WO1986001446A1 - Ceramic adherent alloy - Google Patents

Ceramic adherent alloy Download PDF

Info

Publication number
WO1986001446A1
WO1986001446A1 PCT/JP1985/000443 JP8500443W WO8601446A1 WO 1986001446 A1 WO1986001446 A1 WO 1986001446A1 JP 8500443 W JP8500443 W JP 8500443W WO 8601446 A1 WO8601446 A1 WO 8601446A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
ceramic
group
ceramics
elements
Prior art date
Application number
PCT/JP1985/000443
Other languages
French (fr)
Japanese (ja)
Inventor
Seiichiro Miyata
Original Assignee
Miyata Giken Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP18335684A external-priority patent/JPS6160291A/en
Priority claimed from JP25366584A external-priority patent/JPS61132569A/en
Priority claimed from JP5744185A external-priority patent/JPS61216883A/en
Priority claimed from JP5744285A external-priority patent/JPS61216884A/en
Application filed by Miyata Giken Co., Ltd. filed Critical Miyata Giken Co., Ltd.
Publication of WO1986001446A1 publication Critical patent/WO1986001446A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/16Silicon interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/401Cermets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
    • C04B2237/555Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer on a substrate not containing an interlayer coating, leading to the formation of an interlayer coating

Definitions

  • the present invention relates to a composition of an alloy which is completely wetted and fused to ceramics, for example, oxides, carbides, nitrides, and borides at a contact angle of zero degree.
  • the basic method for joining is to first metallize the ceramic and then use appropriate brazing material to join it.
  • the method underlying the prior art of metallizing ceramics is the active metal method.
  • an alloy of an active metal such as Ti, Zr, V, Nb, Ta, Cr, or Mn is melted in an atmosphere furnace and fused to the ceramic. Is added for the purpose of lowering the melting point of this alloy, and Fe, Ni, Co, Cu, Ag, AI, Sn, In, and Pb are used as this element.
  • this conventional alloy has the disadvantage that the combination of Fe, Ni, Co, Cu. Ag, and AI has a contact angle of approximately 20-70 degrees when fused in a ceramic and does not wet completely. .
  • this alloy certainly wets completely and fuses, but because of its low melting point and high quality, its fusion strength is extremely low. There is a disadvantage that it cannot be applied to practical strength members at all.
  • the droplet will fuse in a raised state In addition, it cannot be completely adhered to the metal on the other side during the subsequent brazing.
  • the surface must be polished smoothly. Alternatively, it is necessary to perform an operation of fusing under pressure.
  • the present invention has been made in view of such problems, and an object of the present invention is comparable to a conventional active metal and an alloy of a combination of Fe, Ni, Co, Cu and Ag.
  • the purpose of the present invention is to provide an alloy having a high melting point and a high strength, which is completely wetted by ceramics (each contact is zero degree).
  • the alloy of the present invention has the following composition.
  • a ceramic fused alloy comprising one or more elements selected from the group consisting of Ti group element, group V element, Y and Ca, and Si as an essential component.
  • composition ratio (weight ratio) of Ti group element, V group element, Y and Ca and Si is
  • the alloy of the present invention is completely wetted and fused to an oxide ceramic, a carbide ceramic, a nitride ceramic, a boron ceramic, or a mixed ceramic thereof at a contact angle of zero.
  • the contact angle of conventional active metal brazing material is 20-70 degrees, and the contact angle of Si alone is about 30 degrees (for silicon nitride, silicon carbide, and zirconia).
  • Elements up to less than 40% can be replaced by elements other than the above.
  • Fe. Ni, Co. Mn, Cr. For the purpose of lowering the melting point or changing physical, chemical, mechanical properties, etc.
  • T i and V groups are “S.V.Nb.T a, especially T i .V.
  • the coating fused to the ceramic becomes a smooth coating having a uniform thickness, and can be closely adhered to the brazing surface of the counterpart metal without forming a gap.
  • joining when used for joining ceramics and ceramics, joining can be achieved simply by sandwiching and melting this alloy at the joint. There is no need to apply pressure from above.
  • the alloy of the present invention also has the following advantages.
  • a brittle intermediate layer is formed at the boundary between the ceramic and the fusion alloy.
  • this layer is deep, and there are some bases which reach 100 degrees.
  • the generation of the diffusion layer is small and is at most several microns to several tens microns. This favors the strength and toughness of the joint.
  • Oxide zirconia
  • carbide silicon carbide
  • nitride silicon nitride, sialon
  • borides and alloys of the following various compositions are placed on these mixed ceramics, and heated and melted under reduced pressure ( After cooling, the contact angles were measured.
  • Table 1 shows the measurement results for oxides (zirconia), Table 2 shows the results for carbides (silicon carbide), and Table 3 shows the results for nitrides (silicon nitride, sialon). , And the results for these mixed ceramics are shown in Table 4.
  • Table 4 (Z “B 2 , mixed composition”) Ceramic composition, gold composition Heating temperature () Contact angle (degree)
  • the alloys of the present invention are completely fused only by keeping them at a temperature lower than the firing temperature of each ceramic for several minutes.
  • Example 2 Using the same oxide, carbide, and nitride ceramic as the test of Example 1, the wettability of the multi-component composition was tested.
  • the base alloy used had a composition of 50T i -50S i, and the contact angles of the alloys containing 20% and 40% of AI, Cu. Ag, Fe, Ni, Fe—Mn, respectively, were added. It was measured.
  • Ni-B-Si-based amorphous brazing foil was sandwiched between the stainless steel tip and the metallized surface, and heated and fused at 1000 ⁇ for 1 minute in a vacuum atmosphere to observe the state of fusion.
  • the stainless steel and the zirconia ceramic were firmly joined, and no fine defects were observed.
  • the fusion layer spread evenly and evenly over the entire surface at a contact angle of zero degree, and partially wet the side surfaces.
  • the two ceramic pieces were completely wetted and strongly bonded by the Si-50 (Fe-Nb) alloy.
  • the ceramic fusion alloy according to the present invention can be used as an alloy for metallizing ceramics, as an alloy for a binder when forming a cermet of ceramic and metal, or by bonding ceramic and ceramic. It is useful as a brazing filler metal when welding, especially as a metallizing or mouthpiece when joining ceramic and metal.

