JP2005217055A - Thermoelectric module manufacturing method - Google Patents

Thermoelectric module manufacturing method Download PDF

Info

Publication number
JP2005217055A
JP2005217055A JP2004020286A JP2004020286A JP2005217055A JP 2005217055 A JP2005217055 A JP 2005217055A JP 2004020286 A JP2004020286 A JP 2004020286A JP 2004020286 A JP2004020286 A JP 2004020286A JP 2005217055 A JP2005217055 A JP 2005217055A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric element
solder
type
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020286A
Other languages
Japanese (ja)
Inventor
Toshihiro Furukawa
智弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004020286A priority Critical patent/JP2005217055A/en
Publication of JP2005217055A publication Critical patent/JP2005217055A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric module manufacturing method wherein a thermoelectric element is stably fixed on the soldering paste without falling down, the thermoelectric element and its supporting substrate are soldered together with high precision, and mass productivity is improved at a low cost. <P>SOLUTION: A thermoelectric module has a supporting substrate, a plurality of n-type and p-type thermoelectric elements arranged on the supporting substrate, and wiring conductors for electrically connecting the plurality of thermoelectric elements in series. The manufacturing method comprises a step of printing the soldering paste to the wiring conductors on the supporting substrate, a step of arraying thermoelectric elements on a heat-resistant lattice-type arraying jig, a step of transferring the thermoelectric elements from the lattice-type arraying jig to the connecting conductors with the soldering paste printed thereon, a step of drying the soldering paste, and a step of heating a part or the entirety of the lattice-type arraying jig with the ends of the transferred thermoelectric elements contacting with the soldering paste. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体等の発熱体の温度調整、冷却等に好適に使用される熱電モジュールの量産性に優れる低コストな製造方法に関する。   The present invention relates to a low-cost manufacturing method that is excellent in mass productivity of thermoelectric modules that are suitably used for temperature adjustment, cooling, and the like of heating elements such as semiconductors.

従来より、ペルチェ効果を利用した熱電素子は、電流を流すことにより一端が発熱するとともに他端が吸熱するため、冷却用の熱電素子として用いられている。特に、熱電モジュールとしてレーザーダイオードの温度制御、小型で構造が簡単でありフロンレスの冷却装置、冷蔵庫、恒温槽、光検出素子、半導体製造装置等の電子冷却素子、レーザーダイオードの温度調節等への幅広い利用が期待されている。   Conventionally, a thermoelectric element using the Peltier effect has been used as a thermoelectric element for cooling because one end generates heat and the other end absorbs heat when an electric current is passed. In particular, temperature control of laser diodes as thermoelectric modules, small size and simple structure, cooling devices without refrigerators, refrigerators, thermostats, photodetectors, electronic cooling elements such as semiconductor manufacturing equipment, temperature control of laser diodes, etc. Use is expected.

この室温付近で使用される熱電モジュールに使用される熱電素子用材料は、冷却特性が優れるという観点からA型結晶(AはBi及び/又はSb、BはTe及び/又はSe)からなる熱電素子が一般的に用いられる。 The thermoelectric element material used for the thermoelectric module used near room temperature is from A 2 B 3 type crystal (A is Bi and / or Sb, B is Te and / or Se) from the viewpoint of excellent cooling characteristics. A thermoelectric element is generally used.

例えば、P型の熱電素子にはBiTe(テルル化ビスマス)とSbTe(テルル化アンチモン)との固溶体が、N型の熱電素子にはBiTeとBiSe(セレン化ビスマス)との固溶体が特に優れた性能を示すことから、このA型結晶(AはBi及び/又はSb、BはTe及び/又はSe)が熱電素子として広く用いられている。 For example, a solid solution of Bi 2 Te 3 (bismuth telluride) and Sb 2 Te 3 (antimony telluride) is used for a P-type thermoelectric element, and Bi 2 Te 3 and Bi 2 Se 3 (for a N-type thermoelectric element). Since the solid solution with bismuth selenide shows particularly excellent performance, this A 2 B 3 type crystal (A is Bi and / or Sb, B is Te and / or Se) is widely used as a thermoelectric element. .

ペルチェ効果を利用した熱電モジュールは、図1に示すように、支持基板1a、1bの表面に、それぞれ配線導体2a、2bが形成され、熱電素子3が配線導体2a、2bによって挟持されるとともに、電気的に直列に連結されるように構成されている。   As shown in FIG. 1, in the thermoelectric module using the Peltier effect, wiring conductors 2a and 2b are formed on the surfaces of the support substrates 1a and 1b, respectively, and the thermoelectric element 3 is sandwiched between the wiring conductors 2a and 2b. It is configured to be electrically connected in series.

これらのN型熱電素子3a及びP型熱電素子3bは、交互に配列し、電気的に直列になるように配線導体2a、2bで接続され、さらにリード線4に接続しており、外部から熱電素子3に直流電圧を印加することができ、その電流の向きに応じて吸熱あるいは発熱を生じせしめることが出来る。   These N-type thermoelectric elements 3a and P-type thermoelectric elements 3b are alternately arranged, connected by wiring conductors 2a and 2b so as to be electrically in series, and further connected to the lead wire 4, and the thermoelectric element from the outside. A DC voltage can be applied to the element 3, and heat absorption or heat generation can be generated according to the direction of the current.

上記の配線導体2a、2bは、大電流に耐え得るように、通常は銅電極が用いられ、配線導体2a、2bに熱電素子3が半田で接合されている。   The wiring conductors 2a and 2b are usually made of copper electrodes so as to withstand a large current, and the thermoelectric element 3 is joined to the wiring conductors 2a and 2b with solder.

上記のような熱電モジュールは、構造が簡単で、取扱が容易であるにもかかわらず、安定な特性を維持することが出来るため、広範囲にわたる利用が注目されている。特に、小型で局所冷却ができ、室温付近の精密な温度制御が可能であるため、半導体レーザや光集積回路等に代表される一定温度に精密制御される装置や小型冷蔵庫等に利用されている。   The thermoelectric module as described above has been attracting attention for its wide use since it has a simple structure and is easy to handle, but can maintain stable characteristics. In particular, it is small and can be locally cooled, and precise temperature control near room temperature is possible, so it is used for devices that are precisely controlled to a constant temperature, such as semiconductor lasers and optical integrated circuits, and small refrigerators. .

