JP2600234B2 - Excitation method of superconducting winding - Google Patents

Excitation method of superconducting winding

Info

Publication number
JP2600234B2
JP2600234B2 JP62329901A JP32990187A JP2600234B2 JP 2600234 B2 JP2600234 B2 JP 2600234B2 JP 62329901 A JP62329901 A JP 62329901A JP 32990187 A JP32990187 A JP 32990187A JP 2600234 B2 JP2600234 B2 JP 2600234B2
Authority
JP
Japan
Prior art keywords
winding
superconducting
current
state
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62329901A
Other languages
Japanese (ja)
Other versions
JPH01174291A (en
Inventor
正之 寺嶋
武春 久保
昌克 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP62329901A priority Critical patent/JP2600234B2/en
Publication of JPH01174291A publication Critical patent/JPH01174291A/en
Application granted granted Critical
Publication of JP2600234B2 publication Critical patent/JP2600234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 A. 産業上の利用分野 本発明は超電導巻線、例えば誘導電動機の二次巻線と
して設けた超電導巻線を閉ループのまま励磁する方法に
関する。
The present invention relates to a method of exciting a superconducting winding, for example, a superconducting winding provided as a secondary winding of an induction motor, in a closed loop.

B. 発明の概要 本発明による超電導巻線の励磁方法は、閉じた超電導
巻線に他の巻線を結合し、前記他の巻線に直流の励磁電
流を流し、この励磁電流が流れている間に前記超電導巻
線を常電導状態から超電導状態に移行させて磁束を捕獲
する超電導巻線の励磁方法において、前記超電導巻線が
超電導状態にある状態で前記他の巻線に直流の励磁電流
を流し、この励磁電流が流れている間に同励磁電流に交
流電流を重畳し、この交流電流の振幅及び周波数のうち
少なくとも一方を変化させることにより、あるいは、前
記励磁電流が流れている間に前記超電導巻線の電流及び
磁束のうち少なくとも一方を変化させることにより、前
記超電導巻線を超電導状態から一旦常電導状態に移行さ
せ更に常電導状態から超電導状態に移行させて磁束を捕
獲させることを特徴とする。
B. Summary of the Invention The exciting method of a superconducting winding according to the present invention is such that another winding is coupled to a closed superconducting winding, and a DC exciting current is applied to the other winding, and the exciting current is flowing. A method for exciting a superconducting winding in which the superconducting winding is shifted from a normal conducting state to a superconducting state during a period to capture magnetic flux, wherein a DC exciting current is supplied to the other winding while the superconducting winding is in a superconducting state. And superimposing an alternating current on the same exciting current while the exciting current is flowing, and by changing at least one of the amplitude and frequency of the alternating current, or while the exciting current is flowing. By changing at least one of the current and the magnetic flux of the superconducting winding, the superconducting winding is temporarily shifted from the superconducting state to the normal conducting state, and further shifted from the normal conducting state to the superconducting state to capture the magnetic flux. It is characterized by that.

C. 従来の技術 各種の機器において、超電導巻線を永久磁石として使
用することが検討されている。
C. Conventional technology The use of superconducting windings as permanent magnets in various types of equipment is being studied.

例えば、下記文献に、超電導巻線をかご形二次巻線と
して備えた、いわゆる超電導誘導電動機に三相交流電力
を供給すると、最終的に同期電動機として動作すること
が開示されている。
For example, the following document discloses that when a three-phase AC power is supplied to a so-called superconducting induction motor having a superconducting winding as a cage secondary winding, the motor finally operates as a synchronous motor.

「THREE−PHASE INDUCTION MOTOR WIHT A SUPERCONDUCT
IVE CAGE WINDING」H.Brechna他;IEEE TRANSACTIONS,VO
L.MAG15,NO.1,JANUARY 1979. 上記の文献による三相超電導誘導電動機の概略構造を
第7図に示す。同図において、回転子のかご形巻線1は
超電導体と安定化材(常電導体)とを並列に複合した中
空の複合導体で作られ、複合導体内に回転軸2内の通路
2a及びパイプ3を通して冷媒(液体ヘリウム)が供給さ
れて臨界温度以下に冷却される。一方、固定子の一次巻
線4は常電導体で作られているが、発熱を吸収するため
に、一次巻線4にも冷媒通路を設け、パイプ5を通して
冷媒(液体窒素)が供給される。回転子と固定子は外部
との断熱のために、カバー6で覆われ且つ真空引きされ
ている。7はシール、8は軸受である。
`` THREE-PHASE INDUCTION MOTOR WIHT A SUPERCONDUCT
IVE CAGE WINDING '' H. Brechna et al .; IEEE TRANSACTIONS, VO
L.MAG15, NO.1, JANUARY 1979. FIG. 7 shows a schematic structure of a three-phase superconducting induction motor according to the above document. In the figure, a cage winding 1 of a rotor is made of a hollow composite conductor in which a superconductor and a stabilizing material (normal conductor) are combined in parallel, and a passage in a rotary shaft 2 is formed in the composite conductor.
A coolant (liquid helium) is supplied through 2a and the pipe 3 and is cooled to below the critical temperature. On the other hand, although the primary winding 4 of the stator is made of a normal conductor, a refrigerant passage is also provided in the primary winding 4 to absorb heat, and a refrigerant (liquid nitrogen) is supplied through a pipe 5. . The rotor and the stator are covered with a cover 6 and evacuated for heat insulation from the outside. 7 is a seal, and 8 is a bearing.

上述した文献によれば、超電導誘導電動機に三相電力
を供給すると、起動時は通常の誘導電動機として作動
し、最終的には同期電動機と動作する。即ち、 (1) 停止状態ではすべりの値sが1なので、二次巻
線1には一次電圧と同じ周波数の電圧が誘導されるか
ら、高いヒステリシス損とうず電流損による発熱で超電
導がクエンチされる。従って、小さい二次電流が安定化
材に流れることになり、大きな起動トルクが発生し、回
転子が回転し始める。
According to the above-mentioned literature, when three-phase power is supplied to a superconducting induction motor, it operates as a normal induction motor at the time of startup, and finally operates as a synchronous motor. (1) Since the slip value s is 1 in the stopped state, a voltage having the same frequency as the primary voltage is induced in the secondary winding 1, so that superconductivity is quenched by heat generated by high hysteresis loss and eddy current loss. You. Therefore, a small secondary current flows through the stabilizing material, a large starting torque is generated, and the rotor starts rotating.

