JPH06296046A - Manufacture of thermomodule - Google Patents

Manufacture of thermomodule

Info

Publication number
JPH06296046A
JPH06296046A JP4100388A JP10038892A JPH06296046A JP H06296046 A JPH06296046 A JP H06296046A JP 4100388 A JP4100388 A JP 4100388A JP 10038892 A JP10038892 A JP 10038892A JP H06296046 A JPH06296046 A JP H06296046A
Authority
JP
Japan
Prior art keywords
electrode
thermoelectric semiconductor
cream solder
semiconductor element
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100388A
Other languages
Japanese (ja)
Inventor
Masayoshi Mihara
正義 三原
Ryuma Fuda
龍馬 附田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4100388A priority Critical patent/JPH06296046A/en
Publication of JPH06296046A publication Critical patent/JPH06296046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To eliminate the deviation between an electrode and a thermoelectric semiconductor element, and to prevent wasteful heat generation by a method wherein, when a skeleton type thermomodule is manufactured, adhesive resin is applied to a supporting member, an electrode is arranged thereon, and the electrode is firmly fixed to the adhesive resin. CONSTITUTION:A double-sides tape 12, on which adhesive resin is applied, is glued on a hard supporting board 11 made of metal, ceramic and the like. An electrode 13 is arranged on the prescribed position of the above-mentioned double-sided tape 12. The electrode 13 is coated with a conductive bonding agent or cream solder 14. A thermoelectric semiconductor element 15 is arranged thereon. An electrode 17 is formed on a ceramic substrate 16 which is prepared independently. This electrode 17 is coated with a conductive bonding agent or cream solder 14. The prepared ceramic substrate 16 is turned inside out and placed on the prepared material. The ceramic substrate 16 is heated up and the conductive bonding agent or the cream solder is dissolved, everything is fixed by cooling. The adhesive resin of the double-sided tape is expanded by dipping into the organic solvent such as acetone and the like, and the supporting board 11 is taken out from the electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粘着性樹脂を用いて所謂
スケルトンタイプのサーモモジュールを製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a so-called skeleton type thermomodule using an adhesive resin.

【0002】[0002]

【従来の技術およびその問題点】サーモモジュールは主
な用途として精密な温度調節器、携帯用の保冷庫、小型
の除湿器等に使用されている。これらサーモモジュール
は図1に示すように、N型熱電半導体素子1とP型熱電
半導体素子2とを交互に配列し、隣接する2つの熱電半
導体素子の上面及び下面を金属等の電極3で接続させる
ことで、N型熱電半導体素子1とP型熱電半導体素子2
とを直列に接続し、各熱電半導体素子の上面と下面の電
極3をそれぞれ熱交換基板4に固定した構造をなす。両
端子5,5に直流電流を通じるとペルチェ効果により片
側の熱交換基板は吸熱面(低温)となり、他方の熱交換
基板は放熱面(高温)となる。最も一般的に用いられる
サーモモジュールは、最大電流が10A以下で、大きさ
は15〜40mm角程度である。
2. Description of the Related Art Thermomodules are mainly used for precision temperature controllers, portable cool boxes, small dehumidifiers, etc. As shown in FIG. 1, in these thermomodules, N-type thermoelectric semiconductor elements 1 and P-type thermoelectric semiconductor elements 2 are alternately arranged, and the upper and lower surfaces of two adjacent thermoelectric semiconductor elements are connected by electrodes 3 made of metal or the like. As a result, the N-type thermoelectric semiconductor element 1 and the P-type thermoelectric semiconductor element 2
Are connected in series, and the electrodes 3 on the upper surface and the lower surface of each thermoelectric semiconductor element are fixed to the heat exchange substrate 4, respectively. When a direct current is applied to both terminals 5 and 5, the heat exchange substrate on one side becomes a heat absorption surface (low temperature) and the heat exchange substrate on the other side becomes a heat dissipation surface (high temperature) due to the Peltier effect. The most commonly used thermomodule has a maximum current of 10 A or less and a size of about 15 to 40 mm square.

【0003】このようなサーモモジュールにおいて、下
部の電極は熱交換基板に固定されているが、上部の電極
は固定されていないサーモモジュールが市販されている
(小松エレクトロニクス KSP2012,KSP20
36,KSP3012,KSP3036等)。この構造
のサーモモジュールはスケルトンタイプと呼ばれ、低温
側と高温側との温度差による熱応力を緩和し、熱電半導
体素子の接合部付近での破損を防止し、サーモモジュー
ルの耐久性を高める効果が大きいものとして注目されて
いる。
In such a thermomodule, a thermomodule in which the lower electrode is fixed to the heat exchange substrate but the upper electrode is not fixed is commercially available (Komatsu Electronics KSP2012, KSP20).
36, KSP3012, KSP3036, etc.). The thermo module with this structure is called a skeleton type, which has the effect of relaxing the thermal stress due to the temperature difference between the low temperature side and the high temperature side, preventing damage near the junction of the thermoelectric semiconductor element, and increasing the durability of the thermo module. Is attracting attention as a big one.