このような構造を有する熱電モジュールを作製するに当っては、特に、形状が小さく微細な熱電素子3を支持基板1上に、等間隔で支持基板1に対して垂直に傾かないように半田で実装する工程が特に難しく、熱電モジュールのコストを引き上げる要因の一つになっている。半田実装される支持基板1あるいは熱電素子3は、半田成分が熱電素子3に拡散することを妨げ、また半田の濡れ性を高めるために、Niメッキの上にAuメッキが施されている。前述した実装を容易にする目的から、熱電素子3あるいは支持基板1のメッキされた面のいずれか一方を半田メッキにし、接合面にあらかじめ高粘性のフラックスを塗布して熱電素子3と支持基板1を熱により仮止めし、その後加熱して半田接合する方法が知られている(特許文献1)。
特開平4−10674号公報
In producing a thermoelectric module having such a structure, in particular, a small and fine thermoelectric element 3 is soldered on the support substrate 1 so as not to tilt perpendicularly to the support substrate 1 at equal intervals. The mounting process is particularly difficult and is one of the factors that increase the cost of thermoelectric modules. The support substrate 1 or the thermoelectric element 3 mounted with solder prevents the solder component from diffusing into the thermoelectric element 3 and is plated with Au on the Ni plating in order to improve solder wettability. For the purpose of facilitating the mounting described above, either the thermoelectric element 3 or the plated surface of the support substrate 1 is solder-plated, and a high-viscosity flux is applied to the joint surface in advance to apply the thermoelectric element 3 and the support substrate 1. A method is known in which solder is temporarily fixed by heat and then heated and soldered (Patent Document 1).
Japanese Patent Laid-Open No. 4-10474

しかしながら、特許文献1に記載の熱電モジュールの製造方法は、熱電素子を仮止めできる優れた方法ではあるものの、半田メッキ等により熱電素子と支持基板を平坦にする必要があり、半田組成が限定され、高コストになってしまう問題があった。さらには、高粘着性のフラックスを塗布する工程が余計にかかり、また、フラックスが乾燥するまでの短時間に熱電素子を実装させなくては成らず、量産性に乏しく、高コストな製造方法であった。   However, although the thermoelectric module manufacturing method described in Patent Document 1 is an excellent method capable of temporarily fixing the thermoelectric element, it is necessary to flatten the thermoelectric element and the support substrate by solder plating or the like, and the solder composition is limited. There was a problem that would be expensive. Furthermore, it takes an extra step of applying a highly adhesive flux, and it is necessary to mount a thermoelectric element in a short time until the flux dries. there were.

一方、低コストな熱電モジュールの製造プロセスとして、支持基板に半田ペーストをスクリーン印刷した後に熱電素子を実装する手法が考えられるが、半田ペーストを用いると、印刷した面が山状になり、熱電素子の座りが悪く熱電素子が倒れる等の問題があり、これまで半田ペーストを用いた印刷法による量産方法に適した製造方法は確立されていなかった。   On the other hand, as a manufacturing process of a low-cost thermoelectric module, a method of mounting a thermoelectric element after screen printing a solder paste on a support substrate is conceivable. However, when the solder paste is used, the printed surface becomes a mountain shape, and the thermoelectric element However, the manufacturing method suitable for the mass production method by the printing method using the solder paste has not been established so far.

低コストで量産性に優れる半田ペーストを印刷した工程による熱電モジュールの製造方法に関して鋭意検討し、熱電素子を整列冶具中に一度配列させ、その後、半田ペーストを印刷した支持基板上に転写し、転写した状態で加熱する事で半田ペーストと熱電素子が接着により仮止めされる方法によって熱電モジュールが作製できることを知見し、本発明に至った。   We have studied earnestly about the manufacturing method of thermoelectric module by the process of printing solder paste which is low cost and excellent in mass productivity, arrange the thermoelectric element once in the alignment jig, and then transfer the solder paste onto the printed support substrate, transfer The present inventors have found that a thermoelectric module can be produced by a method in which the solder paste and the thermoelectric element are temporarily fixed by adhesion by heating in such a state.

すなわち、本発明の熱電モジュールの製造方法は、支持基板と、該支持基板上に配列された複数のN型およびP型熱電素子と、複数の該熱電素子間を電気的に直列に接続する配線導体を具備する熱電モジュールの製造方法において、上記支持基板上の配線導体上に半田ペーストを印刷する工程と、耐熱性を有する格子状整列冶具に上記熱電素子を整列して配列する工程と、上記格子状整列冶具に配列された熱電素子を上記半田ペーストが印刷された配線導体上に転写する工程と、上記半田ペーストを乾燥する工程と、転写された熱電素子の端面を半田ペーストに接触させた状態で格子状整列冶具の一部あるいは全体で固定して加熱する工程を含むことを特徴とする。   That is, the manufacturing method of the thermoelectric module of the present invention includes a support substrate, a plurality of N-type and P-type thermoelectric elements arranged on the support substrate, and a wiring that electrically connects the plurality of thermoelectric elements in series. In a method for manufacturing a thermoelectric module having a conductor, a step of printing a solder paste on a wiring conductor on the support substrate, a step of aligning and arranging the thermoelectric elements on a heat-resistant grid-like alignment jig, The step of transferring the thermoelectric elements arranged on the grid-like alignment jig onto the wiring conductor printed with the solder paste, the step of drying the solder paste, and the end surface of the transferred thermoelectric element were brought into contact with the solder paste The method includes a step of fixing and heating a part or all of the grid-like alignment jig in a state.

上記乾燥する温度が50〜150℃であることを特徴とする。   The drying temperature is 50 to 150 ° C.

上記格子状整列冶具の材質がフェノール樹脂、または金属であることを特徴とする。   The grid-like alignment jig is made of phenol resin or metal.

上記半田ペーストが印刷された支持基板を上記熱電素子の両端に配置した状態で加熱して半田接合することを特徴とする。   The support substrate on which the solder paste is printed is heated and solder-bonded in a state where the support substrate is disposed at both ends of the thermoelectric element.

上記半田ペーストが印刷された支持基板のうち少なくとも一方を50〜150℃の温度で乾燥したのち、上記熱電素子の両端に配置した状態で加熱して半田接合することを特徴とする。   At least one of the support substrates on which the solder paste is printed is dried at a temperature of 50 to 150 ° C., and then heated and soldered in a state of being disposed at both ends of the thermoelectric element.

上記方法によって低コストで量産性に優れる熱電モジュールの製造方法が得られる。   By the above method, a method for producing a thermoelectric module that is low in cost and excellent in mass productivity can be obtained.

本発明の熱電モジュールの製造方法によれば、熱電素子が倒れたりすることなく半田ペースト上に固定することが可能になり、熱電素子と支持基板を精度良く半田接合でき、低コストで量産性に優れた熱電モジュールの製造が可能になる。   According to the manufacturing method of the thermoelectric module of the present invention, the thermoelectric element can be fixed on the solder paste without falling down, and the thermoelectric element and the supporting substrate can be soldered with high accuracy, and the mass production can be achieved at low cost. An excellent thermoelectric module can be manufactured.