(2) その後回転子の速度が増加し、すべりが小さく
なる。これに伴い二次電圧の周波数が下るから、熱損失
は同期速度付近まで連続的に減少し、二次巻線1は臨界
温度に向かって冷却される。
(2) Thereafter, the speed of the rotor increases, and the slip decreases. Accordingly, since the frequency of the secondary voltage decreases, the heat loss continuously decreases to near the synchronous speed, and the secondary winding 1 is cooled toward the critical temperature.

(3) 臨界温度に達したときは、すべりの値sがゼロ
ではないから(例えばs<0.01)、低周波の二次電流が
二次巻線1の超電導体に流れることになり、且つ、イン
ダクタンスで制限される或る高い値に急増する。
(3) When the critical temperature is reached, the slip value s is not zero (for example, s <0.01), so that a low-frequency secondary current flows through the superconductor of the secondary winding 1, and It jumps to some high value limited by inductance.

(4) この二次電流の急増により、回転子が加速され
て二次電圧が急激に低下し、二次電流が低下する。この
二次電流の低下が回転子を減速させるため、二次電圧が
上昇して二次電流が再び上昇する。以後、二次電流の振
動と回転子の加速・減速とが、過渡状態として、同期速
度に達するまで続く。
(4) Due to the rapid increase of the secondary current, the rotor is accelerated, the secondary voltage is rapidly reduced, and the secondary current is reduced. Since the decrease in the secondary current causes the rotor to decelerate, the secondary voltage increases and the secondary current increases again. Thereafter, the oscillation of the secondary current and the acceleration / deceleration of the rotor continue as a transient state until the synchronous speed is reached.

(5) 同期速度に達すると、二次巻線1に電圧は誘導
されないから、その時点での電流が半永久的に流れて二
次巻線は超電導マグネットとなり、以後超電導誘導電動
機は同期電動機として動作する。
(5) When the synchronous speed is reached, no voltage is induced in the secondary winding 1, and the current at that time flows semipermanently, and the secondary winding becomes a superconducting magnet. Thereafter, the superconducting induction motor operates as a synchronous motor. I do.

D. 発明が解決しようとする問題点 上述したように二次巻線を超電導巻線とした超電導誘
導電動機は、始動時は誘導電動機として動作するため始
動トルクが高く、運転が容易であるという利点と、同期
速度付近になると自動的に同期電動機として動作するた
め損失が小さく、速度が負荷に依存せず、負荷角による
出力制御が可能であるという利点とを兼ね備えている。
更に、構造は誘導電動機そのものであるから堅牢であ
り、保守が容易である。
D. Problems to be Solved by the Invention As described above, the superconducting induction motor in which the secondary winding is a superconducting winding operates as an induction motor at the time of starting, so that the starting torque is high and the operation is easy. In addition, since the motor automatically operates as a synchronous motor near the synchronous speed, the loss is small, the speed does not depend on the load, and the output can be controlled by the load angle.
Furthermore, since the structure is the induction motor itself, it is robust and easy to maintain.

しかし、動作が誘導電動機から同期電動機に移行する
ときに過渡状態が生じ、二次電流、トルク、速度が振動
するのが大きな欠点であり、この種の超電導誘導電動機
の適用分野が制限されている。
However, when the operation shifts from the induction motor to the synchronous motor, a transient state occurs and the secondary current, torque and speed oscillate, which is a major drawback, and the application field of this type of superconducting induction motor is limited. .

そこで、むしろ二次の超電導巻線を静止状態で励磁し
て予め永久磁石としておき、最初から同期電動機として
動作させる方が、過渡現象がなく適用分野が広がるため
得策と考えられる。
Therefore, it is considered that it is better to excite the secondary superconducting winding in a stationary state and to use the secondary superconducting winding as a permanent magnet in advance and to operate as a synchronous motor from the beginning, since there is no transient phenomenon and the field of application is widened.

しかし、静止した超伝導巻線を閉ループのままで例示
する方法は知られていない。
However, there is no known method for exemplifying a stationary superconducting winding in a closed loop.

本発明は上述した従来技術に鑑み、静止した超電導巻
線を閉ループのままで励磁する方法を提供することを目
的とする。
An object of the present invention is to provide a method of exciting a stationary superconducting winding in a closed loop state in view of the above-described related art.

E. 問題点を解決するための手段 本発明による超電導巻線の励磁方法は、閉じた超電導
巻線に他の巻線を結合し、前記他の巻線に直流の励磁電
流を流し、この励磁電流が流れている間に前記超電導巻
線を常電導状態から超電導状態に移行させて磁束を捕獲
する超電導巻線の励磁方法において、前記超電導巻線が
超電導状態にある状態で前記他の巻線に直流の励磁電流
を流し、この励磁電流が流れている間に同励磁電流に交
流電流を重畳し、この交流電流の振幅及び周波数のうち
少なくとも一方を変化させることにより、あるいは、前
記励磁電流が流れている間に前記超電導巻線の電流及び
磁束のうち少なくとも一方を変化させることにより、前
記超電導巻線を超電導状態から一旦常電導状態に移行さ
せ更に常電導状態から超電導状態に移行させて磁束を捕
獲させることを特徴とする。
E. Means for Solving the Problems The exciting method of the superconducting winding according to the present invention comprises the steps of: coupling another winding to a closed superconducting winding; supplying a DC exciting current to the other winding; In a method of exciting a superconducting winding, which captures magnetic flux by shifting the superconducting winding from a normal conducting state to a superconducting state while a current is flowing, the superconducting winding is in a superconducting state while the other windings are in the superconducting state. By passing a DC exciting current through the AC current, superimposing an AC current on the exciting current while the exciting current is flowing, and changing at least one of the amplitude and the frequency of the AC current, or By changing at least one of the current and the magnetic flux of the superconducting winding while flowing, the superconducting winding is temporarily shifted from the superconducting state to the normal conducting state, and further shifted from the normal conducting state to the superconducting state. Characterized in that the magnetic flux is captured.