【0004】スケルトンタイプのサーモモジュールを製
造する従来方法を示せば、下記の2工程が挙げられる。
その一例は図2に示すように、 (1)上部電極6をそれより少し大きい凹部をもった治
具7に入れる。 (2)上部電極6にクリーム半田8を塗布する。 (3)クリーム半田8の上に熱電半導体素子9を載せ
る。 (4)別に用意した下部電極6’を形成した熱交換基板
10の電極にクリーム半田8を塗布する。 (5)(4)で準備した熱交換基板を10を裏返しにし
て、(3)で準備したものの上に載せる。これを加熱
し、クリーム半田8を溶かす。さらに、冷却し固定させ
る。 (6)治具7より取り出す。 さらに別の製造工程は図3に示すように、 (1)下部電極6’を形成した熱交換基板10の下部電極
6’にクリーム半田8を塗布する。 (2)クリーム半田8の上に熱電半導体素子9を載せ
る。 (3)この熱電半導体素子9の上にクリーム半田8を塗
布する。 (4)この上に上部電極6を載せる。 (5)加熱し、クリーム半田8を溶かす。さらに冷却し
て固定させる。
A conventional method for manufacturing a skeleton type thermo-module includes the following two steps.
As an example, as shown in FIG. 2, (1) the upper electrode 6 is put in a jig 7 having a recess slightly larger than that. (2) Apply the cream solder 8 to the upper electrode 6. (3) The thermoelectric semiconductor element 9 is placed on the cream solder 8. (4) Heat exchange substrate with separately prepared lower electrode 6 '
Apply cream solder 8 to the electrodes of 10. (5) The heat exchange substrate prepared in (4) is turned upside down and placed on the one prepared in (3). This is heated to melt the cream solder 8. Further, it is cooled and fixed. (6) Take out from the jig 7. In another manufacturing process, as shown in FIG. 3, (1) cream solder 8 is applied to the lower electrode 6 ′ of the heat exchange substrate 10 having the lower electrode 6 ′ formed thereon. (2) The thermoelectric semiconductor element 9 is placed on the cream solder 8. (3) The cream solder 8 is applied onto the thermoelectric semiconductor element 9. (4) The upper electrode 6 is placed on this. (5) Heat to melt the cream solder 8. Further cool and fix.

【0005】しかしながら、前述の方法は、上部電極6
を入れる治具7の凹部は、上部電極6を確実にこの凹部
に入れるために上部電極6の寸法よりも若干大きくする
必要があり、(5)の工程でクリーム半田8を溶かすと
きに上部電極6が動き易く、不安定となる。その結果と
して、上部電極6と熱電半導体素子9にズレを生じる。
このズレは図4に示すように熱の移動に障害となり、サ
ーモモジュールの性能低下の要因となる。また、後者の
方法でも、(5)の工程でクリーム半田8を溶かすとき
に熱電半導体素子9と上部電極6が動きやすく、不安定
となり、上部電極6と熱電半導体素子9にズレを生じ、
同じく図4に示すようになり、最悪の場合、上部電極同
志又は熱電半導体素子同志が接触し、サーモモジュール
の性能低下の要因となる。
However, the above-mentioned method uses the upper electrode 6
The concave portion of the jig 7 for inserting the electrode needs to be slightly larger than the size of the upper electrode 6 in order to surely insert the upper electrode 6 into the concave portion. When the cream solder 8 is melted in the step (5), 6 is easy to move and becomes unstable. As a result, a deviation occurs between the upper electrode 6 and the thermoelectric semiconductor element 9.
This deviation hinders the movement of heat as shown in FIG. 4 and causes a decrease in the performance of the thermomodule. Also in the latter method, when the cream solder 8 is melted in the step (5), the thermoelectric semiconductor element 9 and the upper electrode 6 are easily moved and become unstable, and the upper electrode 6 and the thermoelectric semiconductor element 9 are displaced from each other.
Similarly, as shown in FIG. 4, in the worst case, the upper electrodes or the thermoelectric semiconductor elements contact with each other, which causes a decrease in the performance of the thermomodule.

【0006】本発明は、スケルトンタイプのサーモモジ
ュールにおける電極と熱電半導体素子とのズレを無く
し、性能低下がなく、小型で、高性能のサーモモジュー
ルを製造し得る方法を提供することを目的とする。
It is an object of the present invention to provide a method capable of producing a small-sized and high-performance thermo-module that eliminates the displacement between the electrode and the thermoelectric semiconductor element in the skeleton-type thermo-module and has no performance degradation. .

