JP2673717B2 - Sintering method of silicon nitride ceramics - Google Patents

Sintering method of silicon nitride ceramics

Info

Publication number
JP2673717B2
JP2673717B2 JP1011363A JP1136389A JP2673717B2 JP 2673717 B2 JP2673717 B2 JP 2673717B2 JP 1011363 A JP1011363 A JP 1011363A JP 1136389 A JP1136389 A JP 1136389A JP 2673717 B2 JP2673717 B2 JP 2673717B2
Authority
JP
Japan
Prior art keywords
silicon nitride
composition
adhesive
bonding
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1011363A
Other languages
Japanese (ja)
Other versions
JPH02192471A (en
Inventor
ピー.エー.ウオールズ
正憲 植木
紘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1011363A priority Critical patent/JP2673717B2/en
Publication of JPH02192471A publication Critical patent/JPH02192471A/en
Application granted granted Critical
Publication of JP2673717B2 publication Critical patent/JP2673717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は窒化ケイ素系セラミックスの焼結接合方法に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for sintering and joining silicon nitride ceramics.

本発明は長尺物を中心としたセラミックスの管,棒,
ルツボ,炉体構造などを含んでいる。
The present invention relates to a ceramic tube, rod,
It includes crucibles and furnace structure.

〔従来の技術〕[Conventional technology]

セラミックスを使用する種々の機械,構造物の部品を
製造するに際しては、高価で困難な方法である切削,成
形加工を避け、接合法が有効であり、使用されている。
従来の技術は、セラミックス被接合体の接合面をメタラ
イズするか、あるいはメタライズなしに金属蝋剤(イン
サート)を用いる方法(例えば特開昭58−120578号公
報,特開昭62−263044号公報)と、酸化物基のガラス生
成セラミックスを接着剤として用いる方法とがある。本
発明は後者に属するが、従来の技術として次の特許文献
記載の方法がある。
When manufacturing various machines and structural parts using ceramics, the joining method is effective and used, avoiding cutting and molding which are expensive and difficult methods.
The conventional technique is to metalize the bonding surfaces of the ceramic objects or to use a metal brazing agent (insert) without metallizing (for example, JP-A-58-120578 and JP-A-62-263044). And a method of using oxide-based glass-forming ceramics as an adhesive. Although the present invention belongs to the latter, there is a method described in the following patent document as a conventional technique.

予め溶融して粉砕したAl2O3−SiO2−MnO系ガラスを接
着剤として用い、1400℃で加熱することによって窒化ケ
イ素接合部材を得る方法。この方法では液相が生成し、
被接合体を濡らすことを特徴とする接合方法であり、冷
却後はガラス質の継手が形成される(特開昭47−34410
号公報)。
A method of obtaining a silicon nitride bonding member by using Al 2 O 3 —SiO 2 —MnO-based glass that has been melted and crushed in advance as an adhesive and heating at 1400 ° C. This method produces a liquid phase,
This is a joining method which is characterized by wetting the objects to be joined, and a glassy joint is formed after cooling (Japanese Patent Laid-Open No. 34410/1972).
No.).

低熱膨張係数接合剤としてシリカ及び他の酸化物,コ
ーディエライト,β−スポデュメン,チタン酸アルミニ
ウム,ジルコニアの内の一つからなる接着剤粉末を塊状
に成形したのち被接合体に適用し1200℃の加熱処理を施
す方法(特開昭55−94975号公報)。
An adhesive powder consisting of one of silica and other oxides, cordierite, β-spodumene, aluminum titanate, and zirconia as a low thermal expansion coefficient bonding agent was formed into a lump and then applied to the bonded object at 1200 ° C. The method of applying heat treatment (Japanese Patent Application Laid-Open No. 55-94975).

SiC及び窒化ケイ素系セラミックスをY,Zr,Si,Al,O,N
化合物に基づく接着剤で接合する方法。
SiC and silicon nitride ceramics can be used as Y, Zr, Si, Al, O, N
A method of joining with an adhesive based on a compound.

この方法は接合部を構成する接着剤中にSiCあるいは
窒化ケイ素が含まれることを特徴とする(特開昭58−91
086号公報)。
This method is characterized in that the adhesive forming the joint contains SiC or silicon nitride (Japanese Patent Laid-Open No. 58-91).
086 publication).