さらにまた、半田ペーストの変質を抑え、半田接合状態を良好にしながら、精度良く熱電素子と半田ペーストを固定することができ、接合工程の歩留まりを高めることができる。   Furthermore, it is possible to fix the thermoelectric element and the solder paste with high accuracy while suppressing the deterioration of the solder paste and improving the solder joint state, thereby increasing the yield of the joining process.

さらにまた、前記熱電素子と半田ペーストを固定させる加熱時における整列冶具の変形を抑え、加熱時の熱電素子と格子上冶具の接触による不良を低減でき、歩留まりを向上できる。   Furthermore, deformation of the alignment jig during heating for fixing the thermoelectric element and the solder paste can be suppressed, defects due to contact between the thermoelectric element and the jig on the grid during heating can be reduced, and the yield can be improved.

さらにまた、熱電素子と支持基板との半田接合工程が一度で済み、低コストで量産性に優れる熱電モジュールの製造が可能になる。   Furthermore, the soldering process between the thermoelectric element and the support substrate is only once, and it is possible to manufacture a thermoelectric module that is low in cost and excellent in mass productivity.

さらにまた、熱電素子の傾きをさらに抑え、高精度に熱電素子が配列された熱電モジュールを低コストで量産性に優れる方法で製造が可能になる。   Furthermore, it is possible to manufacture a thermoelectric module in which thermoelectric elements are arranged with high accuracy by reducing the inclination of the thermoelectric elements at a low cost and with excellent mass productivity.

図1は本発明の熱電モジュールの製造方法によって作製された熱電モジュールを示す斜視図である。   FIG. 1 is a perspective view showing a thermoelectric module manufactured by the method for manufacturing a thermoelectric module of the present invention.

本発明の熱電モジュールの製造方法によって作製された熱電モジュールは、図1に示すように、支持基板1a、1bの表面に、それぞれ配線導体2a、2bが形成され、熱電素子3が配線導体2a、2bによって挟持されるとともに、電気的に直列に連結されるように構成されている。   As shown in FIG. 1, the thermoelectric module produced by the thermoelectric module manufacturing method of the present invention has wiring conductors 2a and 2b formed on the surfaces of the support substrates 1a and 1b, respectively, and the thermoelectric element 3 is connected to the wiring conductor 2a, It is configured to be sandwiched by 2b and electrically connected in series.

これらのN型熱電素子3a及びP型熱電素子3bは、交互に配列し、電気的に直列になるように配線導体2a、2bで接続され、さらにリード線4に接続しており、外部から熱電素子3に直流電圧を印加することができ、その電流の向きに応じて吸熱あるいは発熱を生じせしめることが出来る。   These N-type thermoelectric elements 3a and P-type thermoelectric elements 3b are alternately arranged, connected by wiring conductors 2a and 2b so as to be electrically in series, and further connected to the lead wire 4, and the thermoelectric element from the outside. A DC voltage can be applied to the element 3, and heat absorption or heat generation can be generated according to the direction of the current.

上記の配線導体2a,2bは、大電流に耐え得るように、通常は銅電極が用いられ、配線導体2a,2bに熱電素子3が半田ペースト8で接合されている。   The wiring conductors 2a and 2b are usually made of copper electrodes so as to withstand a large current, and the thermoelectric element 3 is joined to the wiring conductors 2a and 2b with a solder paste 8.

本発明に用いられる熱電素子3は、Bi、Sb、Te及びSeのうち少なくとも2種を主成分とすることが好ましい。BiTe、SbTe、BiSe等のカルコゲナイト型結晶を使用した熱電素子3は、室温付近の熱電特性に優れ、情報通信関連の冷却用熱電モジュールとして好適に使用できる。 The thermoelectric element 3 used in the present invention preferably contains at least two of Bi, Sb, Te and Se as main components. The thermoelectric element 3 using a chalcogenite type crystal such as Bi 2 Te 3 , Sb 2 Te 3 , Bi 2 Se 3 is excellent in thermoelectric properties near room temperature, and can be suitably used as a cooling thermoelectric module related to information communication.

また特に、N型熱電素子3は、I及び/又はBrを含むことが好ましい。即ち、半導体を形成するため、ハロゲン元素の添加によって電子濃度の調整がなされ、キャリア濃度の制御されたN型熱電素子3aとして優れた特性を示すことができる。   In particular, the N-type thermoelectric element 3 preferably contains I and / or Br. That is, in order to form a semiconductor, the electron concentration is adjusted by addition of a halogen element, and excellent characteristics can be exhibited as the N-type thermoelectric element 3a having a controlled carrier concentration.

なお、N型熱電素子及びP型熱電素子は、溶製材料であっても焼結体であっても良いが、N型熱電素子を溶製材料、特に単結晶からなり、P型熱電素子3bが焼結体、特に平均結晶粒径が5μm以下の焼結体からなる、もしくはN型熱電素子3a及びP型熱電素子3bが溶製材料、特に単結晶からなることが、優れた特性とコスト低減を同時に実現しやすい点で好ましい。   The N-type thermoelectric element and the P-type thermoelectric element may be a melted material or a sintered body, but the N-type thermoelectric element is made of a melted material, particularly a single crystal, and the P-type thermoelectric element 3b. Are made of a sintered body, particularly a sintered body having an average crystal grain size of 5 μm or less, or that the N-type thermoelectric element 3a and the P-type thermoelectric element 3b are made of a melted material, particularly a single crystal. This is preferable because reduction can be easily realized at the same time.

さらに、熱電素子3と配線導体2の接合は半田接合が、電気的、機械的性能及びコストの点で最適である。用いられる半田は、使用される熱電モジュールの用途によって様々であるが、一般的にはSn−Pb、Sn−Sb、Au−Sn系が好適に使用される。特に近年ではPbフリーの要求が高まっているため、半田溶融温度の高いSn−Sb、Au−Snが環境及び耐熱性向上の面で好ましい。熱電素子3の電極に接続させる両端面は、ニッケルメッキ層とAuメッキ層を施すことによって、半田の濡れ性を向上し、半田層を構成する半田成分が熱電素子3の内部に拡散し、熱電性能を劣化させることを抑制できる。   Furthermore, the joining of the thermoelectric element 3 and the wiring conductor 2 is most suitable in terms of electrical, mechanical performance and cost. The solder to be used varies depending on the application of the thermoelectric module to be used, but generally Sn—Pb, Sn—Sb, and Au—Sn are preferably used. In particular, since the demand for Pb-free has been increasing in recent years, Sn—Sb and Au—Sn, which have high solder melting temperatures, are preferable in terms of improving the environment and heat resistance. The both end faces connected to the electrodes of the thermoelectric element 3 are provided with a nickel plating layer and an Au plating layer to improve the wettability of the solder, and the solder components constituting the solder layer diffuse into the thermoelectric element 3, Deteriorating performance can be suppressed.