【0007】[0007]

【問題点を解決するための手段】本発明では、熱電半導
体素子を上下電極により接続し少なくとも片側の熱換基
板を省略したスケルトンタイプのサーモモジュールを製
造する方法において、支持体上に粘着性樹脂を塗布しそ
の上に電極を配置し、電極上に導電性接着剤又はクリー
ム半田を塗布又は印刷しそれら各部位に熱電半導体素子
を配置し、別に用意したセラミック基板上に粘着性樹脂
を塗布し若しくは半田等他の方法で電極を配置し、導電
性接着剤又はクリーム半田を塗布又は印刷し、これを先
の熱電半導体素子上に導電性接着剤又はクリーム半田に
より接合し、次いで粘着性樹脂を溶融して前記支持体を
剥離すること工程を含む方法により前記課題を達成した
ものである。
According to the present invention, in a method for producing a skeleton type thermomodule in which thermoelectric semiconductor elements are connected by upper and lower electrodes and a heat exchange substrate on at least one side is omitted, an adhesive resin is provided on a support. And then place electrodes on it, apply or print conductive adhesive or cream solder on the electrodes, place thermoelectric semiconductor elements on each of these parts, and apply adhesive resin on a separately prepared ceramic substrate. Alternatively, the electrodes are arranged by another method such as solder, and a conductive adhesive or cream solder is applied or printed, and this is bonded onto the thermoelectric semiconductor element with the conductive adhesive or cream solder, and then an adhesive resin is applied. The above object is achieved by a method including a step of melting and peeling the support.

【0008】本発明では、上記のように従来のような電
極を入れる治具を使用する代わりに支持体上に粘着性樹
脂を貼り付けてその上に電極を配置するため、電極は粘
着性樹脂上にしっかりと固定され、導電性接着剤又はク
リーム半田を溶かす工程においても熱電半導体素子と電
極とのズレがまったく生じることがない。
In the present invention, instead of using a conventional jig for inserting an electrode as described above, an adhesive resin is adhered onto a support and the electrode is arranged thereon. The thermoelectric semiconductor element is firmly fixed on the upper surface, and no deviation occurs between the thermoelectric semiconductor element and the electrode even in the step of melting the conductive adhesive or cream solder.

【0009】[0009]

【実施例1】図5は本発明実施例の工程例を示すもので
あり、この図5に基づいてさらに本発明を説明すると、 (1)金属やセラミック等の硬質の支持板11、具体的に
は40mm×40mmの0.8mm厚みの上に粘着性樹脂が塗布され
た両面テープ12を貼り付ける。この両面テープ12上に電
極13を所定の位置に配置する。 (2)電極13上に導電性接着剤又はクリーム半田14を塗
布又は印刷する。この上に熱電半導体素子15を71対配置
する。 (3)別に用意したセラミック基板16上に電極17を形成
する。この電極17上にも導電性接着剤又はクリーム半田
14を塗布又は印刷する。 (4)(3)で準備したセラミック基板16を裏返しにし
て、(2)で準備したものの上に載せる。これを加熱して
導電性接着剤又はクリーム半田を溶かし、さらに冷却し
てすべてを固定させる。 (5)アセトン等の有機溶剤につけて両面テープの粘着
性樹脂を溶かし、支持板11を電極から取り除く。 以上の工程により得られたスケルトンタイプのサーモモ
ジュールは電極と熱電半導体素子との位置ズレがなく、
正確に両者が接続されたものが得られ、その最大電流は
6Aであった。
[Embodiment 1] FIG. 5 shows an example of steps of an embodiment of the present invention. The present invention will be further described with reference to FIG. 5. (1) A hard support plate 11 made of metal or ceramic, concrete A double-sided tape 12 having a thickness of 40 mm × 40 mm and a thickness of 0.8 mm and coated with an adhesive resin is attached. The electrodes 13 are arranged on the double-sided tape 12 at predetermined positions. (2) A conductive adhesive or cream solder 14 is applied or printed on the electrodes 13. On this, 71 pairs of thermoelectric semiconductor elements 15 are arranged. (3) The electrodes 17 are formed on the separately prepared ceramic substrate 16. Conductive adhesive or cream solder is also applied on this electrode 17.
Apply or print 14. (4) The ceramic substrate 16 prepared in (3) is turned over and placed on the one prepared in (2). This is heated to melt the conductive adhesive or cream solder, and further cooled to fix everything. (5) The support plate 11 is removed from the electrode by immersing it in an organic solvent such as acetone to dissolve the adhesive resin of the double-sided tape. The skeleton type thermo module obtained by the above process has no positional deviation between the electrode and the thermoelectric semiconductor element,
A device in which the both were accurately connected was obtained, and the maximum current was 6A.

【0010】[0010]

【実施例2】実施例1の工程(3)において、セラミッ
ク基板15上にも両面テープを貼り付けたこと以外は実施
例1と同様にしてサーモモジュールを製造した。これに
より、図6に示すように上下電極の上下面いずれにも熱
交換基板の無いスケルトンタイプのサーモモジュールを
製造することができた。
Example 2 A thermomodule was manufactured in the same manner as in Example 1 except that the double-sided tape was also attached on the ceramic substrate 15 in the step (3) of Example 1. As a result, as shown in FIG. 6, a skeleton type thermomodule having no heat exchange substrate on the upper and lower surfaces of the upper and lower electrodes could be manufactured.

