JPH0631162B2 - Adhesive for bonding silicon nitride ceramic sinter and bonding method - Google Patents

Adhesive for bonding silicon nitride ceramic sinter and bonding method

Info

Publication number
JPH0631162B2
JPH0631162B2 JP28835085A JP28835085A JPH0631162B2 JP H0631162 B2 JPH0631162 B2 JP H0631162B2 JP 28835085 A JP28835085 A JP 28835085A JP 28835085 A JP28835085 A JP 28835085A JP H0631162 B2 JPH0631162 B2 JP H0631162B2
Authority
JP
Japan
Prior art keywords
adhesive
silicon nitride
mgo
bonding
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28835085A
Other languages
Japanese (ja)
Other versions
JPS62148380A (en
Inventor
隆弘 蒲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP28835085A priority Critical patent/JPH0631162B2/en
Publication of JPS62148380A publication Critical patent/JPS62148380A/en
Publication of JPH0631162B2 publication Critical patent/JPH0631162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化けい素系セラミック焼結体同士を接合す
るための接着剤および接着方法に関する。
TECHNICAL FIELD The present invention relates to an adhesive and a bonding method for bonding silicon nitride-based ceramic sintered bodies to each other.

〔従来の技術〕[Conventional technology]

窒化けい素(Si)系焼結品は、各種のセラミッ
クの中でも、硬く、しかも靭性が高いので、強度、靭
性、耐摩耗性等が要求される高温材料、例えばバルブ
類、軸受類等の耐熱部品材料として有用であり、従来の
耐熱合金に代わる新材料としてその応用が種々試みられ
ている。
Since silicon nitride (Si 3 N 4 ) based sintered products are hard and have high toughness among various ceramics, they are high-temperature materials that require strength, toughness, wear resistance, etc., such as valves and bearings. It is useful as a material for heat-resistant parts such as, and its application has been tried variously as a new material replacing the conventional heat-resistant alloy.

しかるに、これらの構造部材は、形状が複雑であり、ま
た寸法精度が厳しく要求されるので、これらを一体物の
焼結品として製造することは容易でない。このため、こ
れらの構造部材を製作する方法として、部材を複数の部
分に分割して単純な形状を有する複数の焼結品を製作
し、それらを接着剤で接合して目的とする形状・サイズ
を有する構造部材に組み立てる方法が提案されており、
またそのための接着剤、接着方法についてもいくつかの
有用な提案がなされている(例えば、特開昭55−94975
号、同58−91086号、同59−190277号)。
However, since these structural members have complicated shapes and strict dimensional accuracy is required, it is not easy to manufacture them as an integral sintered product. For this reason, as a method of manufacturing these structural members, the members are divided into a plurality of parts to produce a plurality of sintered products having a simple shape, and these are joined with an adhesive to obtain a desired shape and size. A method of assembling into a structural member having
Also, some useful proposals have been made regarding adhesives and bonding methods therefor (see, for example, JP-A-55-94975).
No. 58-91086, No. 59-190277).

〔解決しようとする問題点〕[Problems to be solved]

しかるに、セラミック焼結体同士を無加圧下に接合する
場合に使用される接着剤は、耐熱ガラス組成を有するも
のが大部分である。ガラス接着剤を用いて窒化けい素系
セラミック焼結品同士を接着した場合、その接合部の接
着強度や接着層の硬度は、その焼結体の半分以下と極め
て低く、また接着層はガラス質であるために、靭性にも
乏しい。
However, most of the adhesives used for joining the ceramic sintered bodies without pressure have a heat-resistant glass composition. When silicon nitride ceramic sintered products are bonded together using a glass adhesive, the bonding strength at the joint and the hardness of the adhesive layer are extremely low, less than half that of the sintered body, and the adhesive layer is made of glass. Therefore, the toughness is also poor.

本発明は上記実情に対処すべく、窒化けい素系セラミッ
ク焼結品同士を接着するための改良された接着剤および
接着方法を提供しようとするものである。
The present invention intends to provide an improved adhesive and a bonding method for bonding silicon nitride-based ceramic sintered products to each other in order to cope with the above situation.