なお、超電導巻線を超電導状態から常電導状態へ移行
し、更に常電導状態から超電導状態へ移行する方法とし
ては、超電導巻線の温度、電流、磁界のうち少なくとも
1つを臨界値を超える値にし、次いでその値から臨界値
以下に変えれば良い。特に、温度を変える場合は、超電
導巻線を予め超電導状態にしておき、他の巻線に流す直
流の励磁電流に交流電流を重畳し、重畳する交流電流を
変える方法が簡単である。更に、重畳する交流電流を変
える方法の内でも、他の巻線に流す励磁電流をPWM制御
のインバータから供給し、キャリア周波数を変える方法
が簡単である。
In addition, as a method of shifting the superconducting winding from the superconducting state to the normal conducting state and further shifting from the normal conducting state to the superconducting state, at least one of the temperature, current, and magnetic field of the superconducting winding exceeds a critical value. And then change from that value to below the critical value. In particular, when the temperature is changed, it is easy to set the superconducting winding in a superconducting state in advance, superimpose an alternating current on a direct current exciting current flowing through another winding, and change the superposed alternating current. Further, among the methods of changing the superimposed AC current, the method of changing the carrier frequency by supplying the exciting current flowing through the other windings from the PWM-controlled inverter is simple.

また、超電導巻線を常電導状態から超電導状態へ移行
する時期としては、他の巻線に励磁電流が流れている期
間が、常電導状態での超電導巻線の時定数の3倍以上経
過した時とするのが好ましい。
In addition, as for the time when the superconducting winding shifts from the normal conducting state to the superconducting state, the period in which the exciting current is flowing through the other windings is at least three times the time constant of the superconducting winding in the normal conducting state. It is preferably time.

更に、超電導巻線が誘導電動機の二次巻線であり、他
の巻線が一次巻線である場合は、一次巻線の各相に流す
励磁電流の値を、多相平衡電流の或る時点での値とする
ことが好ましい。
Further, when the superconducting winding is the secondary winding of the induction motor and the other winding is the primary winding, the value of the exciting current flowing through each phase of the primary winding is determined by calculating the value of the multi-phase balanced current. It is preferable to use the value at the time.

F. 作用 上記構成において、他の巻線に直流の励磁電流を流す
と磁界が生じて閉じた超電導巻線に作用する。このと
き、超電導巻線が常電導状態であれば、超電導巻線に磁
束が通るだけである。常電導状態から超電導状態に移行
すると、抵抗がゼロとなりその瞬間に通っていた磁束が
以後変化しないように超電導巻線に電流が流れる。これ
が磁束の捕獲であり、超電導状態に冷却され且つ静止し
た超電導巻線が閉ループのまま超電導マグネットにな
る。
F. Operation In the above configuration, when a DC exciting current is applied to the other winding, a magnetic field is generated and acts on the closed superconducting winding. At this time, if the superconducting winding is in the normal conducting state, only the magnetic flux passes through the superconducting winding. When the state shifts from the normal conducting state to the superconducting state, the resistance becomes zero and a current flows through the superconducting winding so that the magnetic flux passing at that moment does not change thereafter. This is the trapping of the magnetic flux, and the superconducting winding is cooled to the superconducting state and the stationary superconducting winding becomes a superconducting magnet with the closed loop.

なお、超電導巻線は温度、電流、磁界の少なくとも1
つが臨界値を超えれば常電導状態になり、臨界値を超え
たものを臨界値以下にすれば超電導状態になる。特に、
超電導巻線を予め超電導状態にしておき、他の巻線の励
磁電流に交流電流を重畳すると磁界が交流成分を含むか
らヒステリシス損及びうず電流損により、超電導巻線が
発熱してクエンチされ、常電導状態になる。この傾向
は、重畳する交流電流の振幅が大きいほど、また周波数
が高いほど顕著である。従って、重畳している交流電流
の振幅をゼロまたは或る程度小さくすると、超電導状態
に復帰する。電源としてPWM制御のインバータを使用す
る場合は、インバータからの励磁電流にはPWM制御のた
めもともとキャリア周波数の高調波電流が含まれるか
ら、この交流成分を利用することにより、外部からわざ
わざ交流電流を重畳させる必要がない。交流成分の振幅
はキャリア周波数が低いほど大きく、キャリア周波数が
高いほど小さく無視できる。従って、PWM制御のインバ
ータから励磁電流を供給するとき、キャリア周波数を低
くすると超電導巻線が常電導状態になり、キャリア周波
数を高くすると超電導状態に復帰する。
The superconducting winding has at least one of temperature, current and magnetic field.
If one exceeds the critical value, it will be in the normal conducting state, and if it exceeds the critical value, it will be in the superconducting state if it is below the critical value. Especially,
When the superconducting winding is put in the superconducting state in advance, and the AC current is superimposed on the exciting current of the other windings, the magnetic field contains an AC component, so that the superconducting winding generates heat and is quenched due to hysteresis loss and eddy current loss. It becomes conductive. This tendency becomes more pronounced as the amplitude of the superimposed alternating current increases and as the frequency increases. Therefore, when the amplitude of the superposed alternating current is reduced to zero or to a certain extent, the superconducting state is restored. When using a PWM-controlled inverter as the power supply, the excitation current from the inverter originally contains the harmonic current of the carrier frequency due to the PWM control.By using this AC component, the AC current is bothersome from the outside. There is no need to overlap. The amplitude of the AC component increases as the carrier frequency decreases, and decreases as the carrier frequency increases. Therefore, when the excitation current is supplied from the inverter of the PWM control, the superconducting winding enters the normal conducting state when the carrier frequency is lowered, and returns to the superconducting state when the carrier frequency is increased.

他の巻線に励磁電流を流すと、常電導状態の超電導巻
線を通る磁束は時定数に従って指数関数的に増大するの
で、磁束が大きくなったときに超電導巻線を常電導状態
から超電導状態に移行するのが効率上好ましい。他の巻
線に励磁電流が流れている期間が、常電導状態での超電
導巻線の時定数の3倍以上であれば、磁束が十分増大す
る。
When an exciting current is applied to other windings, the magnetic flux passing through the superconducting winding in the normal conducting state increases exponentially according to the time constant, so when the magnetic flux increases, the superconducting winding is changed from the normal conducting state to the superconducting state. It is preferable in terms of efficiency to shift to. If the period during which the exciting current flows through the other windings is at least three times the time constant of the superconducting winding in the normal conducting state, the magnetic flux is sufficiently increased.