【0011】[0011]

【発明の効果】以上のような本発明によれば、サーモモ
ジュールにおける電極と熱電半導体素子との接合にズレ
がまったく生じないため、ムダな発熱が防止され、電流
効率が向上し、同じ能力であれば小型化することが可能
となる。またその製造方法は歩留が向上し、生産性が飛
躍的に向上する。
According to the present invention as described above, since no displacement occurs in the junction between the electrode and the thermoelectric semiconductor element in the thermo module, useless heat generation is prevented, current efficiency is improved, and the same capability is achieved. If so, it is possible to reduce the size. In addition, the manufacturing method improves the yield and dramatically improves the productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】最も一般的なサーモモジュールの説明図であ
る。
FIG. 1 is an explanatory diagram of a most general thermo module.

【図2】従来におけるスケルトンタイプのサーモモジュ
ールを製造する工程の説明図である。
FIG. 2 is an explanatory diagram of a process of manufacturing a conventional skeleton type thermo module.

【図3】従来におけるスケルトンタイプのサーモモジュ
ールを製造する工程の説明図である。
FIG. 3 is an explanatory diagram of a process of manufacturing a conventional skeleton type thermo module.

【図4】従来法によって得られたサーモモジュールにお
ける熱電半導体素子と上部電極との接合状態の説明図で
ある。
FIG. 4 is an explanatory view of a bonded state of a thermoelectric semiconductor element and an upper electrode in a thermo module obtained by a conventional method.

【図5】本発明の工程例を示す説明図である。FIG. 5 is an explanatory diagram showing a process example of the present invention.

【図6】本発明によって得られた他のスケルトンタイプ
のサーモモジュールであり、上下の熱交換基板を省略し
たものを示す説明図である。
FIG. 6 is an explanatory view showing another skeleton type thermo module obtained by the present invention, in which upper and lower heat exchange substrates are omitted.

【符号の説明】[Explanation of symbols]

1 N型熱電半導体素子 2 P型熱電半導体素子 3 電極 4 熱交換基板 5 端子 6 上部電極 6’下部電極 7 治具 8 クリーム半田 9 熱電半導体素子 10 熱交換基板 11 支持板 12 両面テープ 13 電極 14 導電性接着剤又はクリーム半田 15 熱電半導体素子 16 セラミック基板 17 電極 1 N-type thermoelectric semiconductor element 2 P-type thermoelectric semiconductor element 3 Electrode 4 Heat exchange substrate 5 Terminal 6 Upper electrode 6'Lower electrode 7 Jig 8 Cream solder 9 Thermoelectric semiconductor element 10 Heat exchange substrate 11 Support plate 12 Double-sided tape 13 Electrode 14 Conductive adhesive or cream solder 15 Thermoelectric semiconductor element 16 Ceramic substrate 17 Electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年6月18日[Submission date] June 18, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 サーモモジュールの製造方法Patent application title: Thermomodule manufacturing method

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粘着性樹脂を用いて所謂
スケルトンタイプのサーモモジュールを製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a so-called skeleton type thermomodule using an adhesive resin.

【0002】[0002]

【従来の技術およびその問題点】サーモモジュールは主
な用途として精密な温度調節器、携帯用の保冷庫、小型
の除湿器等に使用されている。これらサーモモジュール
は図1に示すように、N型熱電半導体素子1とP型熱電
半導体素子2とを交互に配列し、隣接する2つの熱電半
導体素子の上面及び下面を金属等の電極3で接続させる
ことで、N型熱電半導体素子1とP型熱電半導体素子2
とを直列に接続し、各熱電半導体素子の上面と下面の電
極3をそれぞれ熱交換基板4に固定した構造をなす。両
端子5,5に直流電流を通じるとペルチェ効果により片
側の熱交換基板は吸熱面(低温)となり、他方の熱交換
基板は放熱面(高温)となる。最も一般的に用いられる
サーモモジュールは、最大電流が10A以下で、大きさ
は15〜40mm角程度である。
2. Description of the Related Art Thermomodules are mainly used for precision temperature controllers, portable cool boxes, small dehumidifiers, etc. As shown in FIG. 1, in these thermomodules, N-type thermoelectric semiconductor elements 1 and P-type thermoelectric semiconductor elements 2 are alternately arranged, and the upper and lower surfaces of two adjacent thermoelectric semiconductor elements are connected by electrodes 3 made of metal or the like. As a result, the N-type thermoelectric semiconductor element 1 and the P-type thermoelectric semiconductor element 2
Are connected in series, and the electrodes 3 on the upper surface and the lower surface of each thermoelectric semiconductor element are fixed to the heat exchange substrate 4, respectively. When a direct current is applied to both terminals 5 and 5, the heat exchange substrate on one side becomes a heat absorption surface (low temperature) and the heat exchange substrate on the other side becomes a heat dissipation surface (high temperature) due to the Peltier effect. The most commonly used thermomodule has a maximum current of 10 A or less and a size of about 15 to 40 mm square.