〔問題点を解決するための手段および作用〕[Means and Actions for Solving Problems]

本発明のセラミック接着剤は、MgO:5〜23%、Al
:20〜50%、およびSiO:40〜60%からなる
MgO−Al−SiO粉末100重量部に、平均
粒径:1.5μm以下のSi粉末:26〜65重量部
を配合した混合粉末組成物として構成される。
The ceramic adhesive of the present invention comprises MgO: 5-23%, Al
2 O 3: 20 to 50% and SiO 2: the MgO-Al 2 O 3 -SiO 2 powder 100 parts by weight consisting of 40% to 60%, average particle diameter: 1.5 [mu] m or less the Si 3 N 4 powder: 26 It is constituted as a mixed powder composition containing ~ 65 parts by weight.

また、本発明は、上記接着剤を、窒化けい素系セラミッ
ク焼結品同士の接合面に介在させ、無加圧下、温度:15
00〜1700℃にて加熱処理することにより、Mg−Al−
Si−O−N系のオキシナイトライドガラスもしくはガ
ラスセラミックのマトリックス中にSi粒子が均
一分散した接着層を形成することを特徴とする接着方法
を提供する。
Further, the present invention interposes the above adhesive on the joint surface between the silicon nitride ceramic sintered products, and the temperature: 15
By heat treatment at 00 to 1700 ° C, Mg-Al-
Provided is a bonding method, which comprises forming a bonding layer in which Si 3 N 4 particles are uniformly dispersed in a matrix of Si—O—N oxynitride glass or glass ceramic.

なお、本発明接着剤の成分組成比を示す%はすべて重量
%である。
All% showing the composition ratio of the adhesive of the present invention are% by weight.

本発明の接着剤を、接合すべき1組の窒化けい素系焼結
品(以下、「被接着体」ともいう)の接着面間に介在さ
せて加熱処理すると、生成するMgO−Al−S
iO系ガラス融液が、被接着体のガラス相とよくなじ
むと共に、該ガラス融液と、その中に混在分散している
微細粒子、つまり比表面積の大きなSi粒子とが
反応(Siがガラス融液中に固溶)することによ
り、窒素含有ガラス(このものは、一般のガラスに比
し、硬度および靭性が高い)が生成し、かつ残余のSi
粒子は窒素含有ガラス(マトリックス)中に均一
分散する。このように、硬度、靭性の高い窒素含有ガラ
スのマトリックスが形成されることと、そのマトリック
ス中に硬質の微細Si粒子が分散相として混在す
ることの2つの効果が相まって、接着層の硬度、靭性お
よび強度が改良される。
When the adhesive of the present invention is interposed between the bonding surfaces of a set of silicon nitride-based sintered products to be bonded (hereinafter, also referred to as “bonded object”) and heat-treated, MgO—Al 2 O is produced. 3- S
The io 2 glass melt is well compatible with the glass phase of the adherend, and the glass melt reacts with fine particles mixed and dispersed therein, that is, Si 3 N 4 particles having a large specific surface area ( Ni 3 -containing glass (this is higher in hardness and toughness than general glass) is formed by the solid solution of Si 3 N 4 in the glass melt, and the remaining Si
The 3 N 4 particles are uniformly dispersed in the nitrogen-containing glass (matrix). In this way, the two effects of forming a matrix of nitrogen-containing glass having high hardness and toughness and mixing hard fine Si 3 N 4 particles as a dispersed phase in the matrix are combined to form an adhesive layer. Hardness, toughness and strength are improved.

本発明において、MgO−Al−SiO系混合
粉末の配合比は、MgO:5〜23%、好ましくは10〜23
%、Al:20〜50%、SiO:40〜60%に規定
される。この3成分系の組成は、第1図中、領域(A)
に位置する。これらの3成分の組成をこのように限定し
たのは、この領域(A)内の融点が最も低く、該混合粉
末が溶融し易く、これに混在するSi粒子との濡
れ性が良好であり、またその融液と被接着体のガラス相
とも良くなじみ、もしこの領域(A)からいずれの方向
に逸脱しても、溶融が不完全となり易く、Si
子や被接着体との濡れ・なじみが不十分となるほか、被
接着体と形成される接着層との熱膨張率のミスマッチに
よりクラックが発生し、強度が低下する等の不具合が生
じるからである。
In the present invention, the compounding ratio of MgO-Al 2 O 3 -SiO 2 -based mixed powder, MgO: 5 to 23%, preferably from 10 to 23
%, Al 2 O 3 : 20 to 50%, and SiO 2 : 40 to 60%. The composition of this three-component system is shown in FIG.
Located in. The composition of these three components is limited in this way, because the melting point in this region (A) is the lowest, the mixed powder is easily melted, and the wettability with Si 3 N 4 particles mixed therein is good. Further, the melt and the glass phase of the adherend are well compatible with each other, and if any direction is deviated from this region (A), the melting is likely to be incomplete, and Si 3 N 4 particles or the adherend is adhered. This is because, in addition to insufficient wetting and familiarity with, the thermal expansion coefficient mismatch between the adherend and the adhesive layer to be formed causes cracks, resulting in problems such as reduced strength.

