Electrical Engineers of Japan paper is adopted as the speed calculator 12, and a speed calculation (not shown) is performed. It is provided separately from the generator so that the influence of the secondary resistance value variation due to the temperature change of the induction motor 2 does not appear in the speed calculation result.
[0006]
The calculation speed of the speed calculator 12 is fed back to the speed controller 9 to control the speed of the induction motor 2. In the torque / magnetic flux controller 5 of the prior art, the primary magnetic flux φ1 of the induction motor 2 is made to follow the predetermined primary magnetic flux command value φ1 * so that the magnitude of the magnetic flux of the induction motor 2 is constant. Is doing.
At this time, the speed calculator 12 calculates the rotational speed ωm of the induction motor 2 using the secondary magnetic flux φ2 and the secondary current i2 of the induction motor 2. Actually, in the speed calculator 12, the rotational speed ωm of the induction motor 2 is obtained by calculating the inner product of the secondary magnetic flux φ2 and the secondary current i2 by calculating the outer product of the time differential value p (φ2) of the secondary magnetic flux φ2 and the secondary current i2. It is calculated by dividing by the result.
[0007]
Here, p () represents time differentiation of the amount in (). If the magnitude of the magnetic flux of the induction motor 2 becomes a constant value according to the control result of the torque / flux controller 5, the vector of the secondary magnetic flux φ2 of the induction motor 2 and the secondary current i2 are orthogonal, so the output of the speed calculator 12 Becomes zero, making speed calculation impossible. Generally, PWM is used for the control method of the output voltage of the power converter 1 and ripples are generated in the magnetic flux of the induction motor 2 and the magnitude thereof does not become a constant value. Calculation is possible. However, since the ripple component with respect to the fundamental wave component of the magnetic flux of the induction motor 2 is small, it is difficult to ensure the accuracy of the speed calculation result by the speed calculator 12. Further, since the ripple generated in the magnetic flux of the induction motor 2 with the high response of the torque / flux controller 5 due to the high switching frequency of the power converter 1 and the high speed of the control cycle is suppressed, the speed calculation is performed. The speed calculation by the device 12 becomes difficult.
The present invention has been made in view of the above-described points, and an object of the present invention is to provide an inverter device that solves these points.
[0008]
[Means for Solving the Problems]
In other words, the means to achieve that purpose is
In an inverter device that performs speed sensorless vector control with a power converter that supplies power to an induction motor, a voltage detector that detects a primary voltage of the induction motor, a current detector that detects a primary current of the induction motor, A secondary magnetic flux calculator for calculating a secondary magnetic flux of the induction motor from primary voltage information of the voltage detector and primary current information of the current detector, and calculated secondary magnetic flux information of the secondary magnetic flux calculator and the current detection From the secondary current calculator for calculating the secondary current of the induction motor from the primary current information of the generator, the calculated secondary current information of the secondary current calculator and the calculated secondary flux information of the secondary flux calculator A speed calculator for calculating the rotation speed of the induction motor, a calculation for calculating the torque and magnetic flux of the induction motor from the calculated secondary magnetic flux information of the secondary magnetic flux calculator and the primary current information of the current detector A magnetic flux calculator, a torque / flux controller for controlling the output of the power converter so that the calculated torque information and the calculated magnetic flux information of the torque / flux calculator follow a predetermined torque command value and the magnetic flux command value; A speed controller that generates the torque command value so that the calculated speed information of the speed calculator follows a predetermined speed command value, and an AC component generator that superimposes an AC component on the magnetic flux command value. It is an inverter device.
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an embodiment of the present invention, and parts having the same reference numerals as those in FIG. 2 are parts having the same configuration and function. Further, the difference from FIG. 2 is that an AC component generator 11 is provided.
In FIG. 1, an alternating current component such as a sine wave function, a triangular wave function, and a rectangular wave function is output from the alternating current component generator 11, and is superimposed as a ripple component on the primary magnetic flux command value φ1 *. The AC component generator 11 can be configured by software using digital signal processing such as a digital filter.
[0010]
Depending on the control result of the torque / flux controller 5, a ripple component based on the AC component output from the AC component generator 11 appears in the magnetic flux of the induction motor 2. Since the phase component that the secondary magnetic flux φ2 of the induction motor 2 and the vector of the secondary current i2 are orthogonal does not hold due to the ripple component generated in the magnetic flux of the induction motor 2, the speed calculation by the speed calculator 12 becomes possible.
[0011]
【The invention's effect】
As described above, according to the present invention, since the output of the AC component generator 11 can be superimposed on the primary magnetic flux command value φ1 *, a ripple can be generated in the magnetic flux of the induction motor 2. Speed calculation can be performed reliably.
Since the AC component generator 11 can be configured by software using digital signal processing such as a digital filter, it is excellent in expandability with respect to an existing system.
Further, by adjusting the amplitude value of the AC component output from the AC component generator 11 to be large, the accuracy of the speed calculation result by the speed calculator 12 can be improved. realizable.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a block diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power converter 2 Induction motor 3 Voltage detector 4 Current detector 5 Torque / flux controller 6 Secondary flux calculator 7 Torque / flux calculator 9 Speed controller 10 Secondary current calculator 11 AC component generator 12 Speed Computing unit