MgO−Al2O3−SiO2−Si3N4系混合粉末を窒化ケイ素系
セラミックスの接合剤として用いる接合方法。
Bonding method using a MgO-Al 2 O 3 -SiO 2 -Si 3 N 4 based mixed powder as a bonding agent for silicon nitride ceramics.

この方法は20〜100μmの接合部厚さを有することを
特徴とする(特開昭62−148380号公報)。
This method is characterized by having a joint thickness of 20 to 100 μm (JP-A-62-148380).

しかしながら、上述した技術はそれぞれ次のような欠
点を有する。まずにおいては接着剤として微細なガラ
ス粉末を予備成形することが必要であり、費用もかさ
む。さらに10μm以上の比較的厚い接合部は熱膨張によ
る残留応力を導入して接合強度を低下しがちである。
,は低熱膨張係数材料の混合あるいは二層の接着剤
付着によってこれらの問題を克服しようとしているが、
十分に高い接合強度を達成するに到っていない。はMg
O−Al2O3−SiO2系粉末を使用しており、この系の共晶温
度が低いため接合は容易であるが、逆に継手の耐熱性を
低下させる傾向がある。
However, each of the above techniques has the following drawbacks. First, it is necessary to preform a fine glass powder as an adhesive, which is expensive. Furthermore, a relatively thick joint having a thickness of 10 μm or more is likely to introduce residual stress due to thermal expansion to reduce the joint strength.
, Tries to overcome these problems by mixing low coefficient of thermal expansion materials or two layers of adhesive attachment,
A sufficiently high bonding strength has not been achieved yet. Is Mg
O-Al 2 O 3 -SiO 2 powder is used, and the eutectic temperature of this system is low, so joining is easy, but on the contrary, the heat resistance of the joint tends to decrease.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明の目的は、窒化ケイ素系(サイアロンを含む)
セラミックスを接合する際に、その接合強度を高め、且
つ接合部分の耐熱性を高めることのできる接合方法を提
供することにある。
The object of the present invention is to include silicon nitride (including sialon)
It is an object of the present invention to provide a joining method capable of increasing the joining strength and the heat resistance of a joined portion when joining ceramics.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の要旨とするところは、Y2O3,Al2O3,SiO2及び
平均粒径1.0μm以下のSi3N4粉末よりなり、その組成が
1600℃でのY−Si−Al−O−N系挙動図である第1図中
に示される、下記表の当量パーセント(e/o)表示の限
界組成点A,B,C,D,E,F,G及びHの各点で囲まれる多角柱
体中に存在するようにした窒化ケイ素系セラミックスの
焼結接合用接着剤を、溶剤と混合してスラリーとし、こ
れを窒化ケイ素系セラミックスの被接着表面に15μm以
下の厚みに塗布し、接合面に4〜10kgf/cm2の加圧力を
付与し、窒素雰囲気中で1500〜1700℃に加熱処理をする
ことにより、ガラス質マトリックス中に針状のβ−サイ
アロン結晶が相互に噛みあい状態で混在する接合組織を
生成させることを特徴とする窒化ケイ素系セラミックス
の焼結接合方法にある。
The gist of the present invention is that Y 2 O 3 , Al 2 O 3 and SiO 2 and Si 3 N 4 powder having an average particle size of 1.0 μm or less are used, and their composition is
The critical composition points A, B, C, D, E shown in the equivalent percentage (e / o) of the following table shown in FIG. 1, which is a Y-Si-Al-ON system behavior diagram at 1600 ° C. An adhesive for sintering and joining silicon nitride-based ceramics, which is made to exist in a polygonal prism surrounded by points F, G, and H, is mixed with a solvent to form a slurry. By applying a thickness of 15 μm or less on the surface to be adhered, applying a pressure of 4 to 10 kgf / cm 2 to the bonding surface, and heat-treating at 1500 to 1700 ° C in a nitrogen atmosphere, needles are put into the glass matrix. A sintered joining method of silicon nitride-based ceramics is characterized in that a joint structure in which the β-sialon crystals in the form of a mesh are mixed with each other in a meshed state is formed.

次に本発明について詳細に説明する。 Next, the present invention will be described in detail.