次に、本発明の熱電モジュールの製造方法について詳述する。   Next, the manufacturing method of the thermoelectric module of this invention is explained in full detail.

まず、支持基板1を準備する。支持基板1の材質としては、耐振動及び衝撃性に優れ、配線導体2の密着強度が大きく、また、放熱面や冷却面としての熱抵抗が小さいものが好ましい。具体的には、アルミナ、ムライト、窒化アルミニウム、窒化珪素、炭化珪素の少なくとも1種からなる焼結体を例示できる。特にコストの点からアルミナ焼結体を、熱伝導率が高く、熱抵抗が小さい点で窒化アルミニウム焼結体を、強度及び熱伝導率の点で炭化珪素焼結体を、衝撃性や強度の点で窒化珪素焼結体を好適に使用できる。   First, the support substrate 1 is prepared. The material of the support substrate 1 is preferably a material that is excellent in vibration resistance and impact resistance, has high adhesion strength of the wiring conductor 2, and has low heat resistance as a heat radiating surface or a cooling surface. Specifically, a sintered body made of at least one of alumina, mullite, aluminum nitride, silicon nitride, and silicon carbide can be exemplified. In particular, from the viewpoint of cost, the alumina sintered body, the aluminum nitride sintered body from the viewpoint of high thermal conductivity and low thermal resistance, the silicon carbide sintered body from the viewpoint of strength and thermal conductivity, the impact resistance and strength of the sintered body. In this respect, a silicon nitride sintered body can be suitably used.

支持基板1の曲げ強度は、200MPa以上、特に250MPa以上、更には300MPa以上にすることが、配線導体2の形成や半田層の形成に伴う応力集中に対しても支持基板1の破損を防止する効果を高め、より高い信頼性を得る点において好ましい。   The bending strength of the support substrate 1 is 200 MPa or more, particularly 250 MPa or more, and more preferably 300 MPa or more, so that the support substrate 1 can be prevented from being damaged even with respect to stress concentration caused by the formation of the wiring conductor 2 or the solder layer. It is preferable in terms of enhancing the effect and obtaining higher reliability.

次いで、支持基板1上に配線導体2を形成する。配線導体2は、Cu、Al、Au、Pt、Ni及びWのうち少なくとも1種の金属を用いることが可能である。これらのうち、特にCuが電気伝導性及び支持基板1への密着強度の点で、また、Alがコストの点で望ましい。配線導体2の形成は、例えば支持基板1となるグリーンシート表面に金属ペーストを塗布した後に同時焼成しても良いが、一旦支持基板1を作製した後に金属ペーストを塗布して焼成して作製したメタライズ表面上にメッキで作製することがコスト、電極形状の精度の面で好ましい。   Next, the wiring conductor 2 is formed on the support substrate 1. The wiring conductor 2 can use at least one kind of metal among Cu, Al, Au, Pt, Ni and W. Of these, Cu is particularly desirable in terms of electrical conductivity and adhesion strength to the support substrate 1, and Al is desirable in terms of cost. The wiring conductor 2 may be formed, for example, by applying a metal paste to the surface of the green sheet to be the support substrate 1 and then simultaneously firing. However, once the support substrate 1 is prepared, the metal paste is applied and fired. Producing by plating on the metallized surface is preferable in terms of cost and accuracy of electrode shape.

以下、図5(a)の本発明のフロー図に沿って説明する。   Hereinafter, it demonstrates along the flowchart of this invention of Fig.5 (a).

支持基板1上に設けた配線導体2上に所望の組成の半田ペースト8を塗布する。半田ペースト8は、粒径が10〜100μm程度の半田にフラックス、有機溶剤等副成分が混合した市販のペーストでよいが、本発明によれば、熱電素子3との接着力を高める上で、溶剤成分が蒸発しないよう、冷暗所で保管しておくことが望ましい。万一、乾燥した場合は、フラックス等を添加して粘度調整すれば使用可能になる。   A solder paste 8 having a desired composition is applied on the wiring conductor 2 provided on the support substrate 1. Solder paste 8 may be a commercially available paste in which subcomponents such as flux and organic solvent are mixed with solder having a particle size of about 10 to 100 μm. However, according to the present invention, in order to increase the adhesive force with thermoelectric element 3, It is desirable to store in a cool and dark place so that the solvent component does not evaporate. If it is dried, it can be used by adjusting the viscosity by adding flux or the like.

塗布する方法としては、ディスペンサーで微小のボール状半田を滴下してもよいが、量産性の上であらかじめスクリーンメッシュ上に高精度で開口部15が作製されている版を用いてペーストを印刷するスクリーン印刷法が最適である。スクリーン印刷法では、スクリーンメッシュの厚みや開口形状を調整することで半田量と印刷される半田の高さを調整することができる。   As a method of applying, fine ball-shaped solder may be dropped by a dispenser, but for mass production, a paste is printed using a plate in which openings 15 are formed with high precision on a screen mesh in advance. Screen printing is optimal. In the screen printing method, the amount of solder and the height of printed solder can be adjusted by adjusting the thickness and opening shape of the screen mesh.

本発明によれば、支持基板1を支持基板ホルダー12に精度良く配置することで、複数個の支持基板1を同時に印刷が可能である。   According to the present invention, by arranging the support substrate 1 on the support substrate holder 12 with high accuracy, a plurality of support substrates 1 can be printed simultaneously.

また、半田量は配線導体2の面積で厚みが5〜30μmになる範囲となるように、また、半田の高さは熱電素子3の幅の1/2以下になるようにすることが、熱電素子3の傾きを抑制し、さらには熱電モジュールの抵抗ばらつきを抑制する上で好ましい。   In addition, the amount of solder should be in the range where the thickness of the wiring conductor 2 is 5 to 30 μm, and the height of the solder should be ½ or less of the width of the thermoelectric element 3. It is preferable for suppressing the inclination of the element 3 and further for suppressing the resistance variation of the thermoelectric module.

次に、熱電素子3を整列させる整列冶具5を用意する。   Next, an alignment jig 5 for aligning the thermoelectric elements 3 is prepared.