超電導巻線が誘導電動機の二次巻線であり、他の巻線
が一次巻線である場合は、一次巻線の各相に流す励磁電
流の値により、二次巻線が捕獲する磁束の大きさと方向
が異なる。そこで、各相の励磁電流の値を、多相平衡電
流の或る時点での値に選ぶと、磁束の大きさは変わらず
方向だけを任意に設定することができる。
When the superconducting winding is the secondary winding of the induction motor and the other winding is the primary winding, the value of the exciting current flowing through each phase of the primary winding causes the magnetic flux captured by the secondary winding to change. Different in size and direction. Therefore, when the value of the exciting current of each phase is selected to be a value at a certain point in time of the multi-phase balanced current, the magnitude of the magnetic flux does not change and only the direction can be arbitrarily set.

G. 実 施 例 第1図〜第6図を参照して本発明の実施例を説明す
る。
G. Embodiment An embodiment of the present invention will be described with reference to FIGS.

第1図に、PWM制御によるインバータ10を用いて3相
超電導誘導電動機9の二次超電導巻線を予め励磁し、最
初から同期電動機として運転する制御装置の例を示す。
FIG. 1 shows an example of a control device in which a secondary superconducting winding of a three-phase superconducting induction motor 9 is previously excited by using an inverter 10 based on PWM control, and is operated as a synchronous motor from the beginning.

第1図において、超電導誘導電動機9の一次巻線は常
電導体で作り、二次巻線は超電導体で作ってある。二次
巻線の冷却は、常温あるいは高温超電導体による場合は
簡単な冷却装置で行い、低温超電導体による場合は液体
ヘリウム、液体窒素等の冷媒を用いた冷却装置を設け、
また、必要に応して一次巻線の冷却、外部との断熱を行
う。
In FIG. 1, the primary winding of the superconducting induction motor 9 is made of a normal conductor, and the secondary winding is made of a superconductor. Cooling of the secondary winding is performed with a simple cooling device when using a normal temperature or high temperature superconductor, and a cooling device using a refrigerant such as liquid helium, liquid nitrogen is provided when using a low temperature superconductor,
In addition, the cooling of the primary winding and the heat insulation with the outside are performed as necessary.

インバータ10の電流制御を2つのヒステリシスコンパ
レータ11,12で行う。一方のヒステリシスコンパーレー
タ11にはa相の電流制御の指令値と実際の電流値との偏
差が入力され、他方のヒステリシスコンパレータ12には
b相の電流制御の指令値と実際の電流値との偏差が入力
される。両ヒステリシスコンパレータ11,12のオン・オ
フ出力がゲート回路13に与えられ、インバータ10から一
次巻線に指令値通りの3相平衡電流をPWM電流の形で供
給するように、インバータ素子の導通、非導通が決定さ
れる。c相は演算により求まる。14はa相の電流検出
器、15はb相の電流検出器である。
The current control of the inverter 10 is performed by two hysteresis comparators 11 and 12. The difference between the a-phase current control command value and the actual current value is input to one hysteresis comparator 11, and the difference between the b-phase current control command value and the actual current value is input to the other hysteresis comparator 12. The deviation is entered. The ON / OFF outputs of both hysteresis comparators 11 and 12 are given to a gate circuit 13, and the inverter 10 is turned on and off so that a three-phase balanced current according to a command value is supplied from the inverter 10 to the primary winding in the form of a PWM current. Non-conduction is determined. The c phase is obtained by calculation. 14 is an a-phase current detector and 15 is a b-phase current detector.

PWM制御のキャリア周波数はヒステリシスコンパレー
タ11,12のヒステリシス幅に依存し、ヒステリシス幅が
狭いと高いキャリア周波数になり、ヒステリシス幅が広
いと低いキャリア周波数になる。
The carrier frequency of the PWM control depends on the hysteresis width of the hysteresis comparators 11 and 12, and a narrower hysteresis width results in a higher carrier frequency and a wider hysteresis width results in a lower carrier frequency.

両ヒステリシスコンパレータ11,12はヒステリシス幅
を指令により可変できるものであり、スイッチSW3によ
りヒステリシス幅を大とする指令fLと、ヒステリシス幅
を小とする指令fHとを選択して両ヒステリシスコンパレ
ータ11,12に与えるようにしてある。
Both the hysteresis comparator 11 and 12 are those which can be varied by directing the hysteresis width, the command f L and, both the hysteresis comparator by selecting a command f H for the hysteresis width smaller that the hysteresis width and large by the switch SW 3 I give it to 11,12.

電流指令値を出力する装置として、励磁電流指令装置
16と、交流電流指令装置17とがあり、a,b各相の電流指
令値を2つの装置16,17いずれから得るか、スイッチS
W1,SW2で選択するようにしてある。
Exciting current command device as a device that outputs a current command value
16 and an AC current command device 17, and a switch S determines which of the two devices 16, 17 obtains the current command value of each phase a, b.
Selection is made with W 1 and SW 2 .

励磁電流指令装置16は、a相の励磁電流指令値I
oaと、b相の励磁電流指令値Iobとを出力する。Ioa,Iob
は一定値である。本実施例では、a,b,c各相の励磁電流
指令値として、第2図の如く3相平衡電流ia,ib,icの或
る時点Pの値Ioa,Iob,Iocを任意に選択できるように、
励磁電流指令装置16の構成を、任意の位相β及び振幅Im
を入力すると、Ioa=Imcosβ,Iob=Imcos(β−2π/
3)の演算を行ってa相,b相の励磁電流指令値Ioa,Iob
出力する構成としてある。なお、c相の励磁電流指令値
Iocは必ずしも出力する必要がない。その理由はImcos
(β+2π/3)と一義的に決まるからであり、ゲート回
路13で必要な論理演算を行う。
The exciting current command device 16 has an exciting current command value I for the a-phase.
oa and the b-phase excitation current command value I ob are output. I oa , I ob
Is a constant value. In this embodiment, a, b, as an excitation current command value of c phase, 3-phase balanced currents i a as FIG. 2, i b, the value of a certain point P of the i c I oa, I ob, I so that oc can be selected arbitrarily
The configuration of the exciting current command device 16 is changed to any phase β and amplitude Im
Is input, I oa = I m cosβ, I ob = I m cos (β−2π /
The configuration of 3) is performed to output the a-phase and b-phase excitation current command values I oa and I ob . The c-phase excitation current command value
I oc does not necessarily need to be output. The reason for this is that I m cos
This is because it is uniquely determined as (β + 2π / 3), and the gate circuit 13 performs a necessary logical operation.

ここで、励磁について説明すると次の通りである。 Here, the excitation will be described as follows.