Abstract

Ceramic-adherent alloy capable of melt adhering to ceramic of an oxide, carbide, nitride, boride or a mixture thereof at a contact angle of 0o, which fundamentally comprises Si and one or more elements selected from among Ti group elements, V group elements, Y, and Ca. The ratio of Si to total of Ti group and V group elements, Y, and Ca (by weight) is (5-95): (100 - amount of Si), with the sum of Si and Ti group and V group elements, Y, and Ca being at least 60% by weight based on the total weight of the alloy. This alloy can be utilized for metallizing ceramics, cementing metal and ceramics or cementing ceramics to each other, or as metal for binding phase of cermet.

Description

明 細 書 セラミック融着合金  Description Ceramic fusion alloy
技術分野  Technical field
本発明はセラミック、 例えば酸化物、 炭化物、 窒化物、 ホー化物等のセラミックに接触 角零度で完全に濡れて融着する合金の組成に関-するものである。  The present invention relates to a composition of an alloy which is completely wetted and fused to ceramics, for example, oxides, carbides, nitrides, and borides at a contact angle of zero degree.
背景技術 ·  Background Technology ·
セラミック材料が今後汎用化されてゆくためには、 金属材料や他のセラミックとうまく 複合させていくことが必要になる。 特にセラミツクの脆性をおぎなう意味においても金属 との接合は重要なテーマである。 このようなことからセラミックと金属との複合にかんす る研究は非常に盛んであり、 既にいくつかの方法が発表されている。  In order for ceramic materials to become widely used in the future, it will be necessary to mix them well with metallic materials and other ceramics. In particular, joining with metals is an important theme in terms of eliminating the brittleness of ceramics. For these reasons, research on composites of ceramics and metals has been very active, and several methods have already been published.
接合の為の基本的な手法は、 まず、 セラミックをメタライズした後、 適当なロー材をつ かって口一付けする方法である。  The basic method for joining is to first metallize the ceramic and then use appropriate brazing material to join it.
従って、 このテーマには、 セラミックのメタライズは不可欠な重要な問題である。 セラミツクのメタライジングの従来技術の基本をなす方法は、 活性金属法である。 この方法は、 T i , Zr, V, N b, Ta, C r, M n等の活性金属の合金を雰囲気炉 中で溶融してセラミックに融着させる方法であり、 添加する一方の合金元素は、 この合金 の融点をさげる目的で添加されており、 この元素として、 Fe, N i , Co, Cu , Ag , A I , Sn, I n, Pbが用いられている。  Therefore, metallization of ceramics is an essential and important issue for this theme. The method underlying the prior art of metallizing ceramics is the active metal method. In this method, an alloy of an active metal such as Ti, Zr, V, Nb, Ta, Cr, or Mn is melted in an atmosphere furnace and fused to the ceramic. Is added for the purpose of lowering the melting point of this alloy, and Fe, Ni, Co, Cu, Ag, AI, Sn, In, and Pb are used as this element.
しかして従来のこの合金は、 Fe, N i . Co, Cu. Ag, A Iの組合わせでは、 セ ラミックに融着した時の接触角はおおむね 20〜 70度で完全には濡れない欠点がある。 また Sn, I n, P b等の低融点元素との組合わせでは、 この合金は確かに完全に濡れ て融着するが、 低融点で钦質であるために、 融着強度が極端に低く実用的な強度部材には 全く適用出来ない欠点がある。  However, this conventional alloy has the disadvantage that the combination of Fe, Ni, Co, Cu. Ag, and AI has a contact angle of approximately 20-70 degrees when fused in a ceramic and does not wet completely. . In addition, in combination with low melting elements such as Sn, In, and Pb, this alloy certainly wets completely and fuses, but because of its low melting point and high quality, its fusion strength is extremely low. There is a disadvantage that it cannot be applied to practical strength members at all.
融着金属がセラミックに完全に濡れない場合、 液滴はもりあがった状態で融着するため に、 この後のロー付けの際に相手側の金属と完全に密着させることができない。 If the fused metal is not completely wetted by the ceramic, the droplet will fuse in a raised state In addition, it cannot be completely adhered to the metal on the other side during the subsequent brazing.
従って、 表面を平滑に研磨することも必要になってくる。 あるいは圧力をかけた状態で 融着させる操作も必要になってくる。  Therefore, the surface must be polished smoothly. Alternatively, it is necessary to perform an operation of fusing under pressure.
また濡れが完全でないと融着強度にも問題が生じてくる。  In addition, if the wetting is not complete, a problem occurs in the fusion strength.
従って、 本発明はかかる問題点に鑑みてなされたものであり、 本発明の目的とする所は 従来の活性金属と Fe, N i , C o , C u . A gの:組合せの合金に匹敵する様な高融点を 有し、 かつ高強度でセラミックに完全に濡れる (接触各零度) 合金を提供するにある。  Therefore, the present invention has been made in view of such problems, and an object of the present invention is comparable to a conventional active metal and an alloy of a combination of Fe, Ni, Co, Cu and Ag. The purpose of the present invention is to provide an alloy having a high melting point and a high strength, which is completely wetted by ceramics (each contact is zero degree).
発明の開示  Disclosure of the invention
即ち本発明の合金は、 次の組成から成る。  That is, the alloy of the present invention has the following composition.
1. T i族元素、 V族元素、 Y、 C aの中から選ばれた 1種あるいは 2—種以上の元素と、 S i.を必須成分としてなることを特徴とするセラミツク融着合金。  1. A ceramic fused alloy comprising one or more elements selected from the group consisting of Ti group element, group V element, Y and Ca, and Si as an essential component.
2. T i族元素、 V族元素、 Yおよび Caと S iの成分比率 (重量比率) が、  2. The composition ratio (weight ratio) of Ti group element, V group element, Y and Ca and Si is
S i : (T i族、 V族元素、 Yおよび C aの総和) が  S i: (sum of T i group, V group elements, Y and C a)
( 5〜95 ) : ( 100— S i量)  (5 to 95): (100—Si amount)
であって、 S iと T i族、 V族元素、 Yおよび Caの絵和が少なくとも全体の 60% ( 重量%) 以上にされてなることを特徴とする上記第 1項に記載のセラミック融着合金。 本発明合金は、 以上の組成によって酸化物セラミック、 炭化物セラミック、 窒化物セラ ミック、 ホ一化物セラミックあるいはこれらの混合されたセラミックに接触角零度で完全 に濡れて融着する様になる。  2. The ceramic melt according to claim 1, wherein the sum of Si and Ti group, group V elements, Y and Ca is at least 60% (% by weight) or more of the whole. Wear alloy. With the above composition, the alloy of the present invention is completely wetted and fused to an oxide ceramic, a carbide ceramic, a nitride ceramic, a boron ceramic, or a mixed ceramic thereof at a contact angle of zero.
ちなみに、 従来の活性金属ロー材では、 接触角は 20〜 70度、 S i単独の場合、 接触 角は約 30度 (窒化ケィ素、 炭化ケィ素、 ジルコニァにたいして) である。  Incidentally, the contact angle of conventional active metal brazing material is 20-70 degrees, and the contact angle of Si alone is about 30 degrees (for silicon nitride, silicon carbide, and zirconia).
S iと上記じた元素の組合せによって初めて濡れが完全になる。  Combination of Si and the above-mentioned elements makes complete wetting possible.
尚、 本発明合金が上記組成を逸脱した場合、 完全な濡れがえられなくなる。  When the alloy of the present invention deviates from the above composition, complete wetting cannot be obtained.
しかしながら、 少なくともこの範囲内であれば完全な濡れが得られる。 従って、 全体の However, at least within this range, complete wetting is obtained. Therefore, the whole
40%未満の量までを上記元素以外の元素で置換することができる。 例えば、 融点を下げ たり、 物理的、 化学的、 機械的性質等を変える目的で、 Fe. N i, Co. Mn, C r.Elements up to less than 40% can be replaced by elements other than the above. For example, Fe. Ni, Co. Mn, Cr., For the purpose of lowering the melting point or changing physical, chemical, mechanical properties, etc.
Cu . Ag. A I , S n等を添加できる。 T i 、 V族の中で最も好ましい元素は、 「 し V . N b . T aであり、 とりわけ、 T i . V . 特に Vが好ましい。 Cu, Ag. AI, Sn, etc. can be added. The most preferred element in the T i and V groups is “S.V.Nb.T a, especially T i .V.
しかして本発明合金によれば、 セラミックに融着した被膜は、 均一な厚さの平滑な被膜 となり、 相手方金属のロー付け面との間に隙間をつくることなく、 密着させることができ る。  Thus, according to the alloy of the present invention, the coating fused to the ceramic becomes a smooth coating having a uniform thickness, and can be closely adhered to the brazing surface of the counterpart metal without forming a gap.
また、 非常にせまい隙間や気孔にも十分に浸透することができ、 溶浸法によるサ一メッ 卜の製造にも適用できる。  In addition, it can sufficiently penetrate into very narrow gaps and pores, and can be applied to the production of sacrifices by the infiltration method.
またセラミックとセラミツクの接合につかった場合、 接合部にこの合金を挟み溶融する だけで接合できる。 上から圧力を加える必要はない。  In addition, when used for joining ceramics and ceramics, joining can be achieved simply by sandwiching and melting this alloy at the joint. There is no need to apply pressure from above.
本発明合金は更に次の様な利点も有する。  The alloy of the present invention also has the following advantages.
一般的にセラミックと融着合金との境界部には脆い中間層が生成されるが、 従来の台金 は、 この層が深く、 1 0 0 にたつする場台もある。  Generally, a brittle intermediate layer is formed at the boundary between the ceramic and the fusion alloy. However, in the conventional base metal, this layer is deep, and there are some bases which reach 100 degrees.
本発明合金では、 この拡散層の生成が少なく高々数ミクロン〜数十ミクロンである。 これは接合部の強度、 靱性で有利に働く。  In the alloy of the present invention, the generation of the diffusion layer is small and is at most several microns to several tens microns. This favors the strength and toughness of the joint.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 以下実施例に従ってこれを説明する。  In order to explain the present invention in more detail, the present invention will be described below with reference to examples.
実施例 1 (濡れ性テス卜 その 1 )  Example 1 (Wetability test 1)
酸化物 (ジルコニァ) 、 炭化物 (炭化ケィ素) 、 窒化物 (窒化ケィ素、 サイアロン) 、 ホー化物およびこれらの混合されたセラミックの上に次の各種組成の合金を載せ、 減圧下 で加熱溶融 (約 5分保持) し、 冷却後、 それぞれの接触角を測定した。  Oxide (zirconia), carbide (silicon carbide), nitride (silicon nitride, sialon), borides, and alloys of the following various compositions are placed on these mixed ceramics, and heated and melted under reduced pressure ( After cooling, the contact angles were measured.
酸化物 (ジルコニァ) についての測定結果を第 1表に、 炭化物 (炭化ケィ素〉 について の結果を第 2表に、 窒化物 (窒化ケィ素、 サイアロン) についての結果を第 3表に、 ホー 化物、 およびこれらの混合されたセラミックについての結果を第 4表に示す。
Figure imgf000006_0001
Table 1 shows the measurement results for oxides (zirconia), Table 2 shows the results for carbides (silicon carbide), and Table 3 shows the results for nitrides (silicon nitride, sialon). , And the results for these mixed ceramics are shown in Table 4.
Figure imgf000006_0001
ro roro ro
J J1 CO > -' < > ro O CD CO an / (J) Οϊ n 0) (/ (I) ω ω CD ω CD 一. 一 一. 一. 一. 一. 一. J J1 CO>-'<> ro O CD CO an / (J) Οϊ n 0) (/ (I) ω ω CD ω CD I. I. I. I. I. I. I. I.
1 1 1 1 1 1 1 1 1 1 1 1 1 · 1O GO CO CO C ro ro IV) CT) 1 1 1 1 1 1 1 1 1 1 1 1 1 1O GO CO CO C ro ro IV) CT)
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
1 1
1 1 I H H CH  1 1 I H H CH
〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
1 1 1 1 1 π 1 1 < J J H1 1 1 1 1 π 1 1 <J J H
O) Z N 1 -i ~i -} O) Z N 1 -i ~ i-}
O 〇 〇 〇 〇 O" ~i 1 1 1 1  O 〇 〇 〇 〇 O "~ i 1 1 1 1
1 1 〇 0J c GO P cr < < 2 O 〇 〇 o 1 1 〇 0J c GO P cr <<2 O 〇 〇 o
X cr σ < < < X cr σ <<<
 One
1 1 1 1
_i 卜 ro ro ' CD_i u ro ro 'CD
00 00 0D 00 CP n 齣 cn cn CJi O 00 00 0D 00 CP n exposure cn cn CJi O
O 〇 〇 O 〇 〇 〇 5  O 〇 〇 O 〇 〇 〇 5
o 〇 ο o o O o 〇 〇 O o 〇 〇 〇 ' 〇 t o 〇 ο oo O o 〇 〇 O o 〇 〇 〇 '〇 t
9 S i - 10 V 1480 0 0 S i -30V 1480 0 1 S i -40 ( Fe-50V) 1480 0 . 2 S i -60 ( Fe-50V) 1480 .0 3 S i -1 OT i 1450 ひ 4 S i -30T i 1450 " 0 5 S i - 50 T i 1450 0 6 S i -95T i 1550 0 7 S i -3 OZ r 1480 0 8 S i -45 Y 1480 0 第 3表 (窒化ケィ素、 サイアロン) 9 S i -10 V 1480 0 0 S i -30V 1480 0 1 S i -40 (Fe-50V) 1480 0.2 S i -60 (Fe-50V) 1480.03 S i -1 OT i 1450 4 S i -30T i 1450 "0 5 S i -50 T i 1450 0 6 S i -95 T i 1550 0 7 S i -3 OZ r 1480 0 8 S i -45 Y 1480 0 Table 3 , Sialon)
Figure imgf000008_0001
第 4表 (Z「B2、 混合钽成物) セラミックの組成 合,金組成 加熱温度 ( ) 接触角 (度 )
Figure imgf000008_0001
Table 4 (Z “B 2 , mixed composition”) Ceramic composition, gold composition Heating temperature () Contact angle (degree)
Z r B2 S - 13T i 1500 0 Z r B 2 S-13T i 1500 0
s -20T i 1500 0 s -50T i . 1500 0 s -95T i 1350 0 s -20V 1480 0 s -30V 1480 0 s 一 12Y 1480 0 s — 20Z r 1480 - 0 s -30N b 1450 0 s - 30 T a 1450 0 ,  s -20T i 1500 0 s -50T i. 1500 0 s -95T i 1350 0 s -20V 1480 0 s -30V 1480 0 s 12Y 1480 0 s — 20Z r 1480-0 s -30N b 1450 0 s-30 T a 1450 0,
A l23 s -20T i 1500 ' 0 A l 23 s -20T i 1500 '0
s -50T i 1500 0  s -50T i 1500 0
30 % Ζ「 s -20V 148 Ο .' 0  30% Ζ “s -20V 148 Ο. '0
- s -20Z r 1480 ' 0  -s -20Z r 1480 '0
s -12 Y 1480 0  s -12 Y 1480 0
A Iュ 03 s - 20 T i 1500 0 AI h 0 3 s-20 T i 1500 0
+ s -'SOT i 1500 0  + s -'SOT i 1500 0
T i B2 s -3 ON b 1450 0 T i B 2 s -3 ON b 1450 0
本発明の合金は、 第 Ί〜4表の結果からわかる様に、 各セラミックの焼成温度以下の温 度に数分保持するだけで完全融着している。 As can be seen from the results of Tables I to 4, the alloys of the present invention are completely fused only by keeping them at a temperature lower than the firing temperature of each ceramic for several minutes.
このために、 セラミックの材質に何等悪影響を与えることがない。  Therefore, there is no adverse effect on the ceramic material.
実施例 2 (濡れ性テス卜 その 2)  Example 2 (Wettability test 2)
実施例 1のテス卜と周じ酸化物、 炭化物、 窒化物セラミックを使用し、 多元系組成のも のについて、 その濡れ性のテス卜を行なった。  Using the same oxide, carbide, and nitride ceramic as the test of Example 1, the wettability of the multi-component composition was tested.
基本となる合金には、 50T i -50S iの組成のものを用い、 これに、 A I , Cu. Ag, Fe, N i . Fe— Mnをそれぞれ 20%、 40%添加したものについて接触角を 測定した。  The base alloy used had a composition of 50T i -50S i, and the contact angles of the alloys containing 20% and 40% of AI, Cu. Ag, Fe, Ni, Fe—Mn, respectively, were added. It was measured.
20%添加のものは、 全ての組成のものが、 完全な濡れを示した。  With the addition of 20%, all compositions exhibited complete wetting.
40%添加のものは、 必ずしも完全な濡れには至らなかった。  Those with 40% addition did not necessarily lead to complete wetting.
実施例 3 (金属との接合〉  Example 3 (joining with metal)
1 0X 1 0X 1 0臓の部分安定化ジルコニァの板の上に S i -50T i合金の少粒を載 せ、 10^丁0「「の減压下で1450 に5分間加熱して、 完全融着したメタライジ.ン グ層を形成させた。  Place a small grain of Si-50Ti alloy on a partially stabilized zirconia plate of 10X10X10, heat it to 1450 for 5 minutes under reduced pressure, and complete A fused metallizing layer was formed.
次に以上の要領で作ったメタライズ表面に SUS304オーステナィ卜系ステンレスの チップ ( 1 0X 1 0x5m) を接合することを試みた。  Next, an attempt was made to join a SUS304 austenitic stainless steel chip (10X10x5m) to the metallized surface prepared as described above.
このステンレスチップとメタライズ面の間に N i -B-S i系のアモルファス ロー付 け用箔を挟み真空雰囲気で 1000 ^に 1分間加熱、 融着させ、 融着状況を親察した。 本発明合金を使つたものは、 ステンレスとジルコ二アセラミックが強固に接合されてお り、 微細な欠陥も観察されなかった。  An Ni-B-Si-based amorphous brazing foil was sandwiched between the stainless steel tip and the metallized surface, and heated and fused at 1000 ^ for 1 minute in a vacuum atmosphere to observe the state of fusion. In the case of using the alloy of the present invention, the stainless steel and the zirconia ceramic were firmly joined, and no fine defects were observed.
一方、 比較の為に、 従来合金 (T i— 50Cu ) をメタライズして同じ処理を行なった ものでは、 セラミックとメタライズの境界部に亀裂が発生してい 。  On the other hand, for comparison, a conventional alloy (Ti-50Cu) metallized and subjected to the same treatment had cracks at the boundary between ceramic and metallized.
. 本発明合金の融着カは、 従来合金に比較して、 非常に高強度であることが確認できた。 実施例 4 (メタライジングへの応用) ' . It was confirmed that the welding power of the alloy of the present invention was much higher than that of the conventional alloy. Example 4 (Application to Metallizing) ''
10x1 Ox 3壓の炭化ケィ素の板の上に S i -30 ( F e-N ) になる様に、 シリ コンの小粒、 塊状の F e— N bを混合して配合したものを載せ、 10 To r「の減圧下 で 1480¾に 5分加熱して、 融着させた。 10x1 Ox A mixture of small particles and massive Fe-Nb is placed on a silicon carbide plate at a pressure of 3 pressure to form Si-30 (FeN). r And heated to 1480¾ for 5 minutes to fuse.
融着層は、 接触角零度で全面に平滑均等に広がっており、 一部側面まで濡れが及んでい た。  The fusion layer spread evenly and evenly over the entire surface at a contact angle of zero degree, and partially wet the side surfaces.
実施例 5 (セラミック同士の接合)  Example 5 (joining of ceramics)
100%S! Cと、 50%S i C, 50%S i3 の 2種類の焼結体のチップの間に S i -50 ( Fe-N b)組成のスラリー状の混合粉末を約 1酺厚さに塗付し.、 減圧下 (5x 1 O'^xTo r r)で 1480 、 5分加熱し、 接合を行なった。 100% S! C and 50% S i C, 50% S i 3 between two types of sintered compact chips, a slurry mixed powder of S i -50 (Fe-N b) composition to about 1 mm thickness The coating was performed, and heating was performed under reduced pressure (5x1 O '^ xTorr) for 1480 for 5 minutes to perform joining.
2個のセラミック片は S i -50 ( Fe-N b)合金によって、 完全に濡らされ、 強固 に接合されていた。  The two ceramic pieces were completely wetted and strongly bonded by the Si-50 (Fe-Nb) alloy.
実施例 6 (サーメッ卜の結合層)  Example 6 (Cermet bonding layer)
反応焼結法で作った多孔質の S i C焼結体、 および多孔質のジルコニァ焼結体 (それぞ れ 10X 1 Ox 2顯) の上に S i -30 (N i -N b)合金の少粒を載せ、 5x Ί T*T o r「の減圧下で、 1480ΐに 5分加熱し、 それぞれのセラミックの空孔部に完全に含 浸することが出来た。  Si-30 (Ni-Nb) alloy on porous SiC sintered body and porous zirconia sintered body (each 10X1Ox2) prepared by reaction sintering method And heated to 1480ΐ for 5 minutes under reduced pressure of 5x Ί T * T or “, and the pores of each ceramic were completely impregnated.
産業上の利用可能性  Industrial applicability
以上の様に、 本発明に係わるセラミック融着合金は、 セラミックのメタライジング用合 - 金として、 あるいは、 セラミックと金属のサーメットを作るときのバインダー用の合金と して、 あるいはセラミックとセラミックを接合するときのロー材として有用であり、 特に セラミックと金属を接合するときのメタライジングあるいは口一材として有用である。  As described above, the ceramic fusion alloy according to the present invention can be used as an alloy for metallizing ceramics, as an alloy for a binder when forming a cermet of ceramic and metal, or by bonding ceramic and ceramic. It is useful as a brazing filler metal when welding, especially as a metallizing or mouthpiece when joining ceramic and metal.

Claims

請求の範囲 The scope of the claims
1. T i族元素、 V族元素、 丫、 Caの中から選ばれた 1種あるいは 2種以上の元素と、 S I を必須成分としてなることを特徴とするセラミック融着合金。 1. A ceramic fusion alloy comprising one or more elements selected from the group consisting of Ti group elements, group V elements, 丫, and Ca, and S I as essential components.
2. T i族、 V族元素、 Yおよび Caと S iの成分比率 (重量比率〉 が、  2. The component ratio (weight ratio) of Ti and V elements, Y and Ca and Si is
S i : (T i族、 V族元素、 Yおよび C aの絵和) が  S i: (Ti group, V element, Y and C a)
( 5〜95 ) : ( 100 - S i量)  (5 to 95): (100-S i amount)
であって、 S iと T i族、 V族元素、 Yおよび Caの総和が少なくとも全体の 60% ( 重量 96)以上にされてなることを特徴とする請求の範囲第 1項記載のセラミック融着合  2. The ceramic melt according to claim 1, wherein the sum total of Si, Ti and Group V elements, Y and Ca is at least 60% (by weight 96) or more. Arrival
PCT/JP1985/000443 1984-08-31 1985-08-07 Ceramic adherent alloy WO1986001446A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP18335684A JPS6160291A (en) 1984-08-31 1984-08-31 Silicon carbide group ceramic fused alloy
JP59/183356 1984-08-31
JP59/253665 1984-11-29
JP25366584A JPS61132569A (en) 1984-11-29 1984-11-29 Silicon nitride ceramic melt-adhesive alloy
JP60/57442 1985-03-19
JP60/57441 1985-03-19
JP5744185A JPS61216883A (en) 1985-03-19 1985-03-19 Aluminum nitride weldable alloy
JP5744285A JPS61216884A (en) 1985-03-19 1985-03-19 Ti, zr boride ceramic weldable alloy

Publications (1)

Publication Number Publication Date
WO1986001446A1 true WO1986001446A1 (en) 1986-03-13

Family

ID=27463503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000443 WO1986001446A1 (en) 1984-08-31 1985-08-07 Ceramic adherent alloy

Country Status (1)

Country Link
WO (1) WO1986001446A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322732A1 (en) * 1987-12-24 1989-07-05 Forschungszentrum Jülich Gmbh Method of joining an article of silicon carbide to another article of silicon carbide or metal
WO2001068557A1 (en) * 2000-03-14 2001-09-20 Commissariat A L'energie Atomique Method for assembling parts made of materials based on sic by non-reactive refractory brazing, brazing composition, and joint and assembly obtained by said method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622426B1 (en) * 1970-09-11 1981-05-25
JPS5672104A (en) * 1979-11-15 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622426B1 (en) * 1970-09-11 1981-05-25
JPS5672104A (en) * 1979-11-15 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322732A1 (en) * 1987-12-24 1989-07-05 Forschungszentrum Jülich Gmbh Method of joining an article of silicon carbide to another article of silicon carbide or metal
US4961529A (en) * 1987-12-24 1990-10-09 Kernforschungsanlage Julich Gmbh Method and components for bonding a silicon carbide molded part to another such part or to a metallic part
WO2001068557A1 (en) * 2000-03-14 2001-09-20 Commissariat A L'energie Atomique Method for assembling parts made of materials based on sic by non-reactive refractory brazing, brazing composition, and joint and assembly obtained by said method
FR2806405A1 (en) * 2000-03-14 2001-09-21 Commissariat Energie Atomique PROCESS FOR ASSEMBLING PIECES OF SIC-BASED MATERIALS BY NON-REACTIVE REFRACTORY BRAZING, BRAZING COMPOSITION, AND REFRACTORY SEALING AND ASSEMBLY OBTAINED BY THIS PROCESS
US7318547B2 (en) 2000-03-14 2008-01-15 Commissariat A L'energie Atomique Method for assembling parts made of materials based on SiC by non-reactive refractory brazing, brazing composition, and joint and assembly obtained by said method

Similar Documents

Publication Publication Date Title
Locatelli et al. New approaches to joining ceramics for high-temperature applications
US6221499B1 (en) Method using a thick joint for joining parts in SiC-based materials by refractory brazing and refractory thick joint thus obtained
JP2003527292A (en) Method for assembling parts made of SiC-based material by non-reactive refractory brazing, solder composition for brazing and refractory joints and assemblies obtained by this method
US5858144A (en) Low temperature joining of ceramic composites
CA2679846C (en) Metal-ceramic composite air braze with ceramic particulate
WO2006086037A1 (en) Braze system with matched coefficients of thermal expansion
JP2002512882A (en) Method for applying a hard surface forming material to a substrate
WO2012029816A1 (en) Boron carbide-containing ceramic bonded body and method for producing the bonded body
JPH0573714B2 (en)
JPS62220299A (en) Solder for brazing and coupling method using said solder
WO1986001446A1 (en) Ceramic adherent alloy
JPS6160291A (en) Silicon carbide group ceramic fused alloy
JPS6121985A (en) Melt adhesible alloy for silicon nitride base ceramic
JPH0292872A (en) Bonding between ceramic material and copper material
JP2005139057A (en) Method for metallizing powder sintered ceramics
Olesińska et al. Reactive metallic layers produced on AlN, Si 3 N 4 and SiC ceramics
JPS5864271A (en) Silicon nitride sintered body
JP2001048670A (en) Ceramics-metal joined body
JP2000178079A (en) Brazing filler metal
Nishimoto et al. Microstructure of SiC/Cu interface by pulsed electric-current bonding
JPS6228067A (en) Joining method for ceramics
JPS59223280A (en) Method of bonding ceramic and metal
JPH0816033B2 (en) Composition of metallizing paste for silicon nitride and metallizing method using the same
JPS60166288A (en) Metallization of carbide ceramic surface
JPS6351994B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB SE US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): FR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642