【0003】このようなサーモモジュールにおいて、下
部の電極は熱交換基板に固定されているが、上部の電極
は固定されていないサーモモジュールが市販されている
(小松エレクトロニクス KSP2012,KSP20
36,KSP3012,KSP3036等)。この構造
のサーモモジュールはスケルトンタイプと呼ばれ、低温
側と高温側との温度差による熱応力を緩和し、熱電半導
体素子の接合部付近での破損を防止し、サーモモジュー
ルの耐久性を高める効果が大きいものとして注目されて
いる。
In such a thermomodule, a thermomodule in which the lower electrode is fixed to the heat exchange substrate but the upper electrode is not fixed is commercially available (Komatsu Electronics KSP2012, KSP20).
36, KSP3012, KSP3036, etc.). The thermo module with this structure is called a skeleton type, which has the effect of relaxing the thermal stress due to the temperature difference between the low temperature side and the high temperature side, preventing damage near the junction of the thermoelectric semiconductor element, and increasing the durability of the thermo module. Is attracting attention as a big one.

【0004】スケルトンタイプのサーモモジュールを製
造する従来方法を示せば、下記の2工程が挙げられる。
その一例は図2に示すように、 (1)上部電極6をそれより少し大きい凹部をもった治
具7に入れる。 (2)上部電極6にクリーム半田8を塗布する。 (3)クリーム半田8の上に熱電半導体素子9を載せ
る。 (4)別に用意した下部電極6’を形成した熱交換基板
10の電極にクリーム半田8を塗布する。 (5)(4)で準備した熱交換基板を10を裏返しにし
て、(3)で準備したものの上に載せる。これを加熱
し、クリーム半田8を溶かす。さらに、冷却し固定させ
る。 (6)治具7より取り出す。 さらに別の製造工程は図3に示すように、 (1)下部電極6’を形成した熱交換基板10の下部電極
6’にクリーム半田8を塗布する。 (2)クリーム半田8の上に熱電半導体素子9を載せ
る。 (3)この熱電半導体素子9の上にクリーム半田8を塗
布する。 (4)この上に上部電極6を載せる。 (5)加熱し、クリーム半田8を溶かす。さらに冷却し
て固定させる。
A conventional method for manufacturing a skeleton type thermo-module includes the following two steps.
As an example, as shown in FIG. 2, (1) the upper electrode 6 is put in a jig 7 having a recess slightly larger than that. (2) Apply the cream solder 8 to the upper electrode 6. (3) The thermoelectric semiconductor element 9 is placed on the cream solder 8. (4) Heat exchange substrate with separately prepared lower electrode 6 '
Apply cream solder 8 to the electrodes of 10. (5) The heat exchange substrate prepared in (4) is turned upside down and placed on the one prepared in (3). This is heated to melt the cream solder 8. Further, it is cooled and fixed. (6) Take out from the jig 7. In another manufacturing process, as shown in FIG. 3, (1) cream solder 8 is applied to the lower electrode 6 ′ of the heat exchange substrate 10 having the lower electrode 6 ′ formed thereon. (2) The thermoelectric semiconductor element 9 is placed on the cream solder 8. (3) The cream solder 8 is applied onto the thermoelectric semiconductor element 9. (4) The upper electrode 6 is placed on this. (5) Heat to melt the cream solder 8. Further cool and fix.

【0005】しかしながら、前述の方法は、上部電極6
を入れる治具7の凹部は、上部電極6を確実にこの凹部
に入れるために上部電極6の寸法よりも若干大きくする
必要があり、(5)の工程でクリーム半田8を溶かすと
きに上部電極6が動き易く、不安定となる。その結果と
して、上部電極6と熱電半導体素子9にズレを生じる。
このズレは図4に示すように熱の移動に障害となり、サ
ーモモジュールの性能低下の要因となる。また、後者の
方法でも、(5)の工程でクリーム半田8を溶かすとき
に熱電半導体素子9と上部電極6が動きやすく、不安定
となり、上部電極6と熱電半導体素子9にズレを生じ、
同じく図4に示すようになり、最悪の場合、上部電極同
志又は熱電半導体素子同志が接触し、サーモモジュール
の性能低下の要因となる。
However, the above-mentioned method uses the upper electrode 6
The concave portion of the jig 7 for inserting the electrode needs to be slightly larger than the size of the upper electrode 6 in order to surely insert the upper electrode 6 into the concave portion. When the cream solder 8 is melted in the step (5), 6 is easy to move and becomes unstable. As a result, a deviation occurs between the upper electrode 6 and the thermoelectric semiconductor element 9.
This deviation hinders the movement of heat as shown in FIG. 4 and causes a decrease in the performance of the thermomodule. Also in the latter method, when the cream solder 8 is melted in the step (5), the thermoelectric semiconductor element 9 and the upper electrode 6 are easily moved and become unstable, and the upper electrode 6 and the thermoelectric semiconductor element 9 are displaced from each other.
Similarly, as shown in FIG. 4, in the worst case, the upper electrodes or the thermoelectric semiconductor elements contact with each other, which causes a decrease in the performance of the thermomodule.