本発明は基本的には、高温におけるM−Si−Al−O−
N系の挙動を研究することによって完成されたものであ
る。ここで、MはYが最も好まいしが、Li,Be,Be,Mg,C
a,Sc,Zr,Ceの一種あるいは二種以上の組み合わせでもよ
い。
The present invention is basically based on M-Si-Al-O- at high temperature.
It was completed by studying the behavior of N system. Here, Y is most preferable for M, but Li, Be, Be, Mg, C
One or a combination of two or more of a, Sc, Zr and Ce may be used.

本発明に係わる接着剤の組成は、第1図に示す挙動図
において、当量パーセント表示の限界組成点A,B,C,D,E,
F,G及びHの各点で囲まれる多角柱状の立体中に存在す
る。
The composition of the adhesive according to the present invention has a composition point A, B, C, D, E,
It exists in a polygonal solid body surrounded by points F, G, and H.

ところでこのような挙動図における組成の表示には、
通常の状態図におけるような原子あるいは重量パーセン
トを用いることはできない。当量組成あるいは当量パー
セント(e/o)を用いると、このような挙動図は理解し
やすい。当量組成の値は、化合物中の各々の元素の原子
数(あるいは原子パーセント値)と、それらのそれぞれ
のイオン価を掛け合わせて得られ、当量陽イオンと当量
陰イオンのそれぞれの総和は等しくなければならない。
つまり、第1表に示す当量組成において3a+4b+3c=2d
+3eが成立する。当量パーセントによる化合物の組成
は、それから陽イオンと陰イオン当量組成をそれぞれ別
々に百分率に変換することによって求まる。第2表に実
際の例に即した各々の計算例を示す。
By the way, to display the composition in such a behavior diagram,
It is not possible to use atoms or weight percentages as in normal phase diagrams. Using the equivalent composition or equivalent percentage (e / o), such a behavior diagram is easy to understand. The value of equivalent composition is obtained by multiplying the number of atoms (or atomic percentage value) of each element in the compound by their respective ionic valencies, and the total of equivalent cations and equivalent anions must be equal. I have to.
That is, in the equivalent composition shown in Table 1, 3a + 4b + 3c = 2d
+ 3e is established. The composition of a compound in terms of equivalent percent is then determined by converting each cation and anion equivalent composition to a percentage separately. Table 2 shows each calculation example according to the actual example.

さて、窒素雰囲気中で1500〜1700℃で本発明の接着剤
を用いて焼結する場合の酸素と窒素の比は、50〜80e/oN
の範囲であるのが好ましい。そしてそれぞれの切断面に
おける接着剤組成範囲は第2図(a)および(b)にそ
れぞれ斜線で示される領域である。それぞれの限界点
(A〜H)の当量パーセントおよびそれを基に換算して
得られる各化合物の重量パーセントを第3表に示す。こ
のことから、接着剤組成範囲を重量パーセントで示す
と、Si3N4:28.9〜68.8,Y2O3:13.7〜55.8%,Al2O3:4.2〜
40.5%,SiO2:0.7〜28.5%である。平均粒径1.0μm以下
の窒化ケイ素粉末を混合するのは、接合焼結時にガラス
相が溶融後の冷却過程で本接着層におけるガラス相の一
部を結晶化する際の核とするためである。多くの実験結
果によれば、窒化ケイ素粉末は平均粒径が1.0μm以下
であることが必要であり、添加量は28〜70%が適当であ
る。
Now, the ratio of oxygen and nitrogen in the case of sintering using the adhesive of the present invention at 1500 to 1700 ° C. in a nitrogen atmosphere is 50 to 80 e / oN.
Is preferably within the range. The adhesive composition range on each cut surface is the area shown by the diagonal lines in FIGS. 2 (a) and 2 (b). Table 3 shows the equivalent percentage of each limit point (A to H) and the weight percentage of each compound obtained by converting the equivalent percentage. Therefore, when showing the adhesive composition range in weight percent, Si 3 N 4: 28.9~68.8, Y 2 O 3: 13.7~55.8%, Al 2 O 3: 4.2~
40.5%, SiO 2 : 0.7 to 28.5%. The reason why the silicon nitride powder having an average particle size of 1.0 μm or less is mixed is that the glass phase serves as a nucleus for crystallizing a part of the glass phase in the adhesive layer in the cooling process after melting during the bonding and sintering. . According to many experimental results, it is necessary for the silicon nitride powder to have an average particle size of 1.0 μm or less, and an appropriate addition amount is 28 to 70%.