また、MgO−Al−SiO系3成分混合粉末
100重量部に対するSi粒子の配合量を26〜65重
量部に限定した理由は、配合量が26重量部に満たない
と、マトリックスガラス中のSi粒子の分散量が
少ないために、分散による効果、特に高硬度化が不足
し、またSi粒子の固溶によるガラスマトリック
スの硬化・高靭性化の効果も乏しくなり、他方その配合
量が65重量部を超えると、接着剤としての濡れ性が悪く
なり、却って接着強度、靭性が低下する等の不都合が生
じるからである。
In addition, MgO-Al 2 O 3 -SiO 2 system three-component mixed powder
The reason why the compounding amount of Si 3 N 4 particles to 100 parts by weight is limited to 26 to 65 parts by weight is that if the compounding amount is less than 26 parts by weight, the amount of Si 3 N 4 particles dispersed in the matrix glass is small. In addition, the effect of dispersion, in particular, the increase in hardness is insufficient, and the effect of hardening and toughening the glass matrix due to the solid solution of Si 3 N 4 particles is also poor, while when the compounding amount exceeds 65 parts by weight, This is because the wettability of the adhesive is deteriorated, and rather the adhesive strength and toughness are deteriorated.

なお、Si粒子が粗大であると、ガラス融液との
反応が少なく、ガラスマトリックスの高靭性化が不足す
るので、粒径は1.5μm以下であることが望ましい。
このガラス融液との反応によるガラスマトリックスの高
靭性化と、残存粒子の分散による高硬度化の両面から、
Si粒子径は、0.8〜1.5μmの範囲が特に
好適である。
When the Si 3 N 4 particles are coarse, the reaction with the glass melt is small and the toughness of the glass matrix is insufficient, so the particle size is preferably 1.5 μm or less.
From both aspects of increasing the toughness of the glass matrix by the reaction with this glass melt and increasing the hardness by dispersing the residual particles,
The Si 3 N 4 particle size is particularly preferably in the range of 0.8 to 1.5 μm.

本発明の接着剤は、MgO、Al、SiOおよ
びSiの各粉末を所定の配合比に混合し、その混
合粉末をボールミル等で混練することにより調製され
る。混合粉末を混練する場合に、該混合粉末に、水、ア
ルコール、その他の溶媒を添加して湿式混練を行うこと
により、ペースト状の接着剤として調製することもでき
る。
The adhesive of the present invention is prepared by mixing powders of MgO, Al 2 O 3 , SiO 2 and Si 3 N 4 in a predetermined mixing ratio and kneading the mixed powder with a ball mill or the like. When kneading the mixed powder, it is possible to prepare a paste-like adhesive by adding water, alcohol, and other solvents to the mixed powder and performing wet kneading.

本発明の接着剤を用いて接着する場合の加熱処理温度
は、1500〜1700℃とする。1500℃を下限とするのは、そ
れより低いと、ガラス融液の粘性が高く、流動性が不足
するために、形成される接着層中に、微小空孔が生成
し、接着強度、靭性等が損なわれるからであり、一方17
00℃を上限とするのは、それを超える高温度では、ガラ
ス融液の粘性が低くなり、接着界面から流れ出し、適当
な層厚の接着層を形成することができなくなるからであ
る。
The heat treatment temperature in the case of bonding using the adhesive of the present invention is 1500 to 1700 ° C. The lower limit of 1500 ° C is that if it is lower than that, the viscosity of the glass melt is high and the fluidity is insufficient, so that minute pores are generated in the formed adhesive layer, resulting in adhesive strength, toughness, etc. Is impaired, while 17
The reason why the upper limit is 00 ° C. is that, at a temperature higher than that, the viscosity of the glass melt becomes low, and the glass melt flows out from the adhesive interface, so that an adhesive layer having an appropriate layer thickness cannot be formed.