3相電動機において、a,b,c3軸の電気的諸量fa,fb,fc
と、d,q2軸の電気的諸量fd,fqの間に、式(1)の式の
関係がある。但し、θはd軸とq軸のなす角度。
In a three-phase motor, electric quantities f a , f b , f c of the three axes a , b , c
And the electrical quantities f d and f q on the d and q 2 axes have the relationship of equation (1). Here, θ is the angle between the d axis and the q axis.

a,b,c各相に、式(2)に示す電流Ia,Ib,Icを流す
と、q,d各軸の一次電流i1q,i1dは式(3)で表わされ
る。
When the currents I a , I b , and I c shown in Expression (2) are applied to the phases a, b, and c, the primary currents i 1q and i 1d of the q and d axes are expressed by Expression (3).

更に、β=θにとると、式(3)は式(4)となる。 Further, if β = θ, equation (3) becomes equation (4).

一方、一次電流i1q,i1dと二次磁束λ2q2dの関係は
式(5)で表わされる。
On the other hand, the relationship between the primary currents i 1q , i 1d and the secondary magnetic fluxes λ 2q , λ 2d is expressed by equation (5).

但し、Mは一次と二次の相互インダクタンス、 L2は二次の自己インダクタンス、 r2は二次の抵抗、 pは演算子、 ωは座標軸の回転角速度と回転子の回転角速度との
差である。
Where M is the primary and secondary mutual inductance, L 2 is the secondary self inductance, r 2 is the secondary resistance, p is the operator, ω b is the difference between the rotational angular velocity of the coordinate axis and the rotational angular velocity of the rotor. It is.

上式から(5)から二次磁束λ2d2qを求めると、 励磁時は静止しているためω=0である。ω=0
と式(4)の条件を、式(6),式(7)に入れると、 λ2d=0 …式(8) 今、i1qをステップ状に変化させるとすると、 であるから、 λ2q=M・Im{1−exp(−t/τ)} …式(10) 但し、tは時間、τは二次の時定数(τ=L2/r2)で
ある。
When the secondary magnetic fluxes λ 2d and λ 2q are obtained from (5) from the above equation, At the time of excitation, ω b = 0 because of being stationary. ω b = 0
When the conditions of Equation (4) and Equation (4) are put into Equations (6) and (7), λ 2d = 0 ... Equation (8) Now, if i 1q is changed stepwise, Therefore , λ 2q = M · I m {1-exp (−t / τ)} Equation (10) where t is time, and τ is a quadratic time constant (τ = L 2 / r 2 ). is there.

以上の結果から、q軸にのみ式(10)で表される磁束
が発生し、その大きさは最終値としてM・Imである。励
磁電流印加後、時定数τの3倍以上の時間が経過する
と、磁束は最終値の95%以上になる。d軸には磁束が発
生しない。換言すると、第2図に示すように3相平衡電
流の或る時点の値として、βだけずれた位相での電流を
一次の各相に流すと、磁束は第3図に示すようにa相軸
から同じくβだけずれた方向に発生する。従って、位相
βにより磁束の方向を任意の方向に制御できる。βは磁
極位置の初期位置を表わす。
From the above results, the magnetic flux is generated which is represented by the formula only the q-axis (10), its size is M · I m as the final value. When a time equal to or more than three times the time constant τ elapses after the application of the exciting current, the magnetic flux becomes 95% or more of the final value. No magnetic flux is generated on the d-axis. In other words, as shown in FIG. 2, when a current having a phase shifted by β is passed through each primary phase as a value of a three-phase equilibrium current at a certain point in time, the magnetic flux becomes a phase a as shown in FIG. It occurs in the direction also shifted by β from the axis. Therefore, the direction of the magnetic flux can be controlled in any direction by the phase β. β represents the initial position of the magnetic pole position.

また、PWM制御のため励磁電流にはキャリア周波数の
高調波電流が含まれるが、その交流成分の振幅について
は第4図の如く、ヒステリシスコンパレータ11,12のヒ
ステリシス幅を広くするとキャリア周波数が下って大振
幅となり、ヒステリシス幅を狭くするとキャリア周波数
が上って小振幅となる。
The excitation current includes a harmonic current of the carrier frequency due to the PWM control, and the amplitude of the AC component decreases as the hysteresis width of the hysteresis comparators 11 and 12 increases as shown in FIG. The amplitude becomes large, and when the hysteresis width is narrowed, the carrier frequency increases and the amplitude becomes small.

次に交流電流指令装置17について説明する。速度制御
の場合、本装置17は速度指令の入力端子18と、速度を検
出するエンコーダ、レゾルバ等の検出器19と、速度偏差
に比例した電流値▲i ▼をトルク指令として出力す
るアンプ20と、検出器19の出力から回転角度θを求める
回転角度検出回路21と、回転角度θ及び励磁時の位相β
からa相,b相の交流波形cos(θ+β),cos(θ+β−
2π/3)を発生する正弦波発生器22と、a相の交流波形
cos(θ+β)にトルク指令▲i ▼を掛けてa相の
交流電流指令値▲i ▼(=▲i ▼cos(θ+
β))を出力する乗算器23と、b相の交流波形cos(θ
+β−2π/3)にトルク指令▲i ▼を掛けてb相の
交流電流指令値▲i ▼(=▲i ▼cos(θ+β
−2π/3))を出力する乗算器24とからなる。負荷角制
御を行う場合は、必要に応じて正弦波発生器22に負荷角
δを入力し、cos(θ+β+δ),cos(θ−2π/3+β
+δ)の交流波形を発生させる。
Next, the AC current command device 17 will be described. In the case of speed control, the present device 17 includes a speed command input terminal 18, an encoder 19 for detecting speed, a detector 19 such as a resolver, and an amplifier for outputting a current value (i * T) proportional to the speed deviation as a torque command. 20, a rotation angle detection circuit 21 for obtaining a rotation angle θ from the output of the detector 19, a rotation angle θ and a phase β at the time of excitation.
From the a-phase and b-phase AC waveforms cos (θ + β), cos (θ + β-
2π / 3) sine wave generator 22 and a-phase AC waveform
multiply cos (θ + β) by a torque command ii * T ▼ to obtain an a-phase AC current command value ii * a ▼ (= ▲ i * T ▼ cos (θ +
β)) and a b-phase AC waveform cos (θ
+ Β-2π / 3) multiplied by a torque command ▲ i * T ▼ to obtain a b-phase AC current command value ▲ i * b ▼ (= ▲ i * T ▼ cos (θ + β)
−2π / 3)). When the load angle control is performed, the load angle δ is input to the sine wave generator 22 as necessary, and cos (θ + β + δ) and cos (θ−2π / 3 + β
+ Δ).