整列冶具5とは、図3(a)に示すような耐熱性を持つ材料の主面に、熱電素子3を支持基板1上にN型及びP型を交互に千鳥状に配置できるように、熱電素子3が配線基板と接合される面の形状に合わせて開口部15が施された冶具である。開口部15の形状は熱電素子3よりも大きい形状であれば良いが、図3(b)に示すような、エッジ部にR加工16を施すことが、熱電素子3を傷つけることなく転写する上で好ましい。この整列冶具5の材質は150℃までの耐熱性が有り、微細で高精度な加工が施せる材料であれば材質は限定しないが、フェノール樹脂または、金属が加工性、コストの上で好ましく、具体的には、ベークライト、ステンレス、アルミニウムが望ましく、その中でも特にステンレスがフォトリソグラフィー技術によるエッチング工程によって高精度で微細な加工が容易に行えるため好ましい。   With the alignment jig 5, N-type and P-type can be alternately arranged in a staggered pattern on the support substrate 1 on the main surface of the heat-resistant material as shown in FIG. The jig is provided with an opening 15 in accordance with the shape of the surface where the thermoelectric element 3 is bonded to the wiring board. The opening 15 may have a shape larger than that of the thermoelectric element 3, but the R processing 16 is applied to the edge portion as shown in FIG. 3B to transfer the thermoelectric element 3 without damaging it. Is preferable. The material of the alignment jig 5 is not limited as long as it has heat resistance up to 150 ° C. and can be processed finely and with high precision, but phenol resin or metal is preferable in terms of workability and cost. In particular, bakelite, stainless steel, and aluminum are preferable, and stainless steel is particularly preferable because stainless steel can be easily processed with high accuracy and fineness by an etching process using a photolithography technique.

次に、この整列冶具5の開口部15に熱電素子3の配線導体2に接合させる二つの面のいずれかを上面に向けた方向になるように挿入する。挿入する方法としては、真空ピンセット等により挿入しても良いし、パーツフィーダーとロボットを組み合わせて自動化しても良いが、本発明によれば、低コストで量産性優れる方法としては、振動揺動による振込みによる熱電素子3の挿入が好ましい。N型熱電素子3aとP型熱電素子3bとを交互に配列させるために、一度振込み用の冶具にN型熱電素子3aとP型熱電素子3bを別々に振り込んだ後、整列冶具5に転写する方法が望ましい。整列冶具5の構成としては、図4(a)に示すような、転写のときに引き真空引きして熱電素子3を固定できるような真空引き用の加工穴7をあらかじめ設けておいたほうが転写が容易である。本発明によれば、整列用冶具5は、図4(a)に示されるような一体型でも良いが、粗い加工精度で加工した一体型の整列冶具5の開口部15に、エッチングで高精度に加工された好ましくはステンレス製のメタルマスク17が配置された合体構造が熱電素子3の位置精度を高める上で、特に望ましい。メタルマスク17の開口部15の大きさは、熱電素子3の幅の105〜120%が望ましい。これらの整列冶具5を高精度で加工することによって、複数個の熱電モジュール用の熱電素子3を同時に配列できる。   Next, one of the two surfaces to be joined to the wiring conductor 2 of the thermoelectric element 3 is inserted into the opening 15 of the alignment jig 5 so as to face the upper surface. As a method of insertion, it may be inserted by vacuum tweezers or the like, or may be automated by combining a parts feeder and a robot. However, according to the present invention, as a method of low cost and excellent mass productivity, vibration oscillation It is preferable to insert the thermoelectric element 3 by transfer according to. In order to alternately arrange the N-type thermoelectric elements 3a and the P-type thermoelectric elements 3b, the N-type thermoelectric elements 3a and the P-type thermoelectric elements 3b are separately transferred to the transfer jig once, and then transferred to the alignment jig 5. The method is desirable. As shown in FIG. 4 (a), the alignment jig 5 is structured such that a vacuum processing hole 7 is provided in advance so that the thermoelectric element 3 can be fixed by drawing a vacuum during transfer. Is easy. According to the present invention, the alignment jig 5 may be an integrated type as shown in FIG. 4 (a), but the opening 15 of the integrated alignment jig 5 processed with a rough processing accuracy is highly accurate by etching. In order to improve the positional accuracy of the thermoelectric element 3, a combined structure in which a metal mask 17 made of stainless steel, preferably made of stainless steel, is disposed is particularly desirable. The size of the opening 15 of the metal mask 17 is desirably 105 to 120% of the width of the thermoelectric element 3. By processing these alignment jigs 5 with high accuracy, a plurality of thermoelectric elements 3 for thermoelectric modules can be arranged simultaneously.

次に、整列冶具5に配置された熱電素子3を前述した半田ペースト8が印刷された支持基板1上に転写する。支持基板ホルダー12にガイドピン9を設けることで、スペーサー13及び整列冶具5を精度良く配置できる。熱電素子3が挿入されている整列冶具5は真空ポンプを用いて、真空引き用の穴を用いて熱電素子3を吸着させ固定し、そのまま支持基板ホルダー12上にガイドピンを用いて位置決めする。その後、真空引きを止めることで熱電素子3は自重により落下し、半田ペースト8上に熱電素子3が接触される。このとき、前述したメタルマスク17が付属した整列冶具5を用いる場合は同様な工程でも良いが、メタルマスク17のみをあらかじめ、スペーサーの上に配置した状態で熱電素子3を転写しても良い。本発明によれば、メタルマスク17は2枚以上配置することで、電極位置に対して熱電素子3がずれた場合もメタルマスク17によって位置を微調整できるため、メタルマスク17が付属した整列冶具5を用いることが望ましい。この場合、熱電素子3を転写したのちに真空引きの穴が付属される整列冶具5は取り外しても良い。   Next, the thermoelectric element 3 arranged on the alignment jig 5 is transferred onto the support substrate 1 on which the solder paste 8 is printed. By providing the guide pins 9 on the support substrate holder 12, the spacers 13 and the alignment jig 5 can be accurately arranged. The alignment jig 5 in which the thermoelectric element 3 is inserted uses a vacuum pump to adsorb and fix the thermoelectric element 3 using a vacuuming hole, and positions it on the support substrate holder 12 as it is using a guide pin. Thereafter, by stopping the vacuuming, the thermoelectric element 3 falls due to its own weight, and the thermoelectric element 3 is brought into contact with the solder paste 8. At this time, when the alignment jig 5 to which the above-described metal mask 17 is attached is used, the same process may be performed, but the thermoelectric element 3 may be transferred in a state where only the metal mask 17 is previously disposed on the spacer. According to the present invention, since two or more metal masks 17 are arranged, the position can be finely adjusted by the metal mask 17 even when the thermoelectric element 3 is displaced with respect to the electrode position. It is desirable to use 5. In this case, after transferring the thermoelectric element 3, the alignment jig 5 to which the vacuuming hole is attached may be removed.

