JPH02188474A - Joining material for silicon nitride sintered body and joining method - Google Patents

Joining material for silicon nitride sintered body and joining method

Info

Publication number
JPH02188474A
JPH02188474A JP803089A JP803089A JPH02188474A JP H02188474 A JPH02188474 A JP H02188474A JP 803089 A JP803089 A JP 803089A JP 803089 A JP803089 A JP 803089A JP H02188474 A JPH02188474 A JP H02188474A
Authority
JP
Japan
Prior art keywords
silicon nitride
joining
sintered body
bonding material
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP803089A
Other languages
Japanese (ja)
Inventor
Mamoru Kosakai
守 小坂井
Mitsuru Sakuma
満 佐久間
Yukio Ikuhara
生原 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP803089A priority Critical patent/JPH02188474A/en
Publication of JPH02188474A publication Critical patent/JPH02188474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To lower joining temp. and to obtain high joining strength at high temp. by constituting the joining material of the mixture of CaO, SiO2 and Ta2O3. CONSTITUTION:Joining material for a silicon nitride sintered body is obtained by incorporating three components of A) CaO, B) SiO2 and C) Ta2O3 or four components obtained by adding D) Si3N4 powder thereto according to circumstances. As the blending rate of the respective components, B/A by weight ratio is 0.2-5.0 preferably 0.5-2.0 and component C is 0.1-80wt.% preferably 5-40wt.% of the whole body and component P is 0.01-80wt.% preferably 10-50%. Amount of nitrogen contained in the joining material is increased by addition of component D and thereby strength of the joint phase is enhanced and also thermal expansion coefficient is lowered and thermal stress at a time for joining to Si3N4 is lowered. In the case of utilizing this joining material and joining an Si3N4 sintered body, this joining material is applied to the surface of the sintered body, melted and coated by performing heat-treatment in the nonoxidative atmosphere and thereafter the Si3N4 sintered body is joined thereto.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、接合温度が低く、かつ、高温下において高い
接合強度を有する窒化けい素の接合方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for bonding silicon nitride, which has a low bonding temperature and high bonding strength at high temperatures.

「従来の技術」 一般に、セラミックスは優れた耐熱性、耐蝕性、薬品性
、硬度・耐摩耗性、絶縁性を有していることが知られて
おり、これらの特徴を利用して製造部材としての研究開
発が活発にすすめられている。
"Conventional technology" Ceramics are generally known to have excellent heat resistance, corrosion resistance, chemical resistance, hardness/abrasion resistance, and insulation properties, and these characteristics can be used to make them into manufacturing components. Research and development is being actively promoted.

特に窒化けい素は、ガスタービンローターやファンブレ
ードライナーなどの高温下で高強度かつ高耐摩耗性が要
求される部材や、さらには溶融金属や化学反応管の耐蝕
性ライニング部材などに好適な材料として注目されてい
る。
In particular, silicon nitride is a material suitable for parts that require high strength and high wear resistance under high temperatures, such as gas turbine rotors and fan blade liners, as well as corrosion-resistant lining parts for molten metal and chemical reaction tubes. It is attracting attention as

しかしながら、このようなセラミックスにおいては複雑
な形状のものを一体的に製造することが非常に困難であ
るため、複雑形状の製品を得るには通常セラミックスど
うしを接合して製品を作製するのが普通である。
However, it is extremely difficult to manufacture ceramics with complex shapes in one piece, so in order to obtain products with complex shapes, it is common to create products by bonding ceramics together. It is.

このようにセラミックスどうし、さらにはセラミックス
と金属とを接合する方法としては、現在a機質・無機質
接着剤を使用する接着剤法、セラミックス表面をメタラ
イズし、ろう材を用いて接合するろう材法などが知られ
ている。
Currently, there are two ways to bond ceramics together, and even ceramics and metals: the adhesive method, which uses organic or inorganic adhesives, and the brazing method, which involves metallizing the surface of the ceramic and bonding it with a brazing material. etc. are known.

「発明か解決しようとする課題」 しかしながら、上記の有機接着剤による接合法では、そ
の使用温度が200℃と低く、強度的にも10 kg/
 mm”以下と不十分である。またろう材法では、有機
接着材に比較して高温まで強い強度を示すものの、酸化
雰囲気下での使用温度がせいぜい600℃以下であり、
窒化けい素の利点とされる1000℃以上の使用に耐え
得るには未だ不十分である。
``Problem to be solved by the invention'' However, in the above-mentioned bonding method using organic adhesive, the operating temperature is as low as 200°C, and the strength is 10 kg/
mm'' or less, which is insufficient.Furthermore, although the brazing filler metal method shows stronger strength up to high temperatures than organic adhesives, the operating temperature in an oxidizing atmosphere is at most 600°C or lower;
It is still insufficient to withstand use at temperatures above 1000°C, which is an advantage of silicon nitride.

「課題を解決するための手段」 この発明では、酸化カルシウム(Cao )と、無水け
い酸(S+Ot)と、酸化タンタル(Task5)とを
含有してなる接合材により、窒化けい素焼結体を接合す
るようにして上記課題を解決した。
"Means for Solving the Problem" In this invention, silicon nitride sintered bodies are bonded using a bonding material containing calcium oxide (Cao), silicic anhydride (S+Ot), and tantalum oxide (Task 5). The above problem was solved in this way.

すなわち、本発明者は上記課題を解決するべく鋭意研究
の結果、酸化カルシウム(Cao )と無水けい酸(S
iO2)と酸化タンタル(TazOs)とからなる接合
材が窒化けい素焼結体どうしの接合に対して有効である
ことを見い出すとともに、この接合材に窒化けい素(s
iiN+)を添加することによってさらに接合強度が向
上することを見い出した。
That is, as a result of intensive research in order to solve the above problems, the present inventor has developed calcium oxide (Cao) and silicic anhydride (S).
It was discovered that a bonding material consisting of tantalum oxide (TazOs) and tantalum oxide (TazOs) is effective for bonding silicon nitride sintered bodies together.
It has been found that the addition of iiN+) further improves the bonding strength.

以下、本発明を具体的に説明する。The present invention will be specifically explained below.

本発明の請求項I1.:記載した接合材を作製するには
、まず酸化カルシウム(Cao )、無水けい酸(Si
n、)、酸化タンタル(T aeo s)の各粉末また
はこれらの混合粉末を用意し、均一に混合する。ここで
粉末を用意するにあたっては、酸化カルシウム(CaO
)、無水けい酸(Sin−)、酸化タンタル(TatO
s)のうちの2種もしくは3種の粉末を混合し、−已然
処理した後粉砕して再度粉末としたしのを使用J−るの
が好ましい。またこの場合、酸化力ルンウム、無水けい
酸、酸化タンタルの代わりに、熱処理過程において酸化
物となるカルシウム、けい素、タンタルのそれぞれの化
合物を使用してもよい。
Claim I1. : To produce the described bonding material, first, calcium oxide (Cao), silicic anhydride (Si
), tantalum oxide (Taeos) powder, or a mixed powder thereof are prepared and mixed uniformly. In preparing the powder here, calcium oxide (CaO
), silicic anhydride (Sin-), tantalum oxide (TatO
It is preferable to mix two or three of the powders of s), process the mixture, and then grind it to form a powder again. Moreover, in this case, each compound of calcium, silicon, and tantalum, which become oxides during the heat treatment process, may be used instead of oxidizing aluminum, silicic anhydride, and tantalum oxide.

酸化カルシウムと無水けい酸との重量比は、酸化カルシ
ウムlに対し無水けい酸が0.2〜5、o1好ましくは
0.5〜2.0とされ、これ以外の範囲では融点が高く
なり良好な結合状態が得られず不適である。特に酸化カ
ルシウムの比が高い場合には、接合材の熱膨張率が大き
くなり、接合界面において窒化けい素との熱膨張差に起
因して亀裂が生じる。
The weight ratio of calcium oxide and silicic anhydride is 0.2 to 5, preferably 0.5 to 2.0, silicic anhydride to calcium oxide l, and outside of this range, the melting point will be high and it will be good. It is unsuitable because a suitable bonding state cannot be obtained. In particular, when the ratio of calcium oxide is high, the coefficient of thermal expansion of the bonding material increases, and cracks occur at the bonding interface due to the difference in thermal expansion with silicon nitride.

酸化タンタルの配合量は、0.1〜80wt%、好まし
くは5〜40vt%とされる。すなわち、01vt%以
下では後述するような酸化タンタル配合の効果がなく、
80wt%以上では接合材全体の融点が高くなって接合
温度が上昇するとともに、接合時における酸化タンタル
の還元に伴う酸素の発生が顕著となり、良好な接合材が
得られないためである。
The amount of tantalum oxide blended is 0.1 to 80 wt%, preferably 5 to 40 wt%. In other words, below 0.1vt%, there is no effect of tantalum oxide compounding as will be described later.
This is because if the content exceeds 80 wt%, the melting point of the entire bonding material becomes high and the bonding temperature rises, and oxygen generation due to the reduction of tantalum oxide during bonding becomes significant, making it impossible to obtain a good bonding material.

このような配合の接合材にあっては、酸化カルシウムと
無水けい酸とに第三成分として酸化タンタルを添加した
ので、接合材の融点が低下し、窒化けい素との濡れ性が
向上する。また、窒化けい素の接合にあたり、窒化けい
素から接合材への窒素固溶量の増加に伴って結合相の強
度が増加し、さらに熱膨張率の低下によって窒化けい素
との接合時における熱応力が低減する。
In the bonding material having such a composition, since tantalum oxide is added as a third component to calcium oxide and silicic anhydride, the melting point of the bonding material is lowered and the wettability with silicon nitride is improved. In addition, when bonding silicon nitride, the strength of the binder phase increases with the increase in the amount of solid solution of nitrogen from silicon nitride to the bonding material, and furthermore, due to the decrease in the coefficient of thermal expansion, the heat generated during bonding with silicon nitride increases. Stress is reduced.

また、本発明の請求項4に記載した接合材を作製するに
は、酸化カルシウム、無水けい酸、酸化タンタルに加え
て窒化けい素(siiN4)粉を添加する。ここで、酸
化カルシウム、無水けい酸、酸化タンタルの配合につい
ては先に説明した請求項1に記載の接合材と同様である
。また、窒化けい素粉の添加量は0.O1〜80vL%
、好ましくはlO〜50vt%とされ、80wt%を越
えると融点が高くなり過ぎて好ましくない。
Furthermore, in order to produce the bonding material according to claim 4 of the present invention, silicon nitride (siiN4) powder is added in addition to calcium oxide, silicic anhydride, and tantalum oxide. Here, the blending of calcium oxide, silicic anhydride, and tantalum oxide is the same as that of the bonding material according to claim 1 described above. In addition, the amount of silicon nitride powder added was 0. O1~80vL%
, preferably 10 to 50 wt%; if it exceeds 80 wt%, the melting point becomes too high, which is not preferable.

このような配合の接合材にあっては、窒化けい素粉を添
加することによって接合材中の窒素量が増加し、これに
より結合相の強度が増加するとともに、熱膨張率の低下
によって窒化けい素との接合時における熱応力が低減す
る。
In a bonding material with such a composition, adding silicon nitride powder increases the amount of nitrogen in the bonding material, which increases the strength of the binder phase, and reduces the coefficient of thermal expansion of silicon nitride. Thermal stress during bonding with the base material is reduced.

これらの接合材を用いて窒化けい素焼給体を接合するに
は、まず窒化けい素焼給体表面に接合材を塗布し、非酸
化雰囲気にて熱処理を施して接合材を溶融被覆せしめ、
その後窒化けい素焼給体を接合する。ここで、接合材を
一旦溶融し、その後窒化けい素焼給体を接合するのは以
下の理由による。すなわち、酸化タンタルは非化学虫論
的・化合物となり易い化合物であるため、非酸化雰囲気
中にて加熱されて酸素ガスを発生し易く、また窒化けい
素との反応でもガスを発生する。したがって、上記接合
材を介して窒化けい素焼給体を直接(−回で)接合した
場合には、発生したガスにより接合界面に気泡が生成し
、接合強度が低下するからである。
To bond a silicon nitride burner using these bonding materials, first apply the bonding material to the surface of the silicon nitride burner, heat treat it in a non-oxidizing atmosphere to melt and coat the bonding material,
After that, the silicon nitride heat source is joined. Here, the reason why the bonding material is once melted and then the silicon nitride burner is bonded is as follows. That is, since tantalum oxide is a non-chemical compound that easily forms into compounds, it easily generates oxygen gas when heated in a non-oxidizing atmosphere, and also generates gas when reacted with silicon nitride. Therefore, if the silicon nitride burner is directly bonded (-times) via the bonding material, bubbles will be generated at the bonding interface due to the generated gas, and the bonding strength will be reduced.

そして、上記接合方法によれば、最終接合温度より高い
温度で一旦熱処理することにより、接合時におけるガス
の発成量を低減することができ、気泡の少ない接合材を
得ることか可能となる。
According to the above bonding method, by once performing heat treatment at a temperature higher than the final bonding temperature, the amount of gas generated during bonding can be reduced, making it possible to obtain a bonding material with fewer bubbles.

「実施例」 以下、本発明を請求項4に記載した発明の一実施例に基
づいて詳細に説明する。
"Example" Hereinafter, the present invention will be described in detail based on an example of the invention set forth in claim 4.

まず、酸化カルシウム(CaO)と無水けい酸(SiO
7)と酸化タンタル(T ayOs )とα−窒化けい
素(α−S 13N 4 )とを第1表に示した1〜5
の組成に配合し、メノー乳鉢で混合するとと乙に市販の
スクリーンオイルを加えてペースト化した一次に、寸法
が20X20X20mmの立法体形の窒化けい素を2個
用意し、これらの−表面にそれぞれ上記ペーストを塗布
して乾燥した。次いで、窒素雰囲気中にて1430℃で
熱処理し、窒化けい素焼給体表面に反応相を生成せしめ
た。
First, calcium oxide (CaO) and silicic anhydride (SiO
7), tantalum oxide (T ayOs ), and α-silicon nitride (α-S 13N 4 ) as shown in Table 1.
After mixing in an agate mortar and adding commercially available screen oil to make a paste, prepare two cube-shaped silicon nitride pieces with dimensions of 20 x 20 x 20 mm, and place the above on each surface. Apply the paste and let it dry. Next, heat treatment was performed at 1430° C. in a nitrogen atmosphere to generate a reaction phase on the surface of the silicon nitride burner.

その後、窒化けい素焼給体の反応相面どうしを合わせ、
常圧下で接合を行った。
After that, the reactive phase surfaces of the silicon nitride firing body are aligned,
Bonding was performed under normal pressure.

接合後、一体化した試料から3X4X40mmの試験片
を切りだし、4点曲げ強度試験(下スパン330mm、
上スパン長10mm、クロスヘツドスピード0 、5 
mm/ win )により接合強度を測定し、その結果
を第1表に示した。
After joining, a 3x4x40mm test piece was cut out from the integrated sample and subjected to a 4-point bending strength test (bottom span 330mm,
Upper span length 10mm, crosshead speed 0, 5
The bonding strength was measured by mm/win) and the results are shown in Table 1.

第1表に示した結果より、本発明の接合材を用いて接合
された窒化けい素試料は、優れた接合強度を有している
ことが確認された。
From the results shown in Table 1, it was confirmed that the silicon nitride samples bonded using the bonding material of the present invention had excellent bonding strength.

第1表 ■ 実施例 第8表−2 以下余白 =4;− 「発明の効果」 以上説明したように、本発明における窒化けい素焼縮体
の接合材は、金属酸化物あるいは金属酸化物・窒化物混
合体からなるものであり、これを窒化けい素に溶融被覆
せしめ、この溶融体に窒化けい素あるいは金属等を接合
することにより、最終の接合温度を低く抑えることがで
き、かつ優れた接合強度を存する窒化けい素焼縮体の接
合体を得ることかできる。
Table 1 ■ Examples Table 8 - 2 Below margin = 4; By melting and coating silicon nitride with this mixture and bonding silicon nitride or metal to this melt, the final bonding temperature can be kept low and an excellent bond can be achieved. It is possible to obtain a bonded body of sintered silicon nitride that has strength.

また、本発明における接合方法によれば、上記接合材を
用いることにより高強度の窒化けい常接合体を作製する
ことができる。
Furthermore, according to the bonding method of the present invention, a high-strength silicon nitride bonded body can be produced by using the above-mentioned bonding material.

Claims (8)

【特許請求の範囲】[Claims] (1)酸化カルシウム(CaO)と、無水けい酸(Si
O_2)と、酸化タンタル(Ta_2O_5)とを含有
してなることを特徴とする窒化けい素焼結体用接合材。
(1) Calcium oxide (CaO) and silicic anhydride (Si
1. A bonding material for silicon nitride sintered bodies, characterized in that it contains tantalum oxide (Ta_2O_5) and tantalum oxide (Ta_2O_5).
(2)請求項1に記載した接合材において、酸化カルシ
ウム(CaO)に対して無水けい酸(SiO_2)の割
合が0.2〜5.0重量比であることを特徴とする窒化
けい素焼結体用接合材。
(2) The bonding material according to claim 1, characterized in that the ratio of silicic anhydride (SiO_2) to calcium oxide (CaO) is 0.2 to 5.0 by weight. Bonding material for the body.
(3)請求項1に記載した接合材において、酸化タンタ
ル(Ta_2O_5)の割合が0.1〜80重量%であ
ることを特徴とする窒化けい素焼結体用接合材。
(3) The bonding material for a silicon nitride sintered body according to claim 1, wherein the proportion of tantalum oxide (Ta_2O_5) is 0.1 to 80% by weight.
(4)請求項1に記載した接合材において、窒化けい素
(Si_3N_4)粉を0.01〜80重量%添加した
ことを特徴とする窒化けい素焼結体用接合材。
(4) A bonding material for a silicon nitride sintered body according to claim 1, characterized in that 0.01 to 80% by weight of silicon nitride (Si_3N_4) powder is added thereto.
(5)窒化けい素焼結体表面に請求項1に記載した接合
材を塗布し、熱処理により接合材を溶融被覆せしめた後
、窒化けい素焼結体を接合することを特徴とする窒化け
い素焼結体の接合方法。
(5) Silicon nitride sintering, characterized in that the bonding material according to claim 1 is applied to the surface of the silicon nitride sintered body, the bonding material is melted and coated by heat treatment, and then the silicon nitride sintered body is bonded. How to join the body.
(6)窒化けい素焼結体表面に請求項4に記載した接合
材を塗布し、熱処理により接合材を溶融被覆せしめた後
、窒化けい素焼結体を接合することを特徴とする窒化け
い素焼結体の接合方法。
(6) Silicon nitride sintering, characterized in that the bonding material according to claim 4 is applied to the surface of the silicon nitride sintered body, the bonding material is melted and coated by heat treatment, and then the silicon nitride sintered body is bonded. How to join the body.
(7)請求項5に記載した接合方法において、熱処理の
雰囲気を非酸化雰囲気もしくは真空雰囲気で行うことを
特徴とする窒化けい素焼結体の接合方法。
(7) A method for joining silicon nitride sintered bodies according to claim 5, characterized in that the heat treatment is performed in a non-oxidizing atmosphere or a vacuum atmosphere.
(8)請求項6に記載した接合方法において、熱処理の
雰囲気を非酸化雰囲気もしくは真空雰囲気で行うことを
特徴とする窒化けい素焼結体の接合方法。
(8) A method for joining silicon nitride sintered bodies according to claim 6, characterized in that the heat treatment is performed in a non-oxidizing atmosphere or a vacuum atmosphere.
JP803089A 1989-01-17 1989-01-17 Joining material for silicon nitride sintered body and joining method Pending JPH02188474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP803089A JPH02188474A (en) 1989-01-17 1989-01-17 Joining material for silicon nitride sintered body and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP803089A JPH02188474A (en) 1989-01-17 1989-01-17 Joining material for silicon nitride sintered body and joining method

Publications (1)

Publication Number Publication Date
JPH02188474A true JPH02188474A (en) 1990-07-24

Family

ID=11681942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP803089A Pending JPH02188474A (en) 1989-01-17 1989-01-17 Joining material for silicon nitride sintered body and joining method

Country Status (1)

Country Link
JP (1) JPH02188474A (en)

Similar Documents

Publication Publication Date Title
US5975407A (en) Method using a thick joint for joining parts in SiC-based materials by refractory brazing and refractory thick joint thus obtained
JP2003527292A (en) Method for assembling parts made of SiC-based material by non-reactive refractory brazing, solder composition for brazing and refractory joints and assemblies obtained by this method
JPH0573714B2 (en)
US4486257A (en) Adhesive for and method for adhesion of ceramic articles
JPH0631162B2 (en) Adhesive for bonding silicon nitride ceramic sinter and bonding method
JPH02188474A (en) Joining material for silicon nitride sintered body and joining method
JP3154771B2 (en) Silicon nitride ceramic bonding agent
JP3154770B2 (en) Silicon nitride ceramics joints
JPH0753278A (en) Ceramics-metal joined body
JPS6141757A (en) Zro2-base powder for heat insulating coating
JPS61104036A (en) Manufacture of composite sintered body consisting of ceramic and metal
JPH02124777A (en) Cement for silicon nitride ceramic
JPS6251913B2 (en)
JPS60251177A (en) Bonding method
CN106702315A (en) Preparation method for MoSi2 coating on surfaces of metal tantalum and alloy
JPH05148050A (en) Joining agent for silicon nitride ceramics
JPS5864271A (en) Silicon nitride sintered body
JP2964858B2 (en) Cast iron parts with thermal barrier coating
JP2001048670A (en) Ceramics-metal joined body
JPH02248371A (en) Method for bonding silicon nitride sintered body
JPH05148051A (en) Joined material of silicon nitride ceramics
JPS61201768A (en) Ceramics-metal composite material having oxidation-resistant coating layer and its manufacture
JPS6395184A (en) Metallization for ceramics
JPS6020347B2 (en) Manufacturing method of silicon nitride sintered body
JPH05148049A (en) Joining agent for silicon nitride ceramics