次に本発明の接合方法について詳細に説明する。 Next, the joining method of the present invention will be described in detail.

まず、前述の接着剤粉末を溶剤に混合してスラリーを
調製する。接着剤粉末混合物は例えばn−ヘキサン中で
24時間ボールミル混練し、乾燥して得たケーキ状のもの
を粉砕することによって得る。溶剤はエタノールを使用
するが、この際のエタノールの使用はバインダーや溶媒
を除去するための特別な乾燥を必要とせず直接被接合部
材表面への適用を可能にするなどの利点を有している。
粉末とエタノールのスラリーは塗布が完全にできるよう
に粘度を調整するが4:1から5.5:1の重量比が好ましい。
First, the above-mentioned adhesive powder is mixed with a solvent to prepare a slurry. The adhesive powder mixture is, for example, in n-hexane.
It is obtained by kneading for 24 hours in a ball mill and crushing a cake obtained by drying. Although ethanol is used as the solvent, the use of ethanol has the advantage that it can be applied directly to the surfaces of the members to be joined without the need for special drying to remove the binder and solvent. .
The viscosity of the slurry of powder and ethanol is adjusted so that coating can be completed, but a weight ratio of 4: 1 to 5.5: 1 is preferable.

被接合部材表面はRmax<1μmに研磨することが必要
である。スラリー状にした接着剤粉末はエアーコンプレ
ッサーに連結されたスプレーガンなどによって被接合部
材表面に塗布する。そしてこの際の塗布の厚さは15μm
以下にする。多くの実験結果によれば、塗布の厚さは15
μm以下にすると、接合焼結後の厚みは6μm以下とな
り、接合強度が高く、耐熱性の高い接合継手が得られ
た。
It is necessary to polish the surfaces of the members to be bonded to R max <1 μm. The slurry-like adhesive powder is applied to the surfaces of the members to be joined by a spray gun or the like connected to an air compressor. And the coating thickness at this time is 15 μm
Do the following. Many experimental results show a coating thickness of 15
When the thickness is less than or equal to μm, the thickness after bonding and sintering becomes 6 μm or less, and a bonded joint having high bonding strength and high heat resistance was obtained.

接着剤を塗布した被接合体は、4〜10kgf/cm2の加圧
力下で接合を行う。
The objects to be bonded to which the adhesive is applied are bonded under a pressure of 4 to 10 kgf / cm 2 .

本発明によって得られる接合体における接合部は、ガ
ラス質マトリックス中に針状のβ−サイアロン結晶(窒
化ケイ素に酸素およびアルミニウムが固溶した結晶)が
相互噛み合い(インターロッキング)状態で混在する組
織が得られる。このような継手構造(含微構造)は従来
の特許文献あるいは技術で示されたようなより厚い接合
部において、組成上の濃度勾配からもたらされる熱膨張
係数ミスマッチを避けるために好適である。
The joint in the joined body obtained by the present invention has a structure in which acicular β-sialon crystals (crystals in which oxygen and aluminum are solid-dissolved in silicon nitride) are intermingled (interlocking) in the vitreous matrix. can get. Such a joint structure (including a microstructure) is suitable for avoiding a thermal expansion coefficient mismatch caused by a compositional concentration gradient in a thicker joint as shown in the conventional patent document or technology.

〔実施例〕〔Example〕

第4表は、種々の窒化ケイ素系セラミックスを接合す
るために用いた接着剤組成のいくつかの例を示してい
る。
Table 4 shows some examples of adhesive compositions used to bond various silicon nitride ceramics.

A2〜A6は本発明範囲の組成であり、A1は比較例として
本発明範囲外の組成である。
A2 to A6 are compositions within the scope of the present invention, and A1 is a composition outside the scope of the present invention as a comparative example.

第5表は、接着剤組成、そして接合温度および時間な
どの種々のプロセス因子を変えた場合に接合強度に及ぼ
すそれらの影響を示している。
Table 5 shows the adhesive composition and their effect on the bond strength when varying various process factors such as bond temperature and time.