次に、熱電素子3が半田ペースト8上に接触された状態で整列冶具5を固定したまま加熱する。ここで、整列冶具5が一体型の場合は、そのまま固定するが、メタルマスク17を用いる場合は、熱電素子3の倒れを防止できるメタルマスク17のみが固定されていればよい。加熱温度は半田ペースト8の種類によって異なるが、熱電モジュールに好適に使用される半田の場合、50〜150℃の範囲が望ましく、好ましくは70〜130℃、より望ましくは80〜120℃である。50℃よりも低い場合、熱電素子3と半田ペーストの接着強度が弱く固定できない。また、150℃よりも高いと、この工程によって半田自身の変成が起こる場合があり、変成すると半田の濡れ性が低下し、接合後に半田にボイド、あるいは隙間が多発し、好ましくない。加熱時間は、30分以上あれば十分であるが、本発明によれば1時間以上が再現よく接着させる上で望ましい。   Next, heating is performed while the alignment jig 5 is fixed in a state where the thermoelectric element 3 is in contact with the solder paste 8. Here, when the alignment jig 5 is an integral type, it is fixed as it is. However, when the metal mask 17 is used, only the metal mask 17 that can prevent the thermoelectric element 3 from falling may be fixed. Although the heating temperature varies depending on the type of the solder paste 8, in the case of solder suitably used for the thermoelectric module, the range of 50 to 150 ° C is desirable, preferably 70 to 130 ° C, and more desirably 80 to 120 ° C. When the temperature is lower than 50 ° C., the adhesive strength between the thermoelectric element 3 and the solder paste is weak and cannot be fixed. On the other hand, when the temperature is higher than 150 ° C., the solder itself may be transformed by this process. When the transformation is performed, the wettability of the solder is lowered, and voids or gaps are frequently generated in the solder after joining. A heating time of 30 minutes or longer is sufficient, but according to the present invention, one hour or longer is desirable for reproducible adhesion.

加熱が完了したら整列冶具5を取り外し、その後、再度加熱して半田接合を行うが、本発明によれば、半田接合させる際は、図2に示すように半田印刷した支持基板1を上面に配置してから行うことが、半田接合工程が一度で済み、好ましい。このとき、加圧冶具11を介して加圧機構12により均一に加圧させることで上下の支持基板1を同時に接合することが可能になる。ここで加圧冶具11は均熱性を保つために熱伝導率が低い材質が望ましく、ガラス、ポリイミド樹脂、シリコンゴム等が好適に用いられる。加圧する圧力は、1〜10MPaが望ましい。さらには、上面に配置される支持基板1は、あらかじめ150℃以下で加熱し、半田を硬化させておくことが、加圧した際に半田が熱電素子3側面に回りこむ現象を回避でき、望ましい。半田が熱電素子3の側面に回りこむと、半田接合の際に熱電素子3と半田が反応し、熱電モジュールの性能を低下させることがある。乾燥温度は150℃以下であればよいが、好ましくは80〜120℃である。ここで150℃以上の温度で加熱すると、前述した半田の変成が起こるため好ましくない。   When the heating is completed, the alignment jig 5 is removed and then heated again to perform solder bonding. According to the present invention, when solder bonding is performed, the support substrate 1 printed with solder is arranged on the upper surface as shown in FIG. Then, it is preferable to perform the soldering step once. At this time, the upper and lower support substrates 1 can be bonded simultaneously by being uniformly pressurized by the pressure mechanism 12 via the pressure jig 11. Here, the pressure jig 11 is preferably made of a material having a low thermal conductivity in order to maintain a soaking property, and glass, polyimide resin, silicon rubber, or the like is preferably used. The pressure to be applied is preferably 1 to 10 MPa. Furthermore, it is preferable that the support substrate 1 disposed on the upper surface is heated at 150 ° C. or lower in advance to cure the solder, which can avoid the phenomenon that the solder wraps around the side of the thermoelectric element 3 when pressed. . If the solder wraps around the side surface of the thermoelectric element 3, the thermoelectric element 3 and the solder may react at the time of solder joining, and the performance of the thermoelectric module may be degraded. Although the drying temperature should just be 150 degrees C or less, Preferably it is 80-120 degreeC. Here, heating at a temperature of 150 ° C. or higher is not preferable because the above-described solder transformation occurs.

最後に、半田接合処理を施した後、冶具類を外して上下の支持基板1に熱電素子3が配列された熱電モジュールが得られる。熱電モジュールに必要な電流印加用のリード線を、半田こて、先の細いヒーター、局所加熱用のソフトビームあるいはレーザー等で半田接合させ熱電モジュールが得られる。   Finally, after performing the solder bonding process, the jigs are removed to obtain a thermoelectric module in which the thermoelectric elements 3 are arranged on the upper and lower support substrates 1. A lead wire for applying current necessary for the thermoelectric module is soldered with a soldering iron, a fine heater, a soft beam for local heating, a laser, or the like to obtain a thermoelectric module.

以上のように本発明によれば、半田ペースト8を印刷した支持基板1上に熱電素子3を接触させた状態で倒れを防止しながら加熱させる事で熱電素子3と支持基板1の仮止めを可能にし、低コストで量産性に優れた半田ペーストによる熱電モジュールの製造が可能になる。   As described above, according to the present invention, the thermoelectric element 3 and the support substrate 1 are temporarily fixed by heating while preventing the collapse of the thermoelectric element 3 in contact with the support substrate 1 on which the solder paste 8 is printed. This makes it possible to manufacture a thermoelectric module using a solder paste that is low in cost and excellent in mass productivity.

図1に示した熱電モジュールを、本発明の製造方法を用いて作製した。   The thermoelectric module shown in FIG. 1 was produced using the production method of the present invention.

まず、支持基板1として長さ8.2mm、幅6.0mm、厚み0.375mmの熱電素子3が46個(23対)配置されるCu配線アルミナ基板を準備した。   First, a Cu wiring alumina substrate on which 46 thermoelectric elements 3 having a length of 8.2 mm, a width of 6.0 mm, and a thickness of 0.375 mm (23 pairs) are arranged is prepared as the support substrate 1.

また、熱電素子3として、N型にはBiTe2.85Se0.15組成の熱電素子3を、P型にはBi0.4Sb1.6Te組成のホットプレスで作成された焼結型多結晶熱電インゴットを準備した。インゴットは厚み0.9mmにスライス後、Ni及びAuメッキを施し、幅0.65mmになるようにダイシングソーで切断し、縦0.65mm、横0.65mm、高さ0.90mmの寸法のN型及びP型熱電素子3を得た。 Further, as the thermoelectric element 3, the thermoelectric element 3 having a composition of Bi 2 Te 2.85 Se 0.15 is used for the N type, and the hot press having a composition of Bi 0.4 Sb 1.6 Te 3 is used for the P type. A sintered polycrystalline thermoelectric ingot was prepared. The ingot is sliced to a thickness of 0.9 mm, then plated with Ni and Au, cut with a dicing saw to a width of 0.65 mm, N having dimensions of 0.65 mm in length, 0.65 mm in width, and 0.90 mm in height. A mold and a P-type thermoelectric element 3 were obtained.

次に、0.75±0.01mmの開口部15を有する整列冶具5にN型およびP型熱電素子3を振り込み及び転写法により挿入し、表1に示す組成の半田ペーストをスクリーン印刷した支持基板1上にガイドピン9を用いて位置合わせをし、真空ポンプを用いて、熱電素子3を支持基板1上に整列冶具5を用いて転写した。転写した状態で表1に示す温度で1時間加熱したのち、整列冶具5を外した。このとき、熱電素子3が倒れて熱電モジュールが作製不可になったものを加熱時不良数として算出した。次に、半田印刷した上面用基板を表1に示す温度で1時間加熱した後、図2に示す状態で配置し、加圧冶具11を用いて加圧しながら、Sn−Sb半田は280℃、Au−Sn半田は340℃の温度で支持基板ホルダー12のままホットプレート上で半田接合を行った。接合後、リード線を半田こてで接合し、フラックス洗浄を施し、熱電モジュールを得た。熱電モジュールは表1に示す各条件で100個ずつ作製し、最初の加熱後に熱電素子3が3度以上倒れて熱電モジュールが作製できなかった場合を倒れ不良とし、熱電モジュールの外観検査で熱電素子3と電極の半田接合不良があるものを接合不良として算出した。   Next, the N-type and P-type thermoelectric elements 3 are inserted into the alignment jig 5 having an opening 15 of 0.75 ± 0.01 mm by a transfer and transfer method, and a solder paste having the composition shown in Table 1 is screen-printed. The alignment was performed using the guide pins 9 on the substrate 1, and the thermoelectric element 3 was transferred onto the support substrate 1 using the alignment jig 5 using a vacuum pump. After being transferred and heated at the temperature shown in Table 1 for 1 hour, the alignment jig 5 was removed. At this time, the number of defectives during heating was calculated when the thermoelectric element 3 fell down and the thermoelectric module could not be manufactured. Next, after heating the solder-printed upper surface substrate at the temperature shown in Table 1 for 1 hour, the substrate is placed in the state shown in FIG. 2, and the Sn-Sb solder is 280 ° C. while being pressed using the pressure jig 11. The Au—Sn solder was soldered on the hot plate while maintaining the support substrate holder 12 at a temperature of 340 ° C. After joining, the lead wire was joined with a soldering iron, and flux cleaning was performed to obtain a thermoelectric module. 100 thermoelectric modules were manufactured under each condition shown in Table 1, and when the thermoelectric module 3 could not be manufactured because the thermoelectric element 3 collapsed 3 degrees or more after the first heating, it was determined that the thermoelectric module did not fall down. 3 and an electrode having a solder joint failure were calculated as joint failures.

半田接合不良は、はじきや焼けなどにより熱電素子3の端面全てが覆われていないものとした。   It was assumed that the solder joint failure did not cover the entire end face of the thermoelectric element 3 due to repelling or burning.

結果を表1に併せて示す。

Figure 2005217055
The results are also shown in Table 1.
Figure 2005217055

表1から明らかなように、本発明の範囲外である熱電素子3と半田ペースト8を仮止めしない比較例No.1および2では、歩留まりが5〜10%であるのに対し、本発明の範囲内である、熱電素子3と半田ペースト8を仮固定する実施例No.3〜19では、いずれも歩留まりが91%以上と高い歩留まりを示した。   As is apparent from Table 1, Comparative Example No. in which the thermoelectric element 3 and the solder paste 8 which are outside the scope of the present invention are not temporarily fixed. In Examples 1 and 2, the yield is 5 to 10%, whereas in Examples No. 3 to 19 in which the thermoelectric element 3 and the solder paste 8 are temporarily fixed, which is within the scope of the present invention, the yield is 91. The yield was as high as%.

また、素子密着温度が50℃以上150℃以下が好ましいのは、試料No.3〜9より分かる。   Further, the element contact temperature is preferably 50 ° C. or higher and 150 ° C. or lower because of sample no. It can be seen from 3-9.

また、上面基板加熱温度が50℃〜150℃が好ましいのは、試料No10〜15で確認できる。   Moreover, it can confirm with sample No. 10-15 that the upper surface board | substrate heating temperature is 50 to 150 degreeC is preferable.

本発明の製造方法における整列冶具を用いた熱電素子転写状態を示す断面図Sectional drawing which shows the thermoelectric element transcription | transfer state using the alignment jig in the manufacturing method of this invention 本発明の製造方法における加圧状態を示す断面図である。It is sectional drawing which shows the pressurization state in the manufacturing method of this invention. (a)は本発明における整列冶具の開口部を示す上面図、(b)は開口部拡大図である。(A) is a top view which shows the opening part of the alignment jig in this invention, (b) is an opening part enlarged view. (a)は本発明における整列冶具の構成を示す実施形態の断面図、(b)は本発明における整列冶具の構成を示す他の実施形態の断面図である。(A) is sectional drawing of embodiment which shows the structure of the alignment jig in this invention, (b) is sectional drawing of other embodiment which shows the structure of the alignment jig in this invention. (a)は本発明、(b)は従来例のフロー図である。(A) is a flowchart of the present invention, and (b) is a flowchart of a conventional example. 従来例の熱電モジュールを示す斜視図である。It is a perspective view which shows the thermoelectric module of a prior art example.

符号の説明Explanation of symbols

1 支持基板
2 配線導体
3 熱電素子
3a N型熱電素子
3b P型熱電素子
4 リード線
5 整列冶具
7 真空引用加工穴
8 半田ペースト
9 ガイドピン
11 加圧冶具
12 加圧機構
13 スペーサー
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Wiring conductor 3 Thermoelectric element 3a N type thermoelectric element 3b P type thermoelectric element 4 Lead wire 5 Alignment jig
7 Vacuum quoted hole 8 Solder paste 9 Guide pin 11 Pressure jig 12 Pressure mechanism 13 Spacer

Claims (5)