【0006】本発明は、スケルトンタイプのサーモモジ
ュールにおける電極と熱電半導体素子とのズレを無く
し、性能低下がなく、小型で、高性能のサーモモジュー
ルを製造し得る方法を提供することを目的とする。
It is an object of the present invention to provide a method capable of producing a small-sized and high-performance thermo-module that eliminates the displacement between the electrode and the thermoelectric semiconductor element in the skeleton-type thermo-module and has no performance degradation. .

【0007】[0007]

【問題点を解決するための手段】本発明では、熱電半導
体素子を上下電極により接続し少なくとも片側の熱換基
板を省略したスケルトンタイプのサーモモジュールを製
造する方法において、支持体上に粘着性樹脂を塗布しそ
の上に電極を配置し、電極上に導電性接着剤又はクリー
ム半田を塗布又は印刷しそれら各部位に熱電半導体素子
を配置し、別に用意したセラミック基板上に粘着性樹脂
を塗布し若しくは半田等他の方法で電極を配置し、導電
性接着剤又はクリーム半田を塗布又は印刷し、これを先
の熱電半導体素子上に導電性接着剤又はクリーム半田に
より接合し、次いで粘着性樹脂を膨潤させて前記支持体
を剥離すること工程を含む方法により前記課題を達成し
たものである。
According to the present invention, in a method for producing a skeleton type thermomodule in which thermoelectric semiconductor elements are connected by upper and lower electrodes and a heat exchange substrate on at least one side is omitted, an adhesive resin is provided on a support. And then place electrodes on it, apply or print conductive adhesive or cream solder on the electrodes, place thermoelectric semiconductor elements on each of these parts, and apply adhesive resin on a separately prepared ceramic substrate. Alternatively, the electrodes are arranged by another method such as solder, and a conductive adhesive or cream solder is applied or printed, and this is bonded onto the thermoelectric semiconductor element with the conductive adhesive or cream solder, and then an adhesive resin is applied. The above object is achieved by a method including a step of swelling and peeling the support.

【0008】本発明では、上記のように従来のような電
極を入れる治具を使用する代わりに支持体上に粘着性樹
脂を貼り付けてその上に電極を配置するため、電極は粘
着性樹脂上にしっかりと固定され、導電性接着剤又はク
リーム半田を溶かす工程においても熱電半導体素子と電
極とのズレがまったく生じることがない。
In the present invention, instead of using a conventional jig for inserting an electrode as described above, an adhesive resin is adhered onto a support and the electrode is arranged thereon. The thermoelectric semiconductor element is firmly fixed on the upper surface, and no deviation occurs between the thermoelectric semiconductor element and the electrode even in the step of melting the conductive adhesive or cream solder.

【0009】[0009]

【実施例1】図5は本発明実施例の工程例を示すもので
あり、この図5に基づいてさらに本発明を説明すると、 (1)金属やセラミック等の硬質の支持板11、具体的に
は40mm×40mmの0.8mm厚みの上に粘着性樹脂が塗布され
た両面テープ12を貼り付ける。この両面テープ12上に電
極13を所定の位置に配置する。 (2)電極13上に導電性接着剤又はクリーム半田14を塗
布又は印刷する。この上に熱電半導体素子15を71対配置
する。 (3)別に用意したセラミック基板16上に電極17を形成
する。この電極17上にも導電性接着剤又はクリーム半田
14を塗布又は印刷する。 (4)(3)で準備したセラミック基板16を裏返しにし
て、(2)で準備したものの上に載せる。これを加熱して
導電性接着剤又はクリーム半田を溶かし、さらに冷却し
てすべてを固定させる。 (5)アセトン等の有機溶剤につけて両面テープの粘着
性樹脂を膨潤させて、支持板11を電極から取り除く。 以上の工程により得られたスケルトンタイプのサーモモ
ジュールは電極と熱電半導体素子との位置ズレがなく、
正確に両者が接続されたものが得られ、その最大電流は
6Aであった。
[Embodiment 1] FIG. 5 shows an example of steps of an embodiment of the present invention. The present invention will be further described with reference to FIG. 5. (1) A hard support plate 11 made of metal or ceramic, concrete A double-sided tape 12 having a thickness of 40 mm × 40 mm and a thickness of 0.8 mm and coated with an adhesive resin is attached. The electrodes 13 are arranged on the double-sided tape 12 at predetermined positions. (2) A conductive adhesive or cream solder 14 is applied or printed on the electrodes 13. On this, 71 pairs of thermoelectric semiconductor elements 15 are arranged. (3) The electrodes 17 are formed on the separately prepared ceramic substrate 16. Conductive adhesive or cream solder is also applied on this electrode 17.
Apply or print 14. (4) The ceramic substrate 16 prepared in (3) is turned over and placed on the one prepared in (2). This is heated to melt the conductive adhesive or cream solder, and further cooled to fix everything. (5) The support plate 11 is removed from the electrode by swelling the adhesive resin of the double-sided tape with an organic solvent such as acetone. The skeleton type thermo module obtained by the above process has no positional deviation between the electrode and the thermoelectric semiconductor element,
A device in which the both were accurately connected was obtained, and the maximum current was 6A.