形成される接着層の層厚は、20〜100μmであるのが適
当である。この層厚は、被接着体同士の接着界面に対す
る接着剤の塗布量により調節される。
The layer thickness of the formed adhesive layer is suitably 20 to 100 μm. This layer thickness is adjusted by the amount of adhesive applied to the adhesive interface between the adherends.

〔実施例〕〔Example〕

実施例1 〔I〕接着剤の調製 MgO、Al、SiOおよびSiの粉末
を秤量し、その混合粉末をボールミルにてアルコール混
練することにより、第1表に示す配合比を有する接着剤
(No.10〜29)を調製した。なお、いずれの接着剤も、
粉末の平均粒径は1μmであり、またMgO−Al
−SiO粉末100重量部に対するSi粉末の
配合比は26重量部に一定した。
Example 1 [I] Preparation of Adhesives MgO, Al 2 O 3 , SiO 2 and Si 3 N 4 powders were weighed, and the mixed powders were kneaded with an alcohol in a ball mill to give a mixing ratio shown in Table 1. Adhesives having Nos. 10 to 29 were prepared. In addition, both adhesives,
The average particle size of the powder is 1 μm, and MgO—Al 2 O
The compounding ratio of Si 3 N 4 powder to 100 parts by weight of 3- SiO 2 powder was constant at 26 parts by weight.

各供試接着剤No.10〜29のMgO−Al−SiO
組成をその三元グラフ上に示すと第1図のとおりであ
る。図中の各点に付した番号は接着剤の番号であり、実
線で画成された領域(A)は、本発明の規定するMgO
−Al−SiOの3成分の組成範囲を示してい
る。
MgO-Al 2 O 3 -SiO of each test試接adhesive No.10~29
FIG. 1 shows the two compositions on the ternary graph. The number attached to each point in the figure is the number of the adhesive, and the area (A) defined by the solid line is the MgO defined by the present invention.
-Al 2 O 3 shows the composition range of the ternary -SiO 2.

供試接着剤No.10〜29のうち、No.13〜16、No.18〜22、
およびNo.25は本発明例であり、それ以外の接着剤は、
MgO−Al−SiOの組成比が本発明の規定
した範囲からはずれている比較例である。
Of the tested adhesives No.10-29, No.13-16, No.18-22,
And No. 25 is an example of the present invention, other adhesives,
The composition ratio of MgO-Al 2 O 3 -SiO 2 is a comparative example which is off the specified the scope of the present invention.

〔II〕被接着体の接着処理 2つの窒化けい素焼結体(20×20×20,mm)を準備し、
その一面に上記接着剤を塗布して塗布面を重ね合わせ、
窒素雰囲気中(1atm)、1600℃で15分間加熱焼成する
ことにより接着をおこなった。接着層の層厚はいずれも
20〜100μmである。
[II] Adhesion treatment of adherends Prepare two silicon nitride sintered bodies (20 × 20 × 20, mm),
Apply the adhesive on one side and overlap the coated side,
Bonding was performed by heating and baking at 1600 ° C. for 15 minutes in a nitrogen atmosphere (1 atm). The thickness of the adhesive layer is
20 to 100 μm.

なお、供試被接着体は、窒化けい素粉末に焼結助剤とし
て主にスピネル(MgOAl)を配合し(その配
合量は10重量%)、常圧焼結法により焼成して得られた
焼結体であり、曲げ強度は60〜70kgf/mm2、硬度はH
v1800kgf÷mm2である。
Note that the adherend to be tested was prepared by blending silicon nitride powder with spinel (MgOAl 2 O 4 ) as a sintering aid (the blending amount was 10% by weight) and firing by atmospheric pressure sintering method. The obtained sintered body has a bending strength of 60 to 70 kgf / mm 2 and a hardness of H.
It is v1800kgf ÷ mm 2 .