次に、運転手順について説明する。 Next, the operation procedure will be described.

(1) 運転に入る前に、二次巻線を予め超電導状態に
しておく。(静止) (2) スイッチSW1,SW2,SW3を励磁(E)側にしてお
く。スイッチSW1,SW2により励磁電流指令値は、 Ioa=Imcosβ Iob=Imcos(β−2π/3) となり、スイッチSW3によりキャリア周波数は低い値と
なる。従って、一次巻線の各相には直流分の励磁電流
と、低いキャリア周波数による大きな高調波電流とが流
れる。そのため、二次巻線に十分大きな損失が発生し、
超電導がクエンチして常電導状態になる。
(1) Before starting operation, the secondary winding is brought into a superconducting state in advance. (Static) (2) keep the switches SW 1, SW 2, SW 3 to the excitation (E) side. By the switches SW 1 and SW 2 , the exciting current command value becomes I oa = I m cos β I ob = I m cos (β−2π / 3), and the carrier frequency becomes low by the switch SW 3 . Therefore, a DC exciting current and a large harmonic current due to a low carrier frequency flow through each phase of the primary winding. Therefore, a sufficiently large loss occurs in the secondary winding,
The superconductivity is quenched to the normal conducting state.

(3) 一次巻線に励磁電流が流れると、磁束はτ=L2
/r2の時定数で増大してゆく。
(3) When the exciting current flows through the primary winding, the magnetic flux becomes τ = L 2
/ r slide into increased with a time constant of 2.

そこで、時定数τより十分長い時間、例えば3τ以上
経過したとき、スイッチSW3を運転(R)側にし、キャ
リア周波数を高くする。
Therefore, the time constant sufficiently longer than the tau, when passed example 3τ above, to operate the switch SW 3 (R) side, the carrier frequency is increased.

キャリア周波数を高くすると、高調波電流の大きさが
減少して二次巻線の損失が低減するから、二次巻線が超
電導状態に回復する。
When the carrier frequency is increased, the magnitude of the harmonic current is reduced and the loss of the secondary winding is reduced, so that the secondary winding is restored to the superconducting state.

この超電導状態になった瞬間、磁束が捕獲される。以
後は、磁束が変動しようとしてもこれを一定に保つよう
に二次巻線に電流が流れる。
At the moment of the superconducting state, the magnetic flux is captured. Thereafter, even if the magnetic flux fluctuates, a current flows through the secondary winding so as to keep it constant.

(4) 磁束を捕獲した後は、スイッチSW1,SW2を運転
(R)側にし、同期電動機として運転する。即ち、速度
指令を与えることにより、インバータ10の3相出力の周
波数が徐々に上がり、電動機が始動して所望の速度で回
転する。
(4) After capturing the magnetic flux, the switches SW 1 and SW 2 are set to the operation (R) side to operate as a synchronous motor. That is, by giving the speed command, the frequency of the three-phase output of the inverter 10 gradually increases, and the motor starts and rotates at a desired speed.

なお、トルク制御を行う場合は、アンプ20が出力する
速度指令に基づくトルク指令の代りに、スイッチSW4
通して端子25から各乗算器23,24にトルク指令を与え
る。
In the case where the torque control, instead of the torque command based on the speed command amplifier 20 outputs, providing a torque command to each of the multipliers 23 and 24 from the terminal 25 through the switch SW 4.

また、位置制御を行う場合は、位置検出器26を設け、
端子27からの位置指令と検出した位置との偏差をアンプ
28で増幅し、端子18からの速度指令の代りにスイッチSW
5によりアンプ28の出力を速度指令とする。
When performing position control, a position detector 26 is provided,
The deviation between the position command from terminal 27 and the detected position is
Amplify at 28, switch SW instead of speed command from terminal 18
The output of the amplifier 28 is set as a speed command by 5 .

各スイッチSW1〜スイッチSW5の制御、各種演算はハー
ドウェアで行っても良く、またソフトウェア制御で行っ
ても良い。
Control of the switches SW 1 ~ switch SW 5, various operations may be performed by hardware or may be performed by software control.

更に、上記実施例ではヒステリシスコンパレータ11,1
2によってPWM制御のインバータ10の電流を制御している
が、第5図に示すように三角波比較方式により電流を制
御する場合は、三角波発生器29に対する周波数指令をス
イッチSW3によりfL,fHに切換える。励磁時はスイッチSW
3をE側にして低い周波数の三角波を発生させ、磁束が
十分大きくなったらスイッチSW3をR側にして高い周波
数の三角波を発生させる。第6図に示すように、一次巻
線に流れる電流中の交流成分は三角波(キャリア)周波
数が低いと大きく、キャリア周波数が高いと小さくな
る。第5図中、符号30,31はヒステリシスのないコンパ
レータを示す。また、第1図中の部材と同一のものには
同一符号を付し、説明の重複を省く。
Further, in the above embodiment, the hysteresis comparators 11, 1
2, the current of the inverter 10 of the PWM control is controlled. However, when the current is controlled by the triangular wave comparison method as shown in FIG. 5, the frequency command to the triangular wave generator 29 is set to f L and f by the switch SW 3. Switch to H. Switch SW when energized
3 to generate a triangular wave having a frequency lower in the E side, causing the switch SW 3 When the magnetic flux is large enough to generate a triangular wave of a frequency higher in the R-side. As shown in FIG. 6, the AC component in the current flowing through the primary winding increases when the triangular wave (carrier) frequency is low, and decreases when the carrier frequency is high. In FIG. 5, reference numerals 30 and 31 denote comparators without hysteresis. Further, the same members as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.

なお、二次巻線が磁束を獲得したのちの同期電動機の
運転方法としては、上記実施例に限らず、獲得した磁束
の運転前の方向即ち磁極位置を記憶しておき、運転に際
して磁極方向を通常通り回転式エンコーダやレゾルバで
検出し通常のブラシレス直流機として運転することもで
きる。
The method of operating the synchronous motor after the secondary winding has acquired the magnetic flux is not limited to the above-described embodiment, but stores the direction before the operation of the acquired magnetic flux, that is, the magnetic pole position, and sets the magnetic pole direction during operation. As usual, it can be detected by a rotary encoder or a resolver and operated as a normal brushless DC machine.