【0010】[0010]

【実施例2】実施例1の工程(3)において、セラミッ
ク基板15上にも両面テープを貼り付けたこと以外は実施
例1と同様にしてサーモモジュールを製造した。これに
より、図6に示すように上下電極の上下面いずれにも熱
交換基板の無いスケルトンタイプのサーモモジュールを
製造することができた。
Example 2 A thermomodule was manufactured in the same manner as in Example 1 except that the double-sided tape was also attached on the ceramic substrate 15 in the step (3) of Example 1. As a result, as shown in FIG. 6, a skeleton type thermomodule having no heat exchange substrate on the upper and lower surfaces of the upper and lower electrodes could be manufactured.

【0011】[0011]

【発明の効果】以上のような本発明によれば、サーモモ
ジュールにおける電極と熱電半導体素子との接合にズレ
がまったく生じないため、ムダな発熱が防止され、電流
効率が向上し、同じ能力であれば小型化することが可能
となる。またその製造方法は歩留が向上し、生産性が飛
躍的に向上する。
According to the present invention as described above, since no displacement occurs in the junction between the electrode and the thermoelectric semiconductor element in the thermo module, useless heat generation is prevented, current efficiency is improved, and the same capability is achieved. If so, it is possible to reduce the size. In addition, the manufacturing method improves the yield and dramatically improves the productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】最も一般的なサーモモジュールの説明図であ
る。
FIG. 1 is an explanatory diagram of a most general thermo module.

【図2】従来におけるスケルトンタイプのサーモモジュ
ールを製造する工程の説明図である。
FIG. 2 is an explanatory diagram of a process of manufacturing a conventional skeleton type thermo module.

【図3】従来におけるスケルトンタイプのサーモモジュ
ールを製造する工程の説明図である。
FIG. 3 is an explanatory diagram of a process of manufacturing a conventional skeleton type thermo module.

【図4】従来法によって得られたサーモモジュールにお
ける熱電半導体素子と上部電極との接合状態の説明図で
ある。
FIG. 4 is an explanatory view of a bonded state of a thermoelectric semiconductor element and an upper electrode in a thermo module obtained by a conventional method.

【図5】本発明の工程例を示す説明図である。FIG. 5 is an explanatory diagram showing a process example of the present invention.

【図6】本発明によって得られた他のスケルトンタイプ
のサーモモジュールであり、上下の熱交換基板を省略し
たものを示す説明図である。
FIG. 6 is an explanatory view showing another skeleton type thermo module obtained by the present invention, in which upper and lower heat exchange substrates are omitted.