支持基板と、該支持基板上に配列された複数のN型およびP型熱電素子と、複数の該熱電素子間を電気的に直列に接続する配線導体を具備する熱電モジュールの製造方法において、上記支持基板上の配線導体上に半田ペーストを印刷する工程と、耐熱性を有する格子状整列冶具に上記熱電素子を整列して配列する工程と、上記格子状整列冶具に配列された熱電素子を上記半田ペーストが印刷された配線導体上に転写する工程と、上記半田ペーストを乾燥する工程と、転写された熱電素子の端面を半田ペーストに接触させた状態で格子状整列冶具の一部あるいは全体で固定して加熱する工程を含むことを特徴とする熱電モジュールの製造方法。 In a method for manufacturing a thermoelectric module, comprising: a support substrate; a plurality of N-type and P-type thermoelectric elements arranged on the support substrate; and a wiring conductor that electrically connects the plurality of thermoelectric elements in series. A step of printing a solder paste on a wiring conductor on a support substrate, a step of aligning and arranging the thermoelectric elements on a grid-like alignment jig having heat resistance, and a thermoelectric element arranged on the grid-like alignment jig A step of transferring the solder paste onto the printed wiring conductor, a step of drying the solder paste, and a part or the whole of the grid-like alignment jig with the end face of the transferred thermoelectric element in contact with the solder paste. The manufacturing method of the thermoelectric module characterized by including the process of fixing and heating. 上記乾燥する温度が50〜150℃であることを特徴とする請求項1記載の熱電モジュールの製造方法。 The method for producing a thermoelectric module according to claim 1, wherein the drying temperature is 50 to 150 ° C. 上記格子状整列冶具の材質がフェノール樹脂、または金属であることを特徴とする請求項1または2記載の熱電モジュールの製造方法。 The method of manufacturing a thermoelectric module according to claim 1 or 2, wherein a material of the grid-like alignment jig is phenol resin or metal. 上記半田ペーストが印刷された支持基板を上記熱電素子の両端に配置した状態で加熱して半田接合することを特徴とする請求項1乃至3のいずれかに記載の熱電モジュールの製造方法。 The method of manufacturing a thermoelectric module according to any one of claims 1 to 3, wherein the support substrate on which the solder paste is printed is heated and soldered in a state of being disposed at both ends of the thermoelectric element. 上記半田ペーストが印刷された支持基板のうち少なくとも一方を50〜150℃の温度で乾燥したのち、上記熱電素子の両端に配置した状態で加熱して半田接合することを特徴とする請求項4記載の熱電モジュールの製造方法。 5. The solder substrate is formed by drying at least one of the support substrates on which the solder paste is printed at a temperature of 50 to 150 ° C., and then heating and soldering in a state of being disposed at both ends of the thermoelectric element. Method for manufacturing a thermoelectric module.
JP2004020286A 2004-01-28 2004-01-28 Thermoelectric module manufacturing method Pending JP2005217055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020286A JP2005217055A (en) 2004-01-28 2004-01-28 Thermoelectric module manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020286A JP2005217055A (en) 2004-01-28 2004-01-28 Thermoelectric module manufacturing method

Publications (1)

Publication Number Publication Date
JP2005217055A true JP2005217055A (en) 2005-08-11

Family

ID=34904244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020286A Pending JP2005217055A (en) 2004-01-28 2004-01-28 Thermoelectric module manufacturing method

Country Status (1)

Country Link
JP (1) JP2005217055A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179782A (en) * 2004-12-24 2006-07-06 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor substrate
CN102941387A (en) * 2012-12-07 2013-02-27 中国船舶重工集团公司第七一二研究所 Welding device and method for superconducting lines
JP2014036973A (en) * 2012-08-13 2014-02-27 Qel 株式会社 Molten solder coating apparatus
WO2014080332A1 (en) 2012-11-20 2014-05-30 Aisin Takaoka Co., Ltd. Method of manufacturing thermoelectric module, and thermoelectric module
CN107240638A (en) * 2016-03-29 2017-10-10 现代自动车株式会社 Device for manufacturing electrothermal module
US10892240B2 (en) 2018-03-20 2021-01-12 Toshiba Memory Corporation Semiconductor fabrication apparatus and semiconductor fabrication method
CN114682776A (en) * 2022-03-30 2022-07-01 西安航天发动机有限公司 Forming method of rod-shaped lattice heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179782A (en) * 2004-12-24 2006-07-06 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor substrate
JP4508859B2 (en) * 2004-12-24 2010-07-21 新光電気工業株式会社 Manufacturing method of semiconductor substrate
JP2014036973A (en) * 2012-08-13 2014-02-27 Qel 株式会社 Molten solder coating apparatus
WO2014080332A1 (en) 2012-11-20 2014-05-30 Aisin Takaoka Co., Ltd. Method of manufacturing thermoelectric module, and thermoelectric module
US9716218B2 (en) 2012-11-20 2017-07-25 Aisin Takaoka Co., Ltd. Method of manufacturing thermoelectric module, and thermoelectric module
CN102941387A (en) * 2012-12-07 2013-02-27 中国船舶重工集团公司第七一二研究所 Welding device and method for superconducting lines
CN102941387B (en) * 2012-12-07 2015-07-22 中国船舶重工集团公司第七一二研究所 Welding device and method for superconducting lines
CN107240638A (en) * 2016-03-29 2017-10-10 现代自动车株式会社 Device for manufacturing electrothermal module
US10553772B2 (en) 2016-03-29 2020-02-04 Hyundai Motor Company Apparatus for manufacturing thermoelectric module
CN107240638B (en) * 2016-03-29 2020-09-18 现代自动车株式会社 Device for producing thermoelectric modules
US10892240B2 (en) 2018-03-20 2021-01-12 Toshiba Memory Corporation Semiconductor fabrication apparatus and semiconductor fabrication method
CN114682776A (en) * 2022-03-30 2022-07-01 西安航天发动机有限公司 Forming method of rod-shaped lattice heat exchanger

Similar Documents

Publication Publication Date Title
US9269644B2 (en) Method for producing semiconductor device
US6274803B1 (en) Thermoelectric module with improved heat-transfer efficiency and method of manufacturing the same
US9761556B2 (en) Method of manufacturing electronic device
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
JPH07202063A (en) Ceramic circuit board
JP4979944B2 (en) Element bonding substrate, element bonding substrate and manufacturing method thereof
JP2008141027A (en) Bonding structure of thermoelectric conversion element and thermoelectric conversion module
JP2009200507A (en) Peltier element thermoelectric conversion module, method of manufacturing peltier element thermoelectric conversion module, and optical communication module
JP7215206B2 (en) Semiconductor device manufacturing method
JP2005217055A (en) Thermoelectric module manufacturing method
JP2004031697A (en) Thermoelectric module
JP4421528B2 (en) Solder mounting structure, manufacturing method thereof, and use thereof
JP2010165807A (en) Method of manufacturing insulating circuit board, insulating circuit board, and substrate for power module
EP3544068B1 (en) Method of production of thermoelectric micro-coolers
JP2001332773A (en) Multi-layer substrate for thermoelectric module and method of manufacturing the same, and thermoelectric module using multi-layer substrate
JP2006269572A (en) Thermoelectric conversion module, and method of manufacturing the same and circuit substrate
JP4363958B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP3840132B2 (en) Peltier device mounting circuit board
KR101388492B1 (en) Skeleton type thermoelectric module manufacture method and thermoelectric unit having skeleton type thermoelectric module and manufacture method thereof
JP5247531B2 (en) Thermoelectric conversion module
US20200279988A1 (en) Thermoelectric module
JP2007194495A (en) Method of manufacturing chip component
JP2004281930A (en) Method for producing thermoelectric conversion element
JP4121827B2 (en) Method for manufacturing module structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105