上述した各実施例ではPWM制御によるインバータ10の
出力にもともと含まれるキャリア周波数に依存する高調
波電流を利用して超電導状態のクエンチ及び復帰を行っ
たが、直流電源と交流電源を別々に用いて交流電流の重
畳をオン/オフしても良い。
In each of the above-described embodiments, the quench and the return of the superconducting state are performed using the harmonic current depending on the carrier frequency originally included in the output of the inverter 10 by the PWM control, but the DC power supply and the AC power supply are separately used. The superposition of the alternating current may be turned on / off.

また、交流電流の重畳によらず、磁界、電流密度を変
えることにより常電導化、超電導化を制御しても良い。
Instead of the superposition of the alternating current, the normal conduction and the superconductivity may be controlled by changing the magnetic field and the current density.

更に、超電導巻線とこれに結合する他の巻線とは、上
述した超電導誘導電動機における二次巻線と一次巻線と
の関係に限定されるものではなく、それぞれ任意のもの
で良い。
Further, the superconducting winding and the other windings connected thereto are not limited to the relationship between the secondary winding and the primary winding in the above-described superconducting induction motor, but may be arbitrary.

H. 発明の効果 本発明によれば予め冷却して超電導状態にされている
任意の静止した超電導巻線を閉ループ励磁して超電導マ
グネットとすることができる。従って、特に本発明を超
電導誘導電動機の二次超電導巻線に適用する場合は、静
止時に二次巻線を超電導マグネットにすることができ、
最初から同期電動機として運転できるので、従来のよう
な誘導電動機運転から同期電動機運転へ移行する場合の
過渡現象がなく、広い分野で超電導誘導電動機を使用す
ることができる。
H. Effects of the Invention According to the present invention, any stationary superconducting winding that has been cooled and brought into the superconducting state in advance can be closed-loop excited to form a superconducting magnet. Therefore, particularly when the present invention is applied to a secondary superconducting winding of a superconducting induction motor, the secondary winding can be a superconducting magnet at rest,
Since the motor can be operated as a synchronous motor from the beginning, there is no transient phenomenon when switching from the operation of the induction motor to the operation of the synchronous motor as in the prior art, and the superconducting induction motor can be used in a wide field.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
励磁電流値の選定を説明する図、第3図は磁束方向を説
明する図、第4図はヒステリシス幅と交流成分の関係を
示す図、第5図は他の実施例を示すブロック図、第6図
は三角波の周波数と交流電流の関係を示す図、第7図は
超電導誘導電動機の構成例を示す断面図である。 図面中、9は超電導誘導電動機、10はインバータ、11と
12はヒステリシスコンパレータ、13はゲート回路、14と
15は電流検出器、16は励磁電流指令装置、17は交流電流
指令装置、19は速度検出器、21は回転角度検出回路、22
が正弦波発生器、23と24は乗算器、26は位置検出器、29
は三角波発生器である。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram for explaining selection of an exciting current value, FIG. 3 is a diagram for explaining a magnetic flux direction, and FIG. 4 is a diagram for explaining a hysteresis width and an AC component. FIG. 5 is a block diagram showing another embodiment, FIG. 6 is a diagram showing the relationship between the frequency of a triangular wave and an alternating current, and FIG. 7 is a sectional view showing a configuration example of a superconducting induction motor. . In the drawing, 9 is a superconducting induction motor, 10 is an inverter, 11
12 is a hysteresis comparator, 13 is a gate circuit, 14
15 is a current detector, 16 is an excitation current command device, 17 is an AC current command device, 19 is a speed detector, 21 is a rotation angle detection circuit, 22
Is a sine wave generator, 23 and 24 are multipliers, 26 is a position detector, 29
Is a triangular wave generator.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−91198(JP,A) 特開 昭63−249437(JP,A) 特開 昭64−25401(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-49-91198 (JP, A) JP-A-63-249437 (JP, A) JP-A-64-25401 (JP, A)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】閉じた超電導巻線に他の巻線を結合し、前
記他の巻線に直流の励磁電流を流し、この励磁電流が流
れている間に前記超電導巻線を常電導状態から超電導状
態に移行させて磁束を捕獲する超電導巻線の励磁方法に
おいて、 前記超電導巻線が超電導状態にある状態で前記他の巻線
に直流の励磁電流を流し、この励磁電流が流れている間
に同励磁電流に交流電流を重畳し、この交換電流の振幅
及び周波数のうち少なくとも一方を変化させることによ
り、前記超電導巻線を超電導状態から一旦常電導状態に
移行させ更に常電導状態から超電導状態に移行させて、
磁束を捕獲することを特徴とする超電導巻線の励磁方
法。
1. A closed superconducting winding is coupled with another winding, a DC exciting current is passed through the other winding, and while the exciting current is flowing, the superconducting winding is brought out of a normal conducting state. In a method of exciting a superconducting winding that shifts to a superconducting state and captures a magnetic flux, a DC exciting current flows through the other winding in a state where the superconducting winding is in a superconducting state. By superimposing an alternating current on the excitation current and changing at least one of the amplitude and frequency of the exchange current, the superconducting winding temporarily transitions from the superconducting state to the normal conducting state, and further from the normal conducting state to the superconducting state. To
A method for exciting a superconducting winding characterized by capturing a magnetic flux.
【請求項2】特許請求の範囲第1項において、前記他の
巻線に流す励磁電流とこの励磁電流に重畳する交流電流
をPWM制御のインバータから供給し、該インバータのキ
ャリア周波数を変えることにより前記重畳する交流電流
を変えることを特徴とする超電導巻線の励磁方法。
2. The method according to claim 1, wherein an exciting current flowing through the other winding and an alternating current superimposed on the exciting current are supplied from a PWM-controlled inverter, and the carrier frequency of the inverter is changed. A method for exciting a superconducting winding, wherein the superimposed alternating current is changed.
【請求項3】特許請求の範囲第1項または第2項におい
て、前記他の巻線に励磁電流が流れている期間が常電導
状態での前記超電導巻線の時定数の3倍以上経過したと
き、前記超電導巻線を常電導状態から超電導状態に移行
することを特徴とする超電導巻線の励磁方法。
3. The method according to claim 1, wherein a period during which the exciting current flows through the other winding is at least three times a time constant of the superconducting winding in a normal conducting state. A method for exciting the superconducting winding, wherein the superconducting winding is shifted from a normal conducting state to a superconducting state.
【請求項4】特許請求の範囲第1項または第2項または
第3項において、前記超電導巻線が誘導電動機の二次巻
線であり、前記他の巻線が該誘導電動機の一次巻線であ
り、この一次巻線の各相に流す励磁電流の値を、多相平
衡電流の或る時点での値とすることを特徴とする超電導
巻線の励磁方法。
4. A superconducting winding according to claim 1, 2 or 3, wherein said superconducting winding is a secondary winding of an induction motor, and said other winding is a primary winding of said induction motor. A method of exciting a superconducting winding, wherein the value of the exciting current flowing through each phase of the primary winding is set to a value at a certain point in time of the multiphase balanced current.
【請求項5】閉じた超電導巻線に他の巻線を結合し、前
記他の巻線に直流の励磁電流を流し、この励磁電流が流
れている間に前記超電導巻線を常電導状態から超電導状
態に移行させて磁束を捕獲する超電導巻線の励磁方法に
おいて、 前記超電導巻線が超電導状態にある状態で前記他の巻線
に直流の励磁電流を流し、この励磁電流が流れている間
に前記超電導巻線の電流及び磁束のうち少なくとも一方
を変化させることにより、前記超電導巻線を超電導状態
から一旦常電導状態に移行させ更に常電導状態から超電
導状態に移行させて、磁束を捕獲することを特徴とする
超電導巻線の励磁方法。
5. A closed superconducting winding is coupled with another winding, a DC exciting current is passed through said other winding, and the superconducting winding is brought out of a normal conducting state while the exciting current is flowing. In a method of exciting a superconducting winding that shifts to a superconducting state and captures a magnetic flux, a DC exciting current flows through the other winding in a state where the superconducting winding is in a superconducting state. By changing at least one of the current and the magnetic flux of the superconducting winding, the superconducting winding is temporarily shifted from the superconducting state to the normal conducting state, and further shifted from the normal conducting state to the superconducting state to capture the magnetic flux. A method for exciting a superconducting winding, comprising:
【請求項6】特許請求の範囲第5項において、前記他の
巻線に励磁電流が流れている期間が常電導状態での前記
超電導巻線の時定数の3倍以上経過したとき、前記超電
導巻線を常電導状態から超電導状態に移行することを特
徴とする超電導巻線の励磁方法。
6. The superconducting device according to claim 5, wherein when a time period during which the exciting current flows through the other winding is at least three times a time constant of the superconducting winding in a normal conduction state, A method for exciting a superconducting winding, wherein the winding is shifted from a normal conducting state to a superconducting state.
【請求項7】特許請求の範囲第5項または第6項におい
て、前記超電導巻線が誘導電動機の二次巻線であり、前
記他の巻線が該誘導電動機の一次巻線であり、この一次
巻線の各相に流す励磁電流の値を、多相平衡電流の或る
時点での値とすることを特徴とする超電導巻線の励磁方
法。
7. The superconducting winding according to claim 5, wherein the superconducting winding is a secondary winding of an induction motor, and the other winding is a primary winding of the induction motor. A method of exciting a superconducting winding, characterized in that the value of the exciting current flowing through each phase of the primary winding is a value at a certain point in time of the multi-phase balanced current.
JP62329901A 1987-12-28 1987-12-28 Excitation method of superconducting winding Expired - Lifetime JP2600234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62329901A JP2600234B2 (en) 1987-12-28 1987-12-28 Excitation method of superconducting winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329901A JP2600234B2 (en) 1987-12-28 1987-12-28 Excitation method of superconducting winding

