JP2560278B2 - Magnetic pole position detector - Google Patents
Magnetic pole position detectorInfo
- Publication number
- JP2560278B2 JP2560278B2 JP60275766A JP27576685A JP2560278B2 JP 2560278 B2 JP2560278 B2 JP 2560278B2 JP 60275766 A JP60275766 A JP 60275766A JP 27576685 A JP27576685 A JP 27576685A JP 2560278 B2 JP2560278 B2 JP 2560278B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic pole
- pole position
- winding
- motor
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 claims description 49
- 230000004907 flux Effects 0.000 claims description 15
- 239000000284 extract Substances 0.000 claims 2
- 238000001514 detection method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000011295 pitch Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P8/00—Arrangements for controlling dynamo-electric motors rotating step by step
- H02P8/14—Arrangements for controlling speed or speed and torque
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Linear Motors (AREA)
- Control Of Stepping Motors (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、イメージスキヤナのヘッド送り等に使用
して好適なパルスモータに係り、特にパルスモータを直
流機相当の性能で制御するために不可欠な磁極位置信号
を、パルスモータの磁極から直接検出することで、本来
モータ外部に付加されるセンサを取除き、モータの小形
化を図った磁極位置検出装置に関する。Description: TECHNICAL FIELD The present invention relates to a pulse motor suitable for use in head feeding of an image scanner, etc., and particularly for controlling the pulse motor with performance equivalent to a DC machine. The present invention relates to a magnetic pole position detecting device in which an essential magnetic pole position signal is directly detected from a magnetic pole of a pulse motor to remove a sensor originally added to the outside of the motor to reduce the size of the motor.
近年、交流機の制御技術として、ベクトル制御法が開
発され、交流機も直流機と同等の高性能制御が可能とな
った。永久磁石形交流機にベクトル制御法を適用するた
めには、磁極位置を検出するセンサが必要である。セン
サ信号をもとに、モータ巻線に流れる交流電流の位相を
制御すれば、モータが発生するトルクは、ロータの位置
にかかわらず常に電流に比例し、直流機と等価となるこ
とが知られている。In recent years, a vector control method has been developed as a control technology for an AC machine, and the AC machine can perform high-performance control equivalent to that of a DC machine. In order to apply the vector control method to a permanent magnet type AC machine, a sensor for detecting the magnetic pole position is necessary. It is known that if the phase of the alternating current flowing in the motor winding is controlled based on the sensor signal, the torque generated by the motor is always proportional to the current regardless of the rotor position, and is equivalent to a DC machine. ing.
ハイブリッド形パルスモータも永久磁石形交流機の一
種と考えられ、ベクトル制御法を適用するには、外部に
磁極位置センサが必要である。A hybrid type pulse motor is also considered as a kind of permanent magnet type AC machine, and a magnetic pole position sensor is required outside to apply the vector control method.
第4図〜第7図はこの種のパルスモータの構成を示す
図である。図において、スライダがスケール上を移動す
るようになっている。スケールの上面には、一定のピッ
チτでスケール歯が形成されている。一方スライダは、
永久磁石と永久磁石のN極側とS極側に固定されたコ字
状のコアとから成り、コアには磁極1,2,3,4が形成され
ている。磁極1,2,3,4とスケール歯はわずかなギヤップ
を隔てて対向し、磁極1,3,2,4の順にスケール歯と1/4ピ
ッチずつずれている。磁極1,2には巻線5aが、磁極3,4に
は巻線5bがそれぞれ巻かれている。4 to 7 are diagrams showing the configuration of this type of pulse motor. In the figure, the slider is designed to move on the scale. Scale teeth are formed on the upper surface of the scale at a constant pitch τ. On the other hand, the slider
It is composed of a permanent magnet and a U-shaped core fixed to the N pole side and the S pole side of the permanent magnet, and magnetic poles 1, 2, 3, 4 are formed on the core. The magnetic poles 1, 2, 3, 4 and the scale teeth are opposed to each other with a slight gap, and the magnetic poles 1, 3, 2, 4 are displaced from the scale teeth by 1/4 pitch in this order. A winding 5a is wound around the magnetic poles 1 and 2, and a winding 5b is wound around the magnetic poles 3 and 4, respectively.