本発明の接合剤組成範囲では接合が良好であり、大半
が接合部以外で破壊を起している。又、接合部で破壊を
起したものについても本発明の接合剤組成範囲のもの
は、36.8kgf/cm2以上と充分な強度を有し、比較例に比
べ大幅な改善が見られた。
In the range of the composition of the bonding agent of the present invention, the bonding is good, and most of them are broken except in the bonded portion. Further, even when the fracture occurred at the joint, the one having the composition range of the jointing agent of the present invention had a sufficient strength of 36.8 kgf / cm 2 or more, showing a great improvement as compared with the comparative example.

〔発明の効果〕 本発明の接着方法によって得られる接合体における接
合部は、ガラス質マトリックス中に針状のβ−サイアロ
ン結晶(窒化ケイ素に酸素およびアルミニウムが固溶し
た結晶)が相互噛み合い(インターロッキング)状態で
混在する組織を有するので、接合強度が高く、耐熱度の
高い接合体が得られる。
[Effects of the Invention] In the joint portion of the joint body obtained by the bonding method of the present invention, needle-like β-sialon crystals (crystals in which oxygen and aluminum are solid-dissolved in silicon nitride) interlock with each other in the glassy matrix. Since the structures are mixed in the (rocking) state, a bonded body having high bonding strength and high heat resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は1600℃でのY−Si−Al−O−N系挙動図で、多
角柱状の立体としての接着剤の組成範囲を示す。 第2図(a),(b)はY−Si−Al−−O−N系挙動図
の50e/oN及び80e/oN切断面図で、それぞれの接着剤組成
範囲をA−B−C−D−EおよびF−G−Hで囲まれた
斜線を引いた領域として示す。
FIG. 1 is a Y-Si-Al-O-N system behavior diagram at 1600 [deg.] C., showing the composition range of the adhesive as a polygonal solid body. FIGS. 2 (a) and 2 (b) are 50e / oN and 80e / oN cross-sectional views of the Y-Si-Al--O-N system behavior diagram, and the respective adhesive composition ranges are ABCC- It is shown as a shaded area surrounded by D-E and F-G-H.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 紘 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内 (56)参考文献 特開 平1−11363(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiro Kubo 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Shin-Nippon Steel Corp. Technical Research Institute No. 1 (56) Reference JP 1-11363 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Y2O3,Al2O3,SiO2及び平均粒径1.0μm以下
のSi3N4粉末よりなり、その組成が1600℃でのY−Si−A
l−O−N系挙動図である第1図中に示される、下記表
の当量パーセント(e/o)表示の限界組成点A,B,C,D,E,
F,G及びHの各点で囲まれる多角柱体中に存在するよう
にした窒化ケイ素系セラミックスの焼結接合用接着剤
を、溶剤と混合してスラリーとし、これを窒化ケイ素系
セラミックスの被接着表面に15μm以下の厚みに塗布
し、接合面に4〜10kgf/cm2の加圧力を付与し、窒素雰
囲気中で1500〜1700℃に加熱処理をすることにより、ガ
ラス質マトリックス中に針状のβ−サイアロン結晶が相
互に噛みあい状態で混在する接合組織を生成させること
を特徴とする窒化ケイ素系セラミックスの焼結接合方
法。
1. A composition comprising Y 2 O 3 , Al 2 O 3 , SiO 2 and Si 3 N 4 powder having an average particle size of 1.0 μm or less, the composition of which is Y-Si-A.
The critical composition points A, B, C, D, E, shown in the equivalent percentage (e / o) of the following table shown in FIG.
An adhesive for sintering and joining silicon nitride-based ceramics, which is made to exist in a polygonal columnar body surrounded by points F, G, and H, is mixed with a solvent to form a slurry, which is coated with the silicon nitride-based ceramics. By applying a thickness of 15 μm or less on the adhesive surface, applying a pressure of 4 to 10 kgf / cm 2 to the bonding surface, and heat-treating at 1500 to 1700 ° C in a nitrogen atmosphere, needle-like in the glassy matrix A method for sinter-bonding silicon nitride-based ceramics, which comprises forming a joint structure in which the β-sialon crystals of 1 are mixed with each other in a meshed state.
JP1011363A 1989-01-20 1989-01-20 Sintering method of silicon nitride ceramics Expired - Lifetime JP2673717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011363A JP2673717B2 (en) 1989-01-20 1989-01-20 Sintering method of silicon nitride ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011363A JP2673717B2 (en) 1989-01-20 1989-01-20 Sintering method of silicon nitride ceramics