Publications (2)

Publication Number Publication Date
JPH01174291A JPH01174291A (en) 1989-07-10
JP2600234B2 true JP2600234B2 (en) 1997-04-16

Family

ID=18226524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329901A Expired - Lifetime JP2600234B2 (en) 1987-12-28 1987-12-28 Excitation method of superconducting winding

Country Status (1)

Country Link
JP (1) JP2600234B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753462B2 (en) * 2011-09-01 2015-07-22 国立大学法人京都大学 Superconducting rotating machine operating method and superconducting rotating machine system
JP6391069B2 (en) * 2015-01-20 2018-09-19 ジャパンスーパーコンダクタテクノロジー株式会社 Induction superconducting motor control circuit
US20230421083A1 (en) * 2020-11-25 2023-12-28 Kyoto University Superconducting rotating machine and method of controlling superconducting rotating machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4991198A (en) * 1972-12-29 1974-08-30

Also Published As

Publication number Publication date
JPH01174291A (en) 1989-07-10

Similar Documents

Publication Publication Date Title
Zhou et al. Sensorless BLDC motor commutation point detection and phase deviation correction method
Jemli et al. Sensorless indirect stator field orientation speed control for single-phase induction motor drive
Hamed et al. Analysis of variable-voltage thyristor controlled induction motors
US4060753A (en) Control system for commutatorless motor
JPS5850119B2 (en) Control device for commutatorless motor
Ishida et al. Steady-state characteristics of a torque and speed control system of an induction motor utilizing rotor slot harmonics for slip frequency sensing
Iwaji et al. Position sensorless control method at zero-speed region for permanent magnet synchronous motors using the neutral point voltage of stator windings
JP6190967B2 (en) Power generation system
Chiba et al. A closed-loop operation of super high-speed reluctance motor for quick torque response
Boldea et al. Torque vector control (TVC) of axially-laminated anisotropic (ALA) rotor reluctance synchronous motors
JP3278556B2 (en) AC motor control device
JP4899509B2 (en) AC motor rotor phase estimation device
Xu et al. A fault-tolerant control strategy for six-phase transverse flux tubular PMLM based on synthetic vector method
JP2600234B2 (en) Excitation method of superconducting winding
JPS63103685A (en) Current detector for induction motor
Staines et al. A periodic burst injection method for deriving rotor position in saturated cage-salient induction motors without a shaft encoder
JP2007330074A (en) Motor controller and motor control method
JP3484058B2 (en) Position and speed sensorless controller
Trubenbach et al. Performance of a reluctance synchronous machine under vector control
JPH0834715B2 (en) How to operate a superconducting induction motor
Ei-Antably et al. Proposed control strategy for a cageless reluctance motor using terminal voltage and current
Nguyen et al. Sensorless direct torque control of a fractional-slot concentrated winding interior permanent magnet synchronous machine using extended rotor flux model
JPH0446074B2 (en)
JPS60219983A (en) Drive controller of induction motor
JPH08242600A (en) Current controller for hybrid excitation type permanent magnet motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term