上記のように接合された被接着体から、試験片(3×4
×40,mm)を切り出して三点曲げ試験に付して接合部の
接着強度を測定し、第1表右欄に示す結果を得た。表中
「曲げ強度(kg/mm2)」の欄の「*」印は、接着強度
が低く、強度測定用試験片製作中に接合面で破断したも
のである。
From the adherends bonded as described above, test pieces (3 × 4
(× 40, mm) was cut out and subjected to a three-point bending test to measure the adhesive strength of the joint, and the results shown in the right column of Table 1 were obtained. In the table, “*” in the “bending strength (kg / mm 2 )” column indicates that the adhesive strength is low and the bonded surface was broken during the production of the test piece for strength measurement.

第1表に示したとおり、MgO−Al−SiO
の組成比が本発明の規定からはずれた比較例(No.10〜1
2、No.17、No.23〜24、No.26〜29)は適量のSi
粒子を含んでいるものの、いずれも曲げ試験用試験片調
製時に接合面から破断する等、接着強度に劣るのに対
し、本発明例はすぐれた接着強度を有していることがわ
かる。
As shown in Table 1, MgO-Al 2 O 3 -SiO 2
Comparative example (No. 10 to 1) whose composition ratio deviates from the definition of the present invention
2, No.17, No.23 to 24, No.26 to 29) are appropriate amount of Si 3 N 4
It can be seen that, although they contain particles, all of them are inferior in adhesive strength such as breaking from the joint surface during preparation of the test piece for bending test, whereas the inventive examples have excellent adhesive strength.

実施例2 〔I〕接着剤の調製 MgO、Al、SiOおよびSiの各粉
末を秤量し、その混合粉末をボールミルにてアルコール
混練することにより第2表に示す配合比の接着剤を調製
した。
Example 2 [I] Preparation of Adhesive MgO, Al 2 O 3 , SiO 2 and Si 3 N 4 powders were weighed, and the mixed powders were kneaded with alcohol in a ball mill to mix ratios shown in Table 2. An adhesive was prepared.

試番(No.)30〜33は本発明例、No.40〜43は比較例であ
る。比較例No.40〜43のうち、No.40はSi粒子を
含まない例、No.41はSi粒子を含むが、その量
が不足している例、No.42はSi粒子が過剰に配
合された例、またNo.43は適量のSi粒子を含ん
でいるが、その粒径が粗大である例である。
Test numbers (No.) 30 to 33 are examples of the present invention, and Nos. 40 to 43 are comparative examples. Among Comparative Examples Nanba40~43 example No.40 is free of Si 3 N 4 particles, although No.41 comprises Si 3 N 4 particles, the example the amount is insufficient, the No.42 An example in which Si 3 N 4 particles were excessively blended, and No. 43 was an example in which an appropriate amount of Si 3 N 4 particles was contained, but the particle size was coarse.

〔II〕被接着体の接着処理 上記各接着剤を使用し、実施例1と同じ条件で窒化けい
素焼結体同士を接合し、その接合部の接着強度、靭性を
測定すると共に、クラックの有無を調査して第2表右欄
に示す結果を得た。
[II] Adhesion treatment of adherends Using the above adhesives, the silicon nitride sintered bodies were joined together under the same conditions as in Example 1, and the adhesive strength and toughness of the joints were measured and the presence or absence of cracks. Was investigated and the results shown in the right column of Table 2 were obtained.

(a)接着強度の測定:実施例1と同じように被接着体の
接合部から切り出した試験片(3×4×40,mm)を用
い、三点曲げ試験により測定。
(a) Measurement of adhesive strength: Measured by a three-point bending test using a test piece (3 × 4 × 40, mm) cut out from the bonded portion of the adherend as in Example 1.

(b)硬さ:接着層の中央部にマイクロビッカース圧子を
打ち込むことにより測定。
(b) Hardness: Measured by driving a micro Vickers indenter into the center of the adhesive layer.

(c)靭性:接着層にマイクロビッカース圧子を打ち込み
(荷重:300g)、その圧痕の稜から生じるクラックの
有無により定性的に評価。第2表中、「靭性」欄の
「〇」はクラックなし、「×」はクラック発生、を意味
する。
(c) Toughness: A micro Vickers indenter was driven into the adhesive layer (load: 300 g), and qualitatively evaluated by the presence or absence of cracks generated from the ridge of the indentation. In Table 2, “◯” in the “toughness” column means no crack, and “x” means crack generation.