Publications (2)

Publication Number Publication Date
JPH02192471A JPH02192471A (en) 1990-07-30
JP2673717B2 true JP2673717B2 (en) 1997-11-05

Family

ID=11775944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011363A Expired - Lifetime JP2673717B2 (en) 1989-01-20 1989-01-20 Sintering method of silicon nitride ceramics

Country Status (1)

Country Link
JP (1) JP2673717B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677921B2 (en) * 1991-03-26 1997-11-17 日本碍子株式会社 Equipment for semiconductor installation
JP2815074B2 (en) * 1992-03-25 1998-10-27 日本碍子 株式会社 Inorganic bonding material
JP2815075B2 (en) * 1992-03-25 1998-10-27 日本碍子 株式会社 Ceramic bonded body and manufacturing method thereof
US6159553A (en) * 1998-11-27 2000-12-12 The United States Of America As Represented By The Secretary Of The Air Force Thermal barrier coating for silicon nitride
JP5959170B2 (en) * 2011-09-05 2016-08-02 三井金属鉱業株式会社 Ceramic bonded body and manufacturing method thereof
KR102209157B1 (en) * 2016-07-20 2021-01-28 니혼도꾸슈도교 가부시키가이샤 Components for semiconductor manufacturing equipment
GB2613022A (en) * 2021-11-22 2023-05-24 Morgan Advanced Ceramics Inc Aluminum nitride assemblage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891086A (en) * 1981-11-27 1983-05-30 旭硝子株式会社 Ceramic adhered body and manufacture
JPH0233668B2 (en) * 1981-11-30 1990-07-30 Toyota Motor Co Ltd HISANKABUTSUKEISERAMITSUKUSUNOSETSUGOZAIOYOBISONOSEIZOHOHOTOSETSUGOHOHO
JPH0631162B2 (en) * 1985-12-20 1994-04-27 株式会社クボタ Adhesive for bonding silicon nitride ceramic sinter and bonding method

Also Published As

Publication number Publication date
JPH02192471A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
CN104736126B (en) Lithium metasilicate glass ceramics and silicic acid lithium glass comprising cesium oxide
US3993844A (en) Composite ceramic articles and method of making
EP0244109B1 (en) Thermally bonded fibrous products
US20110159760A1 (en) Armor material and method for producing it
JPS58223633A (en) Silicon carbide fiber reinforced glass-ceramic composite material and manufacture
US4735866A (en) Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics
JP2673717B2 (en) Sintering method of silicon nitride ceramics
JP2642253B2 (en) Glass-ceramic composite
JPS63224937A (en) Double layer structure heat-resistant plate
JP2011236120A (en) CERAMIC COMPOSITE BASED ON β-EUCRYPTITE AND OXIDE, AND PROCESS OF MANUFACTURING THE COMPOSITE
JP2008007341A (en) Low thermal expansion ceramic joined body and method for manufacturing the same
Sun et al. Joining of Cf/SiC composites and Si3N4 ceramic with Y2O3–Al2O3–SiO2 glass filler for high-temperature applications
JPS6126572A (en) Ceramic product and manufacture
JP2537597B2 (en) Adhesive composition for joining ceramics and method for joining ceramics
JPS6114112B2 (en)
JP2618155B2 (en) Ceramic bonded body and method of manufacturing the same
JP2004059402A (en) Low thermal expansion ceramic junction body
JPS6251913B2 (en)
JP3154771B2 (en) Silicon nitride ceramic bonding agent
JPH03254805A (en) Filter material for molten aluminum
JP4803872B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP3154770B2 (en) Silicon nitride ceramics joints
JPH01317134A (en) Glass composition for bonding silicon carbide sintered form
JPH0633182B2 (en) Adhesive for oxide ceramics
JPH05148049A (en) Joining agent for silicon nitride ceramics

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12