【符号の説明】 1 N型熱電半導体素子 2 P型熱電半導体素子 3 電極 4 熱交換基板 5 端子 6 上部電極 6’下部電極 7 治具 8 クリーム半田 9 熱電半導体素子 10 熱交換基板 11 支持板 12 両面テープ 13 電極 14 導電性接着剤又はクリーム半田 15 熱電半導体素子 16 セラミック基板 17 電極[Explanation of Codes] 1 N-type thermoelectric semiconductor element 2 P-type thermoelectric semiconductor element 3 Electrode 4 Heat exchange board 5 Terminal 6 Upper electrode 6'Lower electrode 7 Jig 8 Cream solder 9 Thermoelectric semiconductor element 10 Heat exchange board 11 Support plate 12 Double-sided tape 13 Electrode 14 Conductive adhesive or cream solder 15 Thermoelectric semiconductor element 16 Ceramic substrate 17 Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱電半導体素子を上下電極により接続し
少なくとも片側の熱交換基板を省略したスケルトンタイ
プのサーモモジュールを製造する方法において、支持体
上に粘着性樹脂を塗布してその上に電極を配置し、電極
上に導電性接着剤又はクリーム半田を塗布又は印刷しそ
れら各部位に熱電半導体素子を配置し、別に用意したセ
ラミック基板上に電極を配置し、導電性接着剤又はクリ
ーム半田を塗布又は印刷し、これを先の熱電半導体素子
上に導電性接着剤又はクリーム半田により接合し、次い
で粘着性樹脂を溶融して前記支持体を剥離することを特
徴とするサーモモジュールの製造方法。
1. A method of manufacturing a skeleton type thermomodule in which thermoelectric semiconductor elements are connected by upper and lower electrodes and a heat exchange substrate on at least one side is omitted, wherein a support is coated with an adhesive resin and electrodes are formed thereon. Arrange, apply or print conductive adhesive or cream solder on the electrodes, place thermoelectric semiconductor elements on each of these parts, place electrodes on a separately prepared ceramic substrate, and apply conductive adhesive or cream solder Alternatively, a method for producing a thermomodule is characterized in that printing is performed, the thermoelectric semiconductor element is bonded to the thermoelectric semiconductor element with a conductive adhesive or cream solder, and then the adhesive resin is melted to peel off the support.
【請求項2】 熱電半導体素子を上下電極により接続し
両側の熱交換基板を省略したスケルトンタイプのサーモ
モジュールを製造する方法において、支持体上に粘着性
樹脂を塗布してその上に電極を配置し、電極上に導電性
接着剤又はクリーム半田を塗布又は印刷しそれら各部位
に熱電半導体素子を配置し、別に用意したセラミック基
板上に粘着性樹脂を塗布してその上に電極を配置し、導
電性接着剤又はクリーム半田を塗布又は印刷し、これを
先の熱電半導体素子上に導電性接着剤又はクリーム半田
により接合し、次いで粘着性樹脂を溶融して前記支持体
を剥離することを特徴とするサーモモジュールの製造方
法。
2. In a method for manufacturing a skeleton type thermomodule in which thermoelectric semiconductor elements are connected by upper and lower electrodes and heat exchange substrates on both sides are omitted, an adhesive resin is applied on a support and electrodes are arranged thereon. Then, apply or print a conductive adhesive or cream solder on the electrodes and arrange the thermoelectric semiconductor elements at their respective parts, and apply the adhesive resin on the separately prepared ceramic substrate and arrange the electrodes on it. A feature that a conductive adhesive or cream solder is applied or printed, this is bonded onto the thermoelectric semiconductor element by the conductive adhesive or cream solder, and then the adhesive resin is melted to peel off the support. Method of manufacturing thermo module.
JP4100388A 1992-03-26 1992-03-26 Manufacture of thermomodule Pending JPH06296046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100388A JPH06296046A (en) 1992-03-26 1992-03-26 Manufacture of thermomodule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100388A JPH06296046A (en) 1992-03-26 1992-03-26 Manufacture of thermomodule

Publications (1)

Publication Number Publication Date
JPH06296046A true JPH06296046A (en) 1994-10-21

Family

ID=14272622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100388A Pending JPH06296046A (en) 1992-03-26 1992-03-26 Manufacture of thermomodule

Country Status (1)

Country Link
JP (1) JPH06296046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980064197A (en) * 1997-12-16 1998-10-07 사쿠라기 시로 Thermoelectric element and thermoelectric cooling device
US20100319744A1 (en) * 2009-06-23 2010-12-23 Laird Technologies, Inc. Thermoelectric modules and related methods
JP2017098283A (en) * 2015-11-18 2017-06-01 日東電工株式会社 Semiconductor device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980064197A (en) * 1997-12-16 1998-10-07 사쿠라기 시로 Thermoelectric element and thermoelectric cooling device
US20100319744A1 (en) * 2009-06-23 2010-12-23 Laird Technologies, Inc. Thermoelectric modules and related methods
US8193439B2 (en) * 2009-06-23 2012-06-05 Laird Technologies, Inc. Thermoelectric modules and related methods
JP2017098283A (en) * 2015-11-18 2017-06-01 日東電工株式会社 Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US4561011A (en) Dimensionally stable semiconductor device
US7622733B2 (en) Semiconductor structure with a plastic housing and separable carrier plate
US4724611A (en) Method for producing semiconductor module
CA2002213A1 (en) High Performance Integrated Circuit Chip Package and Method of Making Same
JP2000058930A (en) Thermoelement, and its manufacture
JPH06296046A (en) Manufacture of thermomodule
JPS5974642A (en) Method and device for producing film mounting type integrat-ed circuit from individual integrated circuit
JP2007012755A (en) Semiconductor device and semiconductor device assembly
EP3544068B1 (en) Method of production of thermoelectric micro-coolers
JP2003124262A5 (en)
JP2001284510A (en) Manufacturing method of electrical equipment
JPH1187787A (en) Production of thermoelectrtc module
JP2005217055A (en) Thermoelectric module manufacturing method
JP2003209346A (en) Method for mounting component and electronic device
JP2001156343A (en) Thermoelectric element and method of manufacturing the same
JP3113400B2 (en) Electronic circuit device
JP4599719B2 (en) Thermoelectric semiconductor manufacturing method
JP3255796B2 (en) Semiconductor device mounting method
JP3472342B2 (en) Method of manufacturing semiconductor device package
JP3377944B2 (en) Thermoelectric element and method of manufacturing the same
JP2000133741A (en) Semiconductor device
JPH0686393U (en) Ceramic substrate structure
JPH04273155A (en) Manufacture of hybrid integrated circuit for power service
US20200375066A1 (en) Multi-device cooling structure having assembly alignment features
JP2005072369A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080614