スライダには第5図に示すように非磁性材を介し磁極
位置センサが取り付けられている。磁極位置信号は、90
゜位相の2相信号として得られるように、2個のセンサ
が配置されている。1相分の構成は、永久磁石と永久磁
石のN極側、S極側に固定された磁極6,7(磁極8,9)お
よびS極側のギヤップに取り付けたホール素子で形成さ
れている。磁極6,7(磁極8,9)とスケール歯はわずかな
ギヤップを隔てて対向し、かつ同ピッチとなっている。
さらに磁極6(磁極7)と磁極8(磁極9)は互いに1/
4ピッチだけずれている。スライダが移動すると、永久
磁石と磁極6,7(磁極8,9)とスケールで構成された磁気
回路の磁気抵抗が変化し、それにともなって磁束が変化
する。この磁束変化は位置Xの関数となるため、これを
ホール素子で検出すれば、第6図に示す位置検出信号Vs
a、Vsbが得られる。As shown in FIG. 5, a magnetic pole position sensor is attached to the slider via a non-magnetic material. The magnetic pole position signal is 90
Two sensors are arranged so as to be obtained as a two-phase signal of a phase. The structure for one phase is formed by a permanent magnet, magnetic poles 6 and 7 (magnetic poles 8 and 9) fixed to the N pole side and the S pole side of the permanent magnet, and a Hall element attached to the S pole side gearup. . The magnetic poles 6 and 7 (magnetic poles 8 and 9) and the scale teeth face each other with a slight gap, and have the same pitch.
Further, the magnetic pole 6 (magnetic pole 7) and the magnetic pole 8 (magnetic pole 9) are 1 / each other
It is offset by 4 pitches. When the slider moves, the magnetic resistance of the magnetic circuit including the permanent magnet, the magnetic poles 6 and 7 (magnetic poles 8 and 9) and the scale changes, and the magnetic flux changes accordingly. This magnetic flux change is a function of the position X, so if this is detected by the Hall element, the position detection signal Vs shown in FIG.
a, Vsb are obtained.
第7図にこの種のモータの駆動回路の一構成例を示す
が、VsaとVsbの直流バイアス分はセンサアンプで除去
し、位置信号として交流成分のみを取り出し、電流振幅
指令Imと乗算すれば、交流の電流指令▲i* a▼、▲i
* b▼が得られる。パワーアンプは指令通りの電流をモ
ータ巻線に供給する。FIG. 7 shows an example of the configuration of a drive circuit for this type of motor. If the DC bias components of Vsa and Vsb are removed by a sensor amplifier and only the AC component is taken out as a position signal, the current amplitude command Im is multiplied. , AC current command ▲ i * a ▼, ▲ i
* B ▼ is obtained. The power amplifier supplies the motor winding with the current as instructed.
即ち、磁極位置センサとスライダの相対位置関係を第
5図に示すように、磁極6と磁極1がスケール歯に対し
て同一位置となるように配置すれば、電流指令▲i* a
▼と巻線5aの誘起電圧および電流指令▲i* b▼と巻線
5bの誘起電圧が同位相となり、最も効率よく推力を発生
できる。さらにスライダが移動しても、磁極位置センサ
とスライダの相対位置関係は変わらないため、電流指令
▲i* a▼と巻線5aの誘起電圧および電流指令▲i* b
▼と巻線5bの誘起電圧は常に同位相となり、その結果パ
ルスモータの推力は電流振幅のみによって決定される。
よって、第7図の構成で駆動されるパルスモータは、電
流振幅指令Imから見れば全く直流機と等価と見なすこと
ができる。That is, if the magnetic pole position sensor and the slider are arranged so that the magnetic pole 6 and the magnetic pole 1 are at the same position with respect to the scale teeth as shown in FIG. 5, the current command ▲ i * a
▼ and winding 5a induced voltage and current command ▲ i * b ▼ and winding
The induced voltages of 5b have the same phase, and the thrust can be generated most efficiently. Even if the slider further moves, the relative positional relationship between the magnetic pole position sensor and the slider does not change. Therefore, the current command ▲ i * a ▼ and the induced voltage and current command ▲ i * b of the winding 5a are calculated.
The induced voltage in the winding 5b and the induced voltage in the winding 5b always have the same phase, and as a result, the thrust of the pulse motor is determined only by the current amplitude.