Claims (1)

誘導電動機に電力を供給する電力変換器により速度センサレスベクトル制御を行うインバータ装置において,前記誘導電動機の一次電圧を検出する電圧検出器と,前記誘導電動機の一次電流を検出する電流検出器と,前記電圧検出器の一次電圧情報と前記電流検出器の一次電流情報から前記誘導電動機の二次磁束を演算する二次磁束演算器と,該二次磁束演算器の演算二次磁束情報と前記電流検出器の一次電流情報から前記誘導電動機の二次電流を演算する二次電流演算器と,該二次電流演算器の演算二次電流情報と前記二次磁束演算器の演算二次磁束情報から前記誘導電動機の回転速度を演算する速度演算器と,前記二次磁束演算器の演算二次磁束情報と前記電流検出器の一次電流情報から前記誘導電動機のトルクと磁束を演算するトルク・磁束演算器と,該トルク・磁束演算器の演算トルク情報と演算磁束情報が所定のトルク指令値と磁束指令値に追従するように前記電力変換器の出力を制御するトルク・磁束制御器と,前記速度演算器の演算速度情報が所定の速度指令値に追従するよう前記トルク指令値を生成する速度制御器と,前記磁束指令値に交流成分を重畳する交流成分発生器を具備することを特徴とするインバータ装置。In an inverter device that performs speed sensorless vector control by a power converter that supplies power to an induction motor, a voltage detector that detects a primary voltage of the induction motor, a current detector that detects a primary current of the induction motor, A secondary magnetic flux calculator for calculating a secondary magnetic flux of the induction motor from primary voltage information of the voltage detector and primary current information of the current detector, and calculated secondary magnetic flux information of the secondary magnetic flux calculator and the current detection From the secondary current calculator for calculating the secondary current of the induction motor from the primary current information of the generator, the calculated secondary current information of the secondary current calculator and the calculated secondary flux information of the secondary flux calculator A speed calculator for calculating the rotational speed of the induction motor, a calculation for calculating the torque and magnetic flux of the induction motor from the calculated secondary magnetic flux information of the secondary magnetic flux calculator and the primary current information of the current detector A magnetic flux calculator, a torque / flux controller for controlling the output of the power converter so that the calculated torque information and the calculated magnetic flux information of the torque / flux calculator follow a predetermined torque command value and the magnetic flux command value; A speed controller that generates the torque command value so that the calculated speed information of the speed calculator follows a predetermined speed command value, and an AC component generator that superimposes an AC component on the magnetic flux command value. Inverter device.
JP25916998A 1998-08-31 1998-08-31 Inverter device Expired - Fee Related JP3990044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25916998A JP3990044B2 (en) 1998-08-31 1998-08-31 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25916998A JP3990044B2 (en) 1998-08-31 1998-08-31 Inverter device

Publications (2)

Publication Number Publication Date
JP2000078900A JP2000078900A (en) 2000-03-14
JP3990044B2 true JP3990044B2 (en) 2007-10-10

Family

ID=17330325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25916998A Expired - Fee Related JP3990044B2 (en) 1998-08-31 1998-08-31 Inverter device

Country Status (1)

Country Link
JP (1) JP3990044B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719910B2 (en) * 2000-05-30 2005-11-24 株式会社東芝 Motor control device
JP2021002897A (en) * 2019-06-19 2021-01-07 東芝三菱電機産業システム株式会社 Motor controller, motor system, calculation method of rotor winding secondary resistance value and rotor winding temperature estimation method

Also Published As

Publication number Publication date
JP2000078900A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP2004112898A (en) Control method and device for motor in position sensorless
JP3257566B2 (en) PG-less vector control device for induction motor
JP6173520B1 (en) Control device for rotating electrical machine
JP3674741B2 (en) Control device for permanent magnet synchronous motor
JP4889329B2 (en) Control device for voltage source inverter
CN108575113A (en) Control device of electric motor
JP2002136197A (en) Sensorless vector control apparatus and method
JP7094859B2 (en) Motor control device and motor control method
JP2006197712A (en) System and method for driving synchronous motor
JP6113651B2 (en) Multi-phase motor drive
JP6400231B2 (en) Control device for rotating electrical machine
JP3990044B2 (en) Inverter device
JP3939481B2 (en) AC motor control device
JP4937766B2 (en) Voltage inverter control device
JP2009284598A (en) Controller for alternating-current motors
JP2946106B2 (en) AC motor control method and device
JP6719162B2 (en) Multi-phase motor drive
JP7152132B2 (en) MOTOR CONTROL METHOD AND MOTOR CONTROL DEVICE
JP3957369B2 (en) Induction motor controller
JP3489259B2 (en) Permanent magnet type motor control method and control device
JP4023280B2 (en) Motor control device
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
KR102133181B1 (en) Apparatus for controlling inverter
JP2001008500A (en) Control device for induction motor
JP3227824B2 (en) Output voltage control method of voltage source inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees