JPH0630357B2 - Semiconductor integrated circuit having multilayer wiring - Google Patents

Semiconductor integrated circuit having multilayer wiring

Info

Publication number
JPH0630357B2
JPH0630357B2 JP59062496A JP6249684A JPH0630357B2 JP H0630357 B2 JPH0630357 B2 JP H0630357B2 JP 59062496 A JP59062496 A JP 59062496A JP 6249684 A JP6249684 A JP 6249684A JP H0630357 B2 JPH0630357 B2 JP H0630357B2
Authority
JP
Japan
Prior art keywords
electrode layer
region
wiring
semiconductor integrated
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59062496A
Other languages
Japanese (ja)
Other versions
JPS60206049A (en
Inventor
哲郎 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59062496A priority Critical patent/JPH0630357B2/en
Priority to EP85103637A priority patent/EP0158222B1/en
Priority to KR1019850002015A priority patent/KR900000167B1/en
Priority to DE8585103637T priority patent/DE3579344D1/en
Publication of JPS60206049A publication Critical patent/JPS60206049A/en
Priority to US06/894,381 priority patent/US4694320A/en
Publication of JPH0630357B2 publication Critical patent/JPH0630357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は半導体集積回路、特に多層配線を有する半導体
集積回路に関する。
The present invention relates to a semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit having multi-layer wiring.

(ロ) 従来技術 最近半導体集積回路の集積度向上を図るため多層配線構
造を採用し、配線にフレキシビリティを持たせて回路素
子の高集積化を図っている。斯る多層配線構造としては
ポリイミドを層間絶縁膜として用いる特公昭51−44
871号公報が知られている。
(B) Conventional technology Recently, in order to improve the degree of integration of semiconductor integrated circuits, a multilayer wiring structure has been adopted, and wiring is provided with flexibility to achieve high integration of circuit elements. As such a multilayer wiring structure, polyimide is used as an interlayer insulating film.
The 871 publication is known.

第1図は従来の2チャンネルアンプ回路を組み込んだI
Cパターンの配置を示している。ペレットの中央部には
電源(Vcc)ラインが左右に配置され、ペレットの3辺
の周辺には接地(GND)ラインが配置されている。電
源ラインの上側と下側にはそれぞれ1チャンネルと2チ
ャンネルのアンプ回路が形成するトランジスタ、抵抗、
ダイオード等の回路素子を半導体基板(1)に形成してい
る。そして基板上の酸化シリコンより成る第1の絶縁膜
(2)上には蒸着アルミニウムより成る第1電極層(3)を形
成し、回路素子間の接続を行い各チャンネルのアンプ回
路を構成している。斜線で示した電源ラインおよびアー
スラインも第1電極層(3)で形成されている。続いて層
間絶縁をする第2の絶縁膜(4)を第1の絶縁膜(2)上に設
け、その上に第2電極層(5)を蒸着アルミニウムで形成
している。第2電極層(5)はA→A′、B→B′、C→
C′、D→D′およびE→E′の如く第1電極層(3)と
スルーホールを介して接続され所定の回路を構成する様
に第1電極層(3)とオーバーラップして設けられてい
る。特に2チャンネルアンプ回路を内蔵する半導体集積
回路ではBTL接続をしてパワーアップを図ることが多
く、熱保護回路、過電圧検出回路、ASO保護回路等他
チャンネルからの検出信号を必要とする場合が多い。従
って第2電極層(5)間でも交叉する必要が生じ、この場
合第1電極層(3)を用いてクロス配線を行っている。こ
のクロス配線構造は第2図に示す如く、一方の第2電極
層(5)は第1電極層(3)によりトンネルされ、他方の第2
電極層(5)は第2の絶縁膜(4)により絶縁されている。
FIG. 1 shows an I incorporating a conventional 2-channel amplifier circuit.
The arrangement of the C pattern is shown. A power supply ( Vcc ) line is arranged on the left and right in the center of the pellet, and a ground (GND) line is arranged around the three sides of the pellet. On the upper and lower sides of the power supply line, transistors and resistors formed by 1-channel and 2-channel amplifier circuits, respectively,
A circuit element such as a diode is formed on the semiconductor substrate (1). And a first insulating film made of silicon oxide on the substrate
A first electrode layer (3) made of vapor-deposited aluminum is formed on (2) to connect circuit elements to form an amplifier circuit for each channel. The power supply line and the ground line indicated by diagonal lines are also formed of the first electrode layer (3). Subsequently, a second insulating film (4) for interlayer insulation is provided on the first insulating film (2), and a second electrode layer (5) is formed on the first insulating film (5) by vapor deposition aluminum. The second electrode layer (5) is A → A ′, B → B ′, C →
C ', D → D' and E → E 'are connected to the first electrode layer (3) through the through holes so as to form a predetermined circuit so as to overlap the first electrode layer (3). Has been. In particular, in a semiconductor integrated circuit having a built-in 2-channel amplifier circuit, BTL connection is often used for powering up, and a detection signal from another channel such as a thermal protection circuit, an overvoltage detection circuit, or an ASO protection circuit is often required. . Therefore, it is necessary to cross the second electrode layers (5) as well, and in this case, the first electrode layer (3) is used for cross wiring. In this cross wiring structure, as shown in FIG. 2, one second electrode layer (5) is tunneled by the first electrode layer (3) and the other second electrode layer (5) is tunneled.
The electrode layer (5) is insulated by the second insulating film (4).

しかしながら斯る多層配線構造に於いては、基本的には
できる限り第1電極層(3)を用いて各回路素子の接続を
行いほぼ全面に配線されてしまい、第1電極層(3)で配
線できないものを第2電極層(5)で配線するのが基本的
設計ルールである。従って第2電極層(5)のクロス配線
を行う場合、第1電極層(3)に予じめトンネル用のスペ
ースを確保しなくてはならず、設計が複雑となりトンネ
ル用のスペースのためにチップ面積を大きくしなければ
ならない場合もでてくる。
However, in such a multi-layer wiring structure, basically, as much as possible, the first electrode layer (3) is used to connect the circuit elements, and the wiring is almost entirely over the first electrode layer (3). The basic design rule is to wire those that cannot be wired in the second electrode layer (5). Therefore, when performing the cross wiring of the second electrode layer (5), it is necessary to secure a space for the tunnel in the first electrode layer (3) in advance, which complicates the design and the space for the tunnel. There are cases where the chip area must be increased.

(ハ) 発明の目的 本発明は斯点に鑑みてなされ、設計効率の良い多層配線
を有する半導体集積回路を実現することを目的とする。
(C) Object of the Invention The present invention has been made in view of this point, and an object of the present invention is to realize a semiconductor integrated circuit having multilayer wiring with good design efficiency.

(ニ) 発明の構成 本発明の半導体集積回路は所望の回路素子を形成した半
導体基板と該基板表面上に設けた第1の絶縁層上に配線
された第1電極層と前記第1の絶縁層を被覆する第2の
絶縁層上に配線された第2の電極層とを具備する多層配
線を有する半導体集積回路に於いて、前記第1電極層を
前記回路素子の配線を行う第1領域と前記第2電極層の
クロス配線を行う第2領域に区分し、前記第2領域に平
行配置した第1電極層と平行に延在される前記第2の電
極層とを直交する様に配置し、前記第2領域の第1電極
層と前記第2電極層のスルーホールを前記第2電極層を
前記第2領域の第1電極層に沿って曲折し適当に難間し
て設ける様に構成されている。
(D) Structure of the Invention A semiconductor integrated circuit of the present invention comprises a semiconductor substrate on which desired circuit elements are formed, a first electrode layer wired on a first insulating layer provided on the surface of the substrate, and the first insulating layer. In a semiconductor integrated circuit having a multi-layer wiring including a second electrode layer wired on a second insulating layer covering the layer, a first region for wiring the circuit element to the first electrode layer And a second region for cross-wiring of the second electrode layer, the first electrode layer arranged in parallel with the second region and the second electrode layer extending in parallel are arranged so as to be orthogonal to each other. Then, the through holes of the first electrode layer and the second electrode layer in the second region are formed by bending the second electrode layer along the first electrode layer in the second region and appropriately providing it with difficulty. It is configured.

(ホ) 実施例 本発明に依る多層配線を有する半導体集積回路の一実施
例を第3図乃至第5図を参照して説明する。第3図は2
チャンネルアンプ回路を組込んだICパターンの配置を
示している。
(E) Example An example of a semiconductor integrated circuit having multi-layer wiring according to the present invention will be described with reference to FIGS. Figure 3 is 2
The layout of an IC pattern incorporating a channel amplifier circuit is shown.

半導体基板(11)には複数の島領域を設けてトランジスタ
・抵抗・ダイオード等の回路素子を集積化して形成して
いる。回路素子は夫々2チャンネルアンプ回路を形成す
るのに必要なものを組み込んでいる。
A plurality of island regions are provided on the semiconductor substrate (11) to form circuit elements such as transistors, resistors and diodes in an integrated manner. The circuit elements each incorporate what is required to form a two channel amplifier circuit.

第1電極層(13)は本発明の特徴とする点であり、基板(1
1)表面を覆う第1の絶縁膜(12)上に第1領域(16)と第2
領域(17)に区分して形成されている。第1領域(16)は回
路素子相互の接続を行い2チャンネルアンプ回路を形成
し、第2領域(17)は第2電極層(15)のクロス配線の接続
をしている。具体的にはペレットの中央部に電源
(Vcc)ラインが左右に二叉状に分枝して配置され、夫
々のチャンネルの電源ラインを形成している。ペレット
の3辺の周辺には接地(GND)ラインが配置されてい
る。電源ラインと接地ラインとで囲まれた部分が第1領
域(16)となり、夫々のチャンネルのアンプ回路の接続を
行っている。第2領域(17)は電源ラインで囲まれた部分
に形成される。従ってペレットのほとんど大部分の面積
を占める第1領域(16)に於いては回路素子を接続して各
チャンネルアンプ回路を形成する領域として利用され、
第2領域(17)に於いては第2電極層(15)のクロス配線を
行うのに必要最小限の面積を有すれば良い。即ち第2領
域(17)では電源ラインと同様に左右方向に延在するクロ
ス配線に必要な複数本のラインを一定間隔で平行に設け
ている。
The first electrode layer (13) is a feature of the present invention.
1) A first region (16) and a second region on the first insulating film (12) covering the surface.
It is divided into regions (17). The first region (16) connects the circuit elements to each other to form a two-channel amplifier circuit, and the second region (17) connects the cross wiring of the second electrode layer (15). Specifically, a power supply (V cc ) line is bifurcated left and right in the center of the pellet to form a power supply line for each channel. A ground (GND) line is arranged around the three sides of the pellet. The portion surrounded by the power supply line and the ground line becomes the first region (16), and the amplifier circuits of the respective channels are connected. The second region (17) is formed in a portion surrounded by the power line. Therefore, in the first region (16) which occupies most of the area of the pellet, it is used as a region for connecting circuit elements to form each channel amplifier circuit,
In the second region (17), it is sufficient that the second region (17) has a minimum area required for cross wiring of the second electrode layer (15). That is, in the second region (17), a plurality of lines required for the cross wiring extending in the left-right direction are provided in parallel with each other at regular intervals, like the power supply line.

第2電極層(15)はポリイミド等より成る層間絶縁材とし
て働く第2の絶縁膜(14)上に延在され、スルーホールを
介して第1電極層(13)と接続されている。2チャンネル
アンプ回路ではBTL接続して用いることにより他チャ
ンネルからの検出信号を入力する熱保護回路、過電圧検
出回路、ASO保護回路等が必要とされる。従って第3
図に示す如くA→A′、B→B′、C→C′、D→
D′、E→E′等のチャンネルを越える接続を要求され
る。A→A′の配線はA点でスルーホールにより第1電
極層(13)とコンタクトした後、第2電極層(15)を電源ラ
インと直交する上下方向に延在して第1電極層(13)の第
2領域(17)上まで延在させ、そこでスルーホールを介し
て第2領域(17)のクロス配線用の1つのラインと接続し
て右方向に引き回しA′点から上下方向の第2電極層(1
5)と交叉する点でスルーホールを介して接続している。
B→B′、C→C′およびE→E′も同様に配線する。
なおD→D′は上下方向の直線上にあるのでクロス配線
をすることなく直接接続している。
The second electrode layer (15) extends on the second insulating film (14) made of polyimide or the like and acting as an interlayer insulating material, and is connected to the first electrode layer (13) through a through hole. The two-channel amplifier circuit requires a thermal protection circuit, an overvoltage detection circuit, an ASO protection circuit, etc. for inputting a detection signal from another channel by using the BTL connection. Therefore, the third
As shown in the figure, A → A ′, B → B ′, C → C ′, D →
Connections across channels such as D ', E->E' are required. The wiring of A → A ′ contacts the first electrode layer (13) through the through hole at the point A, and then extends the second electrode layer (15) in the vertical direction orthogonal to the power supply line (first electrode layer (13)). 13) It extends to above the second area (17), where it is connected to one line for cross wiring of the second area (17) through a through hole and is routed to the right direction, and from the point A ′ in the vertical direction. Second electrode layer (1
It is connected via a through hole at the point where it intersects with 5).
B → B ′, C → C ′ and E → E ′ are similarly wired.
Since D → D ′ is on a straight line in the vertical direction, it is directly connected without cross wiring.

本発明の特徴はクロス配線に用いる第2領域(17)の第1
電極層(13)を平行に延在させ第2電極層(15)も平行に延
在させ且つ両者を直交させる様にしている点である。こ
れにより第2電極層(15)は第2領域(17)上以外では全く
相互にクロス配線を生ずるおそれはなくなり、第2電極
層(15)を上下方向に延在させるのみで足り極めて設計容
易となる。またクロス配線については第2電極層(15)と
第2領域(17)の第1電極層(13)が交叉する点でスルーホ
ールを介して接続を行なえば足り、第2領域(17)の第1
電極層(13)をクロス配線に必要な本数平行を延在するの
みで良く、第2領域(17)の第1電極層(13)の設計もきわ
めて容易である。更に重要な点はどの配線経路も常に最
短距離で結線できるのである。これにより第2電極層(1
5)を曲折して迂回する必要がなく配線を最小面積で実現
できる。
The feature of the present invention is that the first of the second region (17) used for the cross wiring is used.
The point is that the electrode layers (13) extend in parallel, the second electrode layers (15) also extend in parallel, and the two are made orthogonal to each other. As a result, the second electrode layer (15) is completely free from the possibility of cross wiring other than on the second region (17), and it is sufficient to extend the second electrode layer (15) in the vertical direction, which is extremely easy to design. Becomes Regarding the cross wiring, it is sufficient to make a connection through the through hole at the point where the second electrode layer (15) and the first electrode layer (13) of the second region (17) intersect, and the crossing of the second region (17) is sufficient. First
It is only necessary to extend the electrode layers (13) in parallel for the number of cross wirings, and the design of the first electrode layer (13) in the second region (17) is extremely easy. More importantly, any wiring route can always be connected with the shortest distance. Thereby, the second electrode layer (1
Wiring can be realized in the minimum area without the need to bend and detour 5).

更に本発明の最も特徴とする点はスルーホールの形成位
置にある。第5図を参照して説明すると、斜線を施した
実線は第2領域(17)の第1電極層(13)を示し、点線は第
2電極層(15)を示している。前述した説明では第1電極
層(13)と第2電極層(15)の交点でスルーホールを形成し
ていた。しかしながらスルーホールを形成するところで
は第1電極層(13)と第2電極層(15)を拡張しなければな
らない。具体的には12.5μm巾の第1電極層(13)に
於いて、スルーホール(18)では一辺45μmの正方形状
の拡張部(19)を設け、スルーホール(18)は一辺12.5
μmの正方形に形成し、その上に一辺35μmの正方形
状の拡張部(19)を有する第2電極層(15)を設けている。
そこで本発明ではスルーホール(18)を適宜分散して第1
電極層(13)および第2電極層(15)の拡張部(19)(19)を重
ならない様に配置している。第5図では中間の第1電極
層(13)を第2電極層(15)の交点より右方向に延在してス
ルーホール(18)を形成している。この中間の第1電極層
(13)は両側の第1電極層(13)の拡張部(19)(19)が突出す
る部分は窪ませて右方向に延在し、両側の第1電極層(1
3)の存在しない第2領域(17)に中間の第1電極層(13)の
拡張部(19)を形成する。第2電極層(15)は夫々対応する
第1電極層(13)の拡張部(19)まで延在してスルーホール
(18)を介して接続し、中間の第2電極層(15)は中間の第
1電極層(13)に沿って90゜曲折し延在された第1電極
層(13)の拡張部(19)でスルーホール(18)を介して接続し
ている。
Further, the most characteristic point of the present invention is the position where the through hole is formed. Explaining with reference to FIG. 5, the shaded solid line shows the first electrode layer (13) of the second region (17), and the dotted line shows the second electrode layer (15). In the above description, the through hole is formed at the intersection of the first electrode layer (13) and the second electrode layer (15). However, in forming the through hole, the first electrode layer 13 and the second electrode layer 15 must be expanded. Specifically, in the first electrode layer (13) having a width of 12.5 μm, the through hole (18) is provided with a square-shaped expanded portion (19) having a side of 45 μm, and the through hole (18) has a side of 12.5 μm.
The second electrode layer (15) is formed in a square shape of μm and has a square-shaped expansion portion (19) having a side length of 35 μm.
Therefore, in the present invention, the through holes (18) are appropriately dispersed to form the first
The extended portions (19) and (19) of the electrode layer (13) and the second electrode layer (15) are arranged so as not to overlap each other. In FIG. 5, the intermediate first electrode layer (13) extends rightward from the intersection of the second electrode layers (15) to form a through hole (18). This intermediate first electrode layer
(13) extends rightward by recessing the protruding portions (19) and (19) of the first electrode layers (13) on both sides and extending to the right.
An extension (19) of the intermediate first electrode layer (13) is formed in the second region (17) where 3) does not exist. The second electrode layer (15) extends to the corresponding extended portion (19) of the first electrode layer (13) to extend through holes.
The intermediate second electrode layer (15) is connected through (18), and the extended portion (1) of the first electrode layer (13) is bent 90 ° along the intermediate first electrode layer (13) and extended. 19) is connected via a through hole (18).

第4図は第3図のIV−IV線断面図であり、(11)は半導体
基板、(12)は第1の絶縁膜、(13)は第1電極層、(14)は
第2の絶縁膜、(15)は第2電極層である。第4図から明
らかな様に第2の絶縁膜(14)に第1電極層(13)に寄因す
る段差が生じる。この段差は第2電極層(15)をホトエッ
チングする場合に段差部分も露光されて第2電極層(15)
がブリッジとして残る可能性が多い。特に第1電極層(1
3)と第2電極層(15)が平行に延在される場合はブリッジ
による短絡を発生し易い。本発明では第2電極層(15)と
クロス配線に用いる第1電極層(13)とを直交して配置し
ているので斯るブリッジの発生は皆無となり、第2電極
層(15)を第1電極層(13)のパターンに関係なく配置で
き、配線の実装密度を向上できる。
4 is a sectional view taken along the line IV-IV in FIG. 3, where (11) is a semiconductor substrate, (12) is a first insulating film, (13) is a first electrode layer, and (14) is a second electrode layer. The insulating film, (15), is the second electrode layer. As is clear from FIG. 4, a step due to the first electrode layer (13) is formed in the second insulating film (14). This step is also exposed when the second electrode layer (15) is photo-etched, so that the second electrode layer (15) is exposed.
Is likely to remain as a bridge. Especially the first electrode layer (1
When 3) and the second electrode layer (15) extend in parallel, a short circuit due to a bridge is likely to occur. In the present invention, since the second electrode layer (15) and the first electrode layer (13) used for the cross wiring are arranged orthogonally to each other, such a bridge does not occur at all, and the second electrode layer (15) is It can be arranged regardless of the pattern of the one-electrode layer (13), and the mounting density of wiring can be improved.

(ヘ) 発明の効果 本発明に依れば第2電極層(15)のクロス配線のためのス
ペースを第1電極層(13)の第2領域(17)に確保している
ので、第1電極層(13)の第1領域(16)では回路素子間の
接続のみを行なえば良く、クロス配線のスペースの心配
なしに設計できる利点を有する。この結果第1電極層(1
3)と第2電極層(15)の設計をスピードアップでき、最小
限の第2領域(17)の面積を確保するのみに足りるのでチ
ップ面積もそれ程広げる必要はない。更に第2領域(17)
で積極的にクロス配線を行うので常に最短距離で2層配
線を行なえる。
(F) Effect of the Invention According to the present invention, the space for the cross wiring of the second electrode layer (15) is secured in the second region (17) of the first electrode layer (13). In the first region (16) of the electrode layer (13), only the connection between the circuit elements needs to be made, and there is an advantage that it can be designed without worrying about the space of the cross wiring. As a result, the first electrode layer (1
3) and the design of the second electrode layer (15) can be speeded up, and it is sufficient to secure the minimum area of the second region (17), so that the chip area need not be expanded so much. Further the second area (17)
Since the cross wiring is positively performed, the two-layer wiring can be always performed in the shortest distance.

更にスルーホールを適当に離間して設けることにより第
2領域(17)の第1電極層(13)の間隔をスルーホール(18)
のための拡張部(19)に合せて設計する必要がなく、第1
電極層(13)に合せて設計でき第2領域(17)の面積を縮少
できる。通常第2領域(17)下には回路素子を設けないの
で第2領域(17)の縮少により回路素子の実装密度を大巾
に向上できる。
Further, by providing the through holes appropriately separated, the distance between the first electrode layers (13) in the second region (17) is set to the through holes (18).
No need to design for extension (19) for
It can be designed according to the electrode layer (13) and the area of the second region (17) can be reduced. Usually, since no circuit element is provided under the second area (17), the packaging density of the circuit elements can be greatly improved by reducing the size of the second area (17).

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の多層配線を有する半導体集積回路を説明
する上面図、第2図は一般的なクロス配線を説明する断
面図、第3図は本発明に依る多層配線を有する半導体集
積回路を説明する上面図、第4図は第3図のIV−IV線断
面図、第5図は本発明に依る第2領域の第1電極層と第
2電極層とのスルーホール接続を説明する上面図であ
る。 (11)は半導体基板、(12)は第1の絶縁膜、(13)は第1電
極層、(14)は第2の絶縁膜、(15)は第2電極層、(16)は
第1領域、(17)は第2領域、(18)はスルーホール、(19)
は拡張部である。
FIG. 1 is a top view illustrating a conventional semiconductor integrated circuit having multi-layer wiring, FIG. 2 is a cross-sectional view illustrating a general cross wiring, and FIG. 3 is a semiconductor integrated circuit having multi-layer wiring according to the present invention. 4 is a sectional view taken along line IV-IV in FIG. 3, and FIG. 5 is an upper surface for explaining through-hole connection between the first electrode layer and the second electrode layer in the second region according to the present invention. It is a figure. (11) is a semiconductor substrate, (12) is a first insulating film, (13) is a first electrode layer, (14) is a second insulating film, (15) is a second electrode layer, and (16) is a second electrode layer. 1 area, (17) second area, (18) through hole, (19)
Is an extension.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所望の回路素子を形成した半導体基板と該
基板表面上に設けた第1の絶縁膜上に配線された第1電
極層と前記第1電極層上を被覆する第2の絶縁膜上に配
線された第2電極層とを具備する多層配線を有する半導
体集積回路に於て、 前記半導体基板の表面を、回路素子を配置するための第
1の領域とクロス配線を行うための第2の領域とに区分
し、 前記第1電極層は、前記第1の領域において前記回路素
子間の相互接続を行い、前記第2の領域においては互い
に略平行に延在し層間接続用の拡張部を有する複数本の
接続ラインを形成し、 前記第2電極層は、前記第2領域の接続ラインと直交す
るように延在し、前記拡張部で層間接続されてクロス配
線が成され、 複数が近接することで前記第2電極層と前記接続ライン
とが直交する部分に拡張部を設置できない接続ラインの
拡張部を前記直交する部分から離間した部分に設置し、 対応する第2電極層を前記直交する部分から曲折して前
記接続ラインと平行に延在させることにより前記離間し
た拡張部と接続したことを特徴とする半導体集積回路。
1. A semiconductor substrate on which a desired circuit element is formed, a first electrode layer wired on a first insulating film provided on the surface of the substrate, and a second insulating layer covering the first electrode layer. In a semiconductor integrated circuit having a multilayer wiring including a second electrode layer wired on a film, a surface of the semiconductor substrate is crossed with a first region for arranging a circuit element. It is divided into a second region, the first electrode layer interconnects the circuit elements in the first region, and extends substantially parallel to each other in the second region for interlayer connection. Forming a plurality of connection lines having an extended portion, the second electrode layer extends so as to be orthogonal to the connection line of the second region, and the cross wiring is formed by interlayer connection at the extended portion, When the plurality of electrodes are close to each other, the second electrode layer and the connection line are orthogonal to each other. The extension part of the connection line that cannot be installed in the part is installed in the part separated from the orthogonal part, and the corresponding second electrode layer is bent from the orthogonal part and extends in parallel with the connection line. Therefore, the semiconductor integrated circuit is connected to the separated extended portion.
JP59062496A 1984-03-29 1984-03-29 Semiconductor integrated circuit having multilayer wiring Expired - Lifetime JPH0630357B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59062496A JPH0630357B2 (en) 1984-03-29 1984-03-29 Semiconductor integrated circuit having multilayer wiring
EP85103637A EP0158222B1 (en) 1984-03-29 1985-03-27 Semiconductor integrated circuit having multiple-layered connection
KR1019850002015A KR900000167B1 (en) 1984-03-29 1985-03-27 Semiconductor integrated circuit having multi-layer wiring
DE8585103637T DE3579344D1 (en) 1984-03-29 1985-03-27 INTEGRATED SEMICONDUCTOR CIRCUIT WITH MULTILAYER CONNECTIONS.
US06/894,381 US4694320A (en) 1984-03-29 1986-08-07 Semiconductor integrated circuit having multiple-layered connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062496A JPH0630357B2 (en) 1984-03-29 1984-03-29 Semiconductor integrated circuit having multilayer wiring

Publications (2)

Publication Number Publication Date
JPS60206049A JPS60206049A (en) 1985-10-17
JPH0630357B2 true JPH0630357B2 (en) 1994-04-20

Family

ID=13201830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062496A Expired - Lifetime JPH0630357B2 (en) 1984-03-29 1984-03-29 Semiconductor integrated circuit having multilayer wiring

Country Status (1)

Country Link
JP (1) JPH0630357B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121645A (en) * 1982-01-12 1983-07-20 Ricoh Co Ltd Forming method for mutual wiring of integrated circuit device

Also Published As

Publication number Publication date
JPS60206049A (en) 1985-10-17

Similar Documents

Publication Publication Date Title
JP4786836B2 (en) Wiring connection design method and semiconductor device
JP4757660B2 (en) Semiconductor device
KR900000167B1 (en) Semiconductor integrated circuit having multi-layer wiring
JPH0630357B2 (en) Semiconductor integrated circuit having multilayer wiring
KR910007900B1 (en) Semiconductor integrated circuit device
JPH0630356B2 (en) Semiconductor integrated circuit having multilayer wiring
JPH0222539B2 (en)
JP2004006691A (en) Semiconductor integrated circuit device
US6734547B2 (en) Semiconductor wiring structure having divided power lines and ground lines on the same layer
JPH07312415A (en) Semiconductor integrated circuit
JP2944295B2 (en) Semiconductor integrated circuit device
US4771329A (en) Wirings in semiconductor integrated circuit and method thereof
JPH05304221A (en) High current integrated circuit
JP2544749B2 (en) Semiconductor integrated circuit
JP2697345B2 (en) Hybrid integrated circuit
JP2778235B2 (en) Semiconductor device
JPH0817820A (en) Semiconductor integrated circuit device
KR101035594B1 (en) Integrated semiconductor device comprising interconnection part for contact holes and another interconnection part for via holes aligned vertically each other
JP2007005535A (en) Signal wiring and semiconductor integration device employing it
KR101035592B1 (en) Semiconductor device comprising interconnection part for contact holes and another interconnection part for viaholes aligned on the same line
JPH0745745A (en) Multilayered circuit board
JPS6348122Y2 (en)
JPS61174746A (en) Semiconductor integrated circuit device
JPH0645563A (en) Semiconductor device
JP2005129969A (en) Multilayer connecting method and semiconductor integrated circuit