Therefore, the pulse motor driven by the configuration of FIG. 7 can be regarded as completely equivalent to a DC machine when viewed from the current amplitude command Im.
パルスモータの高性能制御を行うためには、磁極位置
センサを必要とし従来はモータ外部に特別の磁極位置セ
ンサを取付けていたが、その分モータサイズが大きくな
り、またこのモータを組込んだ装置全体のサイズも大き
くなるという欠点があった。In order to perform high-performance control of a pulse motor, a magnetic pole position sensor was required, and conventionally a special magnetic pole position sensor was attached to the outside of the motor, but the size of the motor was correspondingly increased, and a device incorporating this motor was installed. There was a drawback that the overall size also increased.
この発明は、モータ駆動信号に高周波信号を重畳する
手段と、モータ巻線電流によって生じる磁束変化を検出
する手段と、検出信号から上記高周波信号のみ分離し、
磁極位置信号に変換する検出回路を具備することを特徴
とする。According to the present invention, means for superposing a high frequency signal on a motor drive signal, means for detecting a magnetic flux change caused by a motor winding current, and only the high frequency signal is separated from a detection signal,
It is characterized by comprising a detection circuit for converting into a magnetic pole position signal.
上記構成によれば、スライダがスケール上を移動する
時の磁極の磁気抵抗変化が、検出された高周波信号の振
幅変化となって現われるため、この振幅変化のみを取り
出せば磁極位置信号が得られる。According to the above configuration, the magnetic resistance change of the magnetic pole when the slider moves on the scale appears as the amplitude change of the detected high frequency signal. Therefore, the magnetic pole position signal can be obtained by extracting only this amplitude change.
以下図面を参照して本発明の実施例を説明する。第1
図は本発明の一実施例によるパルスモータの要部を示す
構成図、第3図は磁極位置検出回路の一実施例によるブ
ロック図である。Embodiments of the present invention will be described below with reference to the drawings. First
FIG. 3 is a block diagram showing an essential part of a pulse motor according to an embodiment of the present invention, and FIG. 3 is a block diagram showing an embodiment of a magnetic pole position detection circuit.
スライダの磁極1,2には巻線5aが、磁極3,4には巻線5b
が巻かれ、それぞれパワーアンプによって駆動される。
さらに磁極1には巻線10aが、磁極2には巻線11aが、磁
極3には巻線10bが、磁極4には巻線11bが巻かれ、巻線
10aの電圧Vs1、巻線11aの電圧Vs2、巻線10bの電圧Vs3、
巻線11bの電圧Vs4はそれぞれ磁極位置検出回路へ入力さ
れている。磁極位置検出回路は、第3図に示すごとく、
電流指令に高周波信号を重畳するための乗算器20、21お
よび減算器22、23と、センサ巻線電圧Vs1〜Vs4から高周
波信号のみを取り出すためのハイパスフィルタ(HPF)2
4〜27と、HPF出力に電流指令に重畳したのと同じ高周波
信号を乗算するための乗算器28〜31と、乗算器28と29の
出力を減算する減算器32と、乗算器30と31の出力を減算
する減算器33と、減算器32、33の出力から高周波成分を
除去するためのローパスフイルタ(LPF)34、35とで構
成される。Winding 5a is on the magnetic poles 1 and 2 of the slider, and winding 5b is on the magnetic poles 3 and 4.
Are wound and driven by power amplifiers.
Further, the winding 10a is wound around the magnetic pole 1, the winding 11a is wound around the magnetic pole 2, the winding 10b is wound around the magnetic pole 3, and the winding 11b is wound around the magnetic pole 4.
10a voltage Vs 1 , winding 11a voltage Vs 2 , winding 10b voltage Vs 3 ,
The voltage Vs 4 of the winding 11b is input to the magnetic pole position detection circuit. The magnetic pole position detection circuit, as shown in FIG.
Multipliers 20 and 21 and subtractors 22 and 23 for superimposing a high frequency signal on the current command, and a high pass filter (HPF) 2 for extracting only a high frequency signal from the sensor winding voltages Vs 1 to Vs 4
4 to 27, multipliers 28 to 31 for multiplying the HPF output by the same high frequency signal as the current command, a subtractor 32 for subtracting the outputs of the multipliers 28 and 29, and multipliers 30 and 31. And a low pass filter (LPF) 34, 35 for removing high frequency components from the outputs of the subtracters 32, 33.
以下に第1図〜第3図を参照しながら動作を説明す
る。The operation will be described below with reference to FIGS.
第1図のモータ巻線5aに電流iaが流れると、それによ
る磁束は磁極1→スケール→磁極2→磁極1という磁気
回路を流れ、巻線10a、巻線11aにそれぞれ電圧を誘起す
る。When the current ia flows through the motor winding 5a in FIG. 1, the magnetic flux due to the current flows through the magnetic circuit of magnetic pole 1 → scale → magnetic pole 2 → magnetic pole 1 and induces voltages in the windings 10a and 11a, respectively.
巻線10aの電圧Vs1および巻線11aの電圧Vs2はモータ固
定子、回転子間相対変位によるリラクタンス変化の速度
起電圧と、モータ巻線電流iaによる誘起電圧、を加えた
もので次のように得られる。The voltage Vs 1 of the winding 10a and the voltage Vs 2 of the winding 11a are the sum of the speed electromotive voltage of the reluctance change due to the relative displacement between the motor stator and the rotor, and the induced voltage due to the motor winding current ia. Is obtained as
すなわち、速度起電圧Esは永久磁石による磁束φ1と
コイル電流iaによる鎖交磁束φ2のモータ固定子、回転
子間相対位置変化に基づく変化として表わされ、 となり、また誘起電圧Eiは上記鎖交磁束φ2のコイル電
流iaの時間変化に基づく変化として表わされる。That is, the speed electromotive force Es is expressed as a change in the relative position between the motor stator and the rotor of the magnetic flux φ1 due to the permanent magnet and the interlinking magnetic flux φ2 due to the coil current ia, Further, the induced voltage Ei is expressed as a change based on the time change of the coil current ia of the interlinkage magnetic flux φ2.
よって 同様に ここで Ns ;巻線10a(巻線11a)の巻数 △φ;永久磁石により磁極1(磁極2)を流れ
る磁束の位置による変化量の最大値 Ms ;巻線5aの磁極1に巻かれた部分と巻線10
aとの間、巻線5aの磁極2に巻かれた部分と巻線11aとの
間、巻線5aの磁極2に巻かれた部分と巻線10aとの間、
巻線5aの磁極1に巻かれた部分と巻線11aの間、の各相
互インダクタンスの平均値 △Ms;磁極1(磁極2)の巻線5aと巻線10a(巻
線11a)の間の相互インダクタンスの位置による変化量
の最大値 一例として、磁極1の磁束と相互インダクタンスの位
置による変化を第2図に示す。(3)、(4)式の右辺
第1項は主に速度に依存する成分、第2項はiaに依存す
る成分、第3項はiaと磁極位置に依存する成分となり、
第3項のみを分離できれば磁極位置の検出が可能とな
る。 Therefore As well Here, Ns: the number of turns of the winding 10a (winding 11a) Δφ: the maximum value of the amount of change due to the position of the magnetic flux flowing through the magnetic pole 1 (magnetic pole 2) by the permanent magnet Ms; the portion of the winding 5a wound around the magnetic pole 1 And winding 10
a, between the portion of the winding 5a wound on the magnetic pole 2 and the winding 11a, between the portion of the winding 5a wound on the magnetic pole 2 and the winding 10a,
Average value of each mutual inductance between the portion of the winding 5a wound on the magnetic pole 1 and the winding 11a ΔMs; between the winding 5a of the magnetic pole 1 (magnetic pole 2) and the winding 10a (winding 11a) As an example of the maximum value of the change amount of the mutual inductance, the change of the magnetic flux of the magnetic pole 1 and the mutual inductance depending on the position is shown in FIG. The first term on the right-hand side of equations (3) and (4) is mainly a velocity-dependent component, the second term is a component dependent on ia, and the third term is a component dependent on ia and the magnetic pole position.
If only the third term can be separated, the magnetic pole position can be detected.
次に第3図の検出回路の動作を説明する。電流指令▲
i* a▼は、推力発生に作用する基本波成分と、基本波
より十分高い周波数の信号を減算器22で重畳して得られ
る。高周波成分は、乗算器20で振幅Isと交流信号sin
(ωst+)を乗算して作成する。パワーアンプは指令
通りの電流を巻線5aに供給する。今、モータ巻線電流ia
の基本波を磁束と直交するよう、即ち逆起電力と同相と
なるように決めればiaは次式のように電流指令Imを振幅
とする磁極ピッチ周期の正弦波(基本波成分)と、この
発明に係る磁極位置検出用の高周波成分より表され、電
流磁束間の直交関係ずれの位相差を考慮せずともよく、
最大推力対応となる。Next, the operation of the detection circuit of FIG. 3 will be described. Current command ▲
i * a ▼ is obtained by superimposing a fundamental wave component acting on thrust generation and a signal having a frequency sufficiently higher than the fundamental wave by the subtractor 22. The high frequency component is the amplitude Is and the AC signal sin in the multiplier 20.
It is created by multiplying (ωst +). The power amplifier supplies the current as instructed to the winding 5a. Now the motor winding current ia
If the fundamental wave of is orthogonal to the magnetic flux, that is, in phase with the back electromotive force, ia is a sine wave (fundamental wave component) of the magnetic pole pitch period with the current command Im as the amplitude Represented by a high frequency component for magnetic pole position detection according to the invention, it is not necessary to consider the phase difference of the orthogonal relationship deviation between the current magnetic flux,
It corresponds to the maximum thrust.
(5)式を(3)、(4)式に代入すると、Vs1、Vs2
はそれぞれ次式で与えられる。 Substituting equation (5) into equations (3) and (4), Vs 1 and Vs 2
Are respectively given by the following equations.
Vs1、Vs2をそれぞれハイパスフイルタ24、25を通し、
ωsの成分以外を除去すると、 は次式となる。 Pass Vs 1 and Vs 2 through high-pass filters 24 and 25,
If the components other than ωs are removed, Is given by
さらに直流バイアス成分を除去するため乗算器28、29
で にそれぞれcos(ωst+)を乗算し、乗算器28の出力
から乗算器29の出力を減算器32で減算すれば、その出力
Vsaは(8)式、(9)式の第2項が消去、第1項、第
3項が変形され次式となる。 Furthermore, in order to remove the DC bias component, the multipliers 28, 29
so Are multiplied by cos (ωst +) respectively, and the output of the multiplier 29 is subtracted from the output of the multiplier 28 by the subtractor 32.
In Vsa, the second terms of the equations (8) and (9) are deleted, and the first and third terms are modified to become the following equations.
ローパスフィルタ34を通してωsの成分を除去すれ
ば、磁極位置信号 は次式のように得られる。 If the ωs component is removed through the low-pass filter 34, the magnetic pole position signal Is obtained as follows.
次に巻線5bの電流ibを とし、前述と同様の処理を行えば、磁極位置 は次式で得られる。 Next, the current ib of winding 5b is If the same process as above is performed, the magnetic pole position Is obtained by the following formula.
と電流振幅指令Imを乗算すれば、▲i* a▼の基本波成
分が得られ、 とImを乗算すれば▲i* b▼の基本波成分が得られる。
ただし、▲i* a▼と(5)式、▲i* b▼と(12)式
を等しくするためには △MsIsωs=1 ……(14) となるようにIsを決めなければならない。 And the current amplitude command Im are multiplied to obtain the fundamental wave component of ▲ i * a ▼, And Im are multiplied, the fundamental wave component of i * b is obtained.
However, in order to make ▲ i * a ▼ and equation (5) equal, and ▲ i * b ▼ and equation (12) equal, Is must be determined so that ΔMsIsωs = 1 (14).
こうして、本実施例によれば、特別に磁極位置センサ
を外部に取り付けなくても、磁極位置の検出が可能とな
り、モータの小形化を図ることができる。Thus, according to the present embodiment, the magnetic pole position can be detected without specially attaching the magnetic pole position sensor to the outside, and the motor can be downsized.
なお、上記の説明はリニアパルスモータを例にとって
説明したが、ロータリパルスモータやその他凸極性を有
する永久磁石形モータに適用することも可能である。Although the above description has been given by taking the linear pulse motor as an example, the present invention can be applied to a rotary pulse motor and other permanent magnet type motors having a convex polarity.
以上説明したように、この発明はモータ駆動信号に高
周波信号を重畳し、その時の磁束変化をモータ巻線と同
心に巻かれた検出巻線で検出して、電子回路で磁極位置
信号に変換するようにしたので、外部に専用の磁極位置
センサを取り付ける必要がない。As described above, according to the present invention, the high frequency signal is superimposed on the motor drive signal, and the change in magnetic flux at that time is detected by the detection winding wound concentrically with the motor winding and converted into a magnetic pole position signal by an electronic circuit. Therefore, it is not necessary to attach a dedicated magnetic pole position sensor to the outside.
従ってこのパルスモータをイメージスキヤナのヘッド
送り等に使用すれば、装置全体の小形化が図れる。Therefore, if this pulse motor is used for head feeding of an image scanner, the size of the entire apparatus can be reduced.
第1図は本発明の一実施例によるパルスモータの要部の
構成を示す図、第2図は磁極1の磁束と巻線5aと巻線10
a間の相互インダクタンスの位置による変化を示す図、
第3図は本発明の一実施例による磁極位置検出回路の構
成を示すブロック図、第4図は従来のパルスモータの構
成を示す図、第5図は従来の磁極位置センサの構成を示
す図、第6図は従来の磁極位置センサの検出波形図、第
7図は従来のパルスモータの駆動回路の構成を示す図で
ある。 (5a)、(5b)……高周波信号重畳のモータ巻線 (10a)、(11a)、(10b)、(11b)……検出巻線 (24)、(25)、(26)、(27)……ハイパスフィルタ
ー(高周波信号のみを取り出す手段) (28)、(29)、(30)、(31)……乗算器(高周波信
号を変調する手段) (32)、(33)……減算器(直流バイアス成分除去手
段) (34)、(35)……ローパスフィルター(変調用高周波
信号除去手段)FIG. 1 is a diagram showing a configuration of a main part of a pulse motor according to an embodiment of the present invention, and FIG. 2 is a magnetic flux of a magnetic pole 1, a winding 5a and a winding 10.
Diagram showing changes in mutual inductance between a and position,
FIG. 3 is a block diagram showing the configuration of a magnetic pole position detection circuit according to an embodiment of the present invention, FIG. 4 is a diagram showing the configuration of a conventional pulse motor, and FIG. 5 is a diagram showing the configuration of a conventional magnetic pole position sensor. FIG. 6 is a detection waveform diagram of a conventional magnetic pole position sensor, and FIG. 7 is a diagram showing a configuration of a drive circuit of a conventional pulse motor. (5a), (5b) ... Motor winding for superposition of high frequency signals (10a), (11a), (10b), (11b) ... Detection winding (24), (25), (26), (27) ) …… High-pass filter (means for extracting only high-frequency signals) (28), (29), (30), (31) …… Multiplier (means for modulating high-frequency signals) (32), (33) …… Subtraction Device (DC bias component removal means) (34), (35) ...... Low-pass filter (modulation high-frequency signal removal means)
Claims (2)
て、多相モータ巻線の各相へ相互に位相を異にする高周
波信号を重畳する手段と、上記多相モータ巻線からの高
周波信号重畳の正弦波モータ電流による磁束変化、及び
モータ固定子、回転子間のリラクタンス変化に基づく磁
束変化を電気信号に変換する複数個の検出手段と、上記
複数個の検出手段より得られた電気信号から、磁極位置
信号を復調する手段、を具備することを特徴とする磁極
位置検出装置。1. In a permanent magnet type motor having a convex polarity, a means for superposing a high frequency signal having different phases on each phase of a multi-phase motor winding, and a high-frequency signal superimposing from the multi-phase motor winding. A plurality of detecting means for converting a magnetic flux change due to the sine wave motor current and a magnetic flux change due to a reluctance change between the motor stator and the rotor into electric signals, and from the electric signals obtained by the plurality of detecting means. And a means for demodulating a magnetic pole position signal, a magnetic pole position detecting device.
り得た電気信号から、磁極位置に対応して振幅変調され
た高周波信号を取り出すハイパスフイルタ、ハイパスフ
イルタ出力の振幅変調高周波信号にモータ巻線電流に重
畳したのと同じ高周波信号を乗算する乗算器、乗算器出
力を相互に減算し直流バイアス成分を除去する減算器、
減算器出力より上記高周波信号を除去し磁極位置信号を
取り出すローパスフィルタ、を具備することを特徴とす
る、特許請求の範囲第1項記載の磁極位置検出装置。2. A magnetic pole position signal demodulating means extracts a high frequency signal amplitude-modulated corresponding to the magnetic pole position from the electric signal obtained by the detecting means, and a high-pass filter outputs high-frequency amplitude-modulated high-frequency signals to the motor. A multiplier that multiplies the same high-frequency signal that is superimposed on the line current, a subtractor that subtracts the multiplier outputs from each other to remove the DC bias component,
The magnetic pole position detecting device according to claim 1, further comprising a low-pass filter that removes the high frequency signal from the output of the subtractor and extracts the magnetic pole position signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60275766A JP2560278B2 (en) | 1985-12-06 | 1985-12-06 | Magnetic pole position detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60275766A JP2560278B2 (en) | 1985-12-06 | 1985-12-06 | Magnetic pole position detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62135297A JPS62135297A (en) | 1987-06-18 |
JP2560278B2 true JP2560278B2 (en) | 1996-12-04 |
Family
ID=17560090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60275766A Expired - Lifetime JP2560278B2 (en) | 1985-12-06 | 1985-12-06 | Magnetic pole position detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2560278B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6720680B1 (en) | 1999-02-04 | 2004-04-13 | Nikon Corporation | Flat motor device and its driving method, stage device and its driving method, exposure apparatus and exposure method, and device and its manufacturing method |
JP2001351812A (en) | 2000-06-06 | 2001-12-21 | Mikuni Corp | Electromagnetic actuator, valve driving device using the same, and position or speed sensor |
JP4645279B2 (en) * | 2005-04-18 | 2011-03-09 | シンフォニアテクノロジー株式会社 | Rotation detector |
JP2006349377A (en) * | 2005-06-13 | 2006-12-28 | Shinko Electric Co Ltd | Two-degree-of-freedom sensor |
JP4840727B2 (en) * | 2006-08-04 | 2011-12-21 | 横河電機株式会社 | Planar positioning device |
JP2008145140A (en) * | 2006-12-06 | 2008-06-26 | Ushio Inc | Planar stage with magnetic flux sensor and magnetic flux sensor |
JP2023070515A (en) * | 2021-11-09 | 2023-05-19 | 株式会社日立ハイテク | Carrier device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6052680B2 (en) * | 1978-04-28 | 1985-11-20 | ブラザー工業株式会社 | Pulse motor with position detection circuit |
JPS5992798A (en) * | 1982-11-16 | 1984-05-29 | Matsushita Electric Ind Co Ltd | Linear servo motor |
-
1985
- 1985-12-06 JP JP60275766A patent/JP2560278B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62135297A (en) | 1987-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1900091B1 (en) | Electric motor | |
EP0189676B1 (en) | Driving circuit for brushless dc motors | |
Jiang et al. | High dynamic speed sensorless AC drive with on-line model parameter tuning for steady-state accuracy | |
JP7267398B2 (en) | Position monitoring for electrical machines | |
EP2816725A2 (en) | Three phase flux switching generator in a three stage wound field synchronous machine | |
US20110037422A1 (en) | Control of electrical machines | |
US20160056743A1 (en) | Motor drive control apparatus and motor drive control method | |
JPS61500825A (en) | DC motor | |
JPH08172764A (en) | Brushless motor | |
US20090218973A1 (en) | Control of switched reluctance machines | |
KR900007109B1 (en) | Speed controller for synchronous motor | |
JP2560278B2 (en) | Magnetic pole position detector | |
Binns et al. | Implicit rotor-position sensing using motor windings for a self-commutating permanent-magnet drive system | |
JPH07112358B2 (en) | Half-wave rectifying brushless synchronous motor | |
JPH0213556B2 (en) | ||
JPS6030897B2 (en) | speed detection device | |
JPH0720389B2 (en) | AC signal generator | |
JPH0632586B2 (en) | 3-phase DC motor | |
RU2087068C1 (en) | Electric drive | |
JPS63136998A (en) | Drum driving system | |
JPH02142383A (en) | Brushless motor | |
JPH0470879B2 (en) | ||
JPS608461B2 (en) | DC generator type non-contact speed detection device | |
JPH0546197B2 (en) | ||
JPS58215560A (en) | Rotating speed detector |