第2表に示したように、本発明例No.30〜33は、いずれ
も接着強度、硬度が高く、また靭性にもすぐれている。
他方、比較例のNo.40(Si粒子を含まない)お
よびNo.41(Si粒子量不足)では、硬度が低
く、靭性にも乏しい。また、No.42(Si粒子量
過剰)では、硬度は高いが、曲げ強度が著しく低く、か
つ靭性に乏しい。更に、No.43(適量のSi粒子
を含むが粒径が粗大)では、靭性が低く、また硬度、強
度も十分でなく、いずれも本発明例に及ばない。
As shown in Table 2, the invention examples Nos. 30 to 33 all have high adhesive strength and hardness, and also have excellent toughness.
On the other hand, Comparative Examples No. 40 (without Si 3 N 4 particles) and No. 41 (insufficient amount of Si 3 N 4 particles) have low hardness and poor toughness. Further, in No. 42 (Si 3 N 4 particle excess amount), the hardness is high, but the bending strength is extremely low and the toughness is poor. Further, No. 43 (containing an appropriate amount of Si 3 N 4 particles but having a coarse particle size) has low toughness and insufficient hardness and strength, neither of which falls below the examples of the present invention.

なお、本発明例の上記曲げ強度は常温での測定値である
が、900℃付近までその強度は殆ど変化しないことも確
認されている。
The bending strength of the example of the present invention is a measured value at room temperature, but it has been confirmed that the strength hardly changes up to around 900 ° C.

〔発明の効果〕 本発明方法により窒化けい素系焼結品同士を接着して形
成される接合部は、接着強度が高く、かつ硬く、靭性に
もすぐれている。従って、窒化けい素系焼結品同士を接
合し、バルブ類、軸受類、その他の耐熱用途の構造部材
の組立製作に有用であり、窒化けい素系セラミックの工
学的応用の拡大・多様化に寄与するものである。
[Advantages of the Invention] The joint portion formed by adhering silicon nitride-based sintered products to each other by the method of the present invention has high adhesive strength, is hard, and has excellent toughness. Therefore, it is useful for joining and manufacturing silicon nitride-based sintered products to assemble and manufacture valves, bearings, and other structural members for heat-resistant applications, and to expand and diversify engineering applications of silicon nitride-based ceramics. It contributes.

【図面の簡単な説明】[Brief description of drawings]

第1図はMgO−Al−SiO三元グラフによ
る接着剤のマトリックス組成を示す図である。
FIG. 1 is a diagram showing the matrix composition of the adhesive according to a ternary graph of MgO—Al 2 O 3 —SiO 2 .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】MgO:5〜23%、Al:20〜50
%、およびSiO:40〜60%からなるMgO−Al
−SiO粉末100重量部に、平均粒径1.5μm
以下のSi粉末26〜65重量部を配合してなる窒化
けい素系セラミック焼結体接合用接着剤。
1. A MgO: 5~23%, Al 2 O 3: 20~50
%, And SiO 2: MgO-Al 2 consisting of 40% to 60%
An average particle size of 1.5 μm in 100 parts by weight of O 3 —SiO 2 powder
An adhesive for joining a silicon nitride ceramic sintered body, which comprises 26 to 65 parts by weight of the following Si 3 N 4 powder.
【請求項2】MgO:5〜23%、Al:20〜50
%、およびSiO:40〜60%からなるMgO−Al
−SiO粉末100重量部に、平均粒径1.5μm
以下のSi粉末26〜65重量部を配合してなる接着
剤を窒化けい素系セラミック焼結体の接合面に介在さ
せ、1500〜1700℃にて加熱処理することにより、Mg−
Al−Si−N−O系ガラスもしくはガラスセラミック
のマトリックスにSi粒子が分散する接着層を形
成することを特徴とする窒化けい素系セラミック焼結体
の接着方法。
Wherein MgO: 5~23%, Al 2 O 3: 20~50
%, And SiO 2: MgO-Al 2 consisting of 40% to 60%
An average particle size of 1.5 μm in 100 parts by weight of O 3 —SiO 2 powder
By interposing an adhesive formed by mixing 26 to 65 parts by weight of the following Si 3 N 4 powder on the joint surface of the silicon nitride ceramic sintered body and heat-treating at 1500 to 1700 ° C., Mg-
A method for adhering a silicon nitride ceramic sintered body, which comprises forming an adhesive layer in which Si 3 N 4 particles are dispersed in an Al-Si-NO glass or glass-ceramic matrix.
JP28835085A 1985-12-20 1985-12-20 Adhesive for bonding silicon nitride ceramic sinter and bonding method Expired - Lifetime JPH0631162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28835085A JPH0631162B2 (en) 1985-12-20 1985-12-20 Adhesive for bonding silicon nitride ceramic sinter and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28835085A JPH0631162B2 (en) 1985-12-20 1985-12-20 Adhesive for bonding silicon nitride ceramic sinter and bonding method

Publications (2)

Publication Number Publication Date
JPS62148380A JPS62148380A (en) 1987-07-02
JPH0631162B2 true JPH0631162B2 (en) 1994-04-27

Family

ID=17729067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28835085A Expired - Lifetime JPH0631162B2 (en) 1985-12-20 1985-12-20 Adhesive for bonding silicon nitride ceramic sinter and bonding method

Country Status (1)

Country Link
JP (1) JPH0631162B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708821B2 (en) * 1988-11-11 1998-02-04 松下電工株式会社 Electric laminate
JP2673717B2 (en) * 1989-01-20 1997-11-05 新日本製鐵株式会社 Sintering method of silicon nitride ceramics
FR2653113B1 (en) * 1989-10-18 1994-03-04 Ceramiques Composites OXYAZOTE GLASS COMPOSITIONS, THEIR PRECURSORS AND THEIR APPLICATION IN THE PREPARATION OF VITROCERAMIC COMPOSITIONS AND COMPOSITE MATERIALS.
EP0486706B1 (en) * 1990-06-13 1998-09-02 Daihen Corporation Electrical cementing agent for ceramic
JP2677921B2 (en) * 1991-03-26 1997-11-17 日本碍子株式会社 Equipment for semiconductor installation
JP2815074B2 (en) * 1992-03-25 1998-10-27 日本碍子 株式会社 Inorganic bonding material
JP2815075B2 (en) * 1992-03-25 1998-10-27 日本碍子 株式会社 Ceramic bonded body and manufacturing method thereof
JP6511260B2 (en) * 2014-12-16 2019-05-15 三井金属鉱業株式会社 Ceramic bonded body, method of manufacturing adhesive for ceramic bonding and method of manufacturing ceramic bonded body

Also Published As

Publication number Publication date
JPS62148380A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
KR20090092320A (en) Metal-ceramic composite with good adhesion and method for its production
JPH0631162B2 (en) Adhesive for bonding silicon nitride ceramic sinter and bonding method
JPS6278166A (en) Material and method of bonding ceramics with metal oxide molten body
JPS6114112B2 (en)
JPS5925754B2 (en) Adhesive for ceramics and its adhesion method
JP2007112701A (en) Kiln furniture for use in non-oxidizing atmosphere
JPH05163078A (en) Joint form made up of ceramic and metal
JPH0753278A (en) Ceramics-metal joined body
JP3154771B2 (en) Silicon nitride ceramic bonding agent
JPH02192471A (en) Adhesive and method for sintering and bonding silicon nitride
JP3154770B2 (en) Silicon nitride ceramics joints
JPS6251913B2 (en)
JPS5884186A (en) Ceramics bonding method
JPS60251177A (en) Bonding method
JP2597880B2 (en) Ceramic bonding agent
JPH02188474A (en) Joining material for silicon nitride sintered body and joining method
JPH01317134A (en) Glass composition for bonding silicon carbide sintered form
JPS62265173A (en) Silicon carbide whisker-reinforced composite material
JP3431658B2 (en) Heat-resistant alloy joined body and joining method thereof
WO1986001446A1 (en) Ceramic adherent alloy
JPS6395184A (en) Metallization for ceramics
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPH05148049A (en) Joining agent for silicon nitride ceramics
JPS60226463A (en) Adhesive for non-oxide ceramic and adhesion therefor
JPS63282163A (en) Production of high-toughness silicon nitride ceramics