JPH06289183A - 原子炉炉内構造物の補修方法 - Google Patents

原子炉炉内構造物の補修方法

Info

Publication number
JPH06289183A
JPH06289183A JP5079254A JP7925493A JPH06289183A JP H06289183 A JPH06289183 A JP H06289183A JP 5079254 A JP5079254 A JP 5079254A JP 7925493 A JP7925493 A JP 7925493A JP H06289183 A JPH06289183 A JP H06289183A
Authority
JP
Japan
Prior art keywords
crack
plate material
welding
repairing
fillet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5079254A
Other languages
English (en)
Inventor
Keiichi Urashiro
慶一 浦城
Junya Kaneda
潤也 金田
Toshimi Matsumoto
俊美 松本
Tsutomu Konuma
勉 小沼
Yasuhisa Aono
泰久 青野
Masahiro Kobayashi
正宏 小林
Yasukata Tamai
康方 玉井
Tetsuya Nagata
徹也 永田
Takahiko Kato
隆彦 加藤
Eisaku Hayashi
英策 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5079254A priority Critical patent/JPH06289183A/ja
Publication of JPH06289183A publication Critical patent/JPH06289183A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

(57)【要約】 【目的】本発明の目的は、中性子照射を受けた原子炉内
構造物の溶接割れのない溶接補修方法を提供する。 【構成】中性子照射を受けた原子炉内構造物の欠陥部を
板材によって被い、その板材を構造物にスミ肉溶接する
際にその構造物の溶接個所を表面溶融処理を施す方法。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、原子力発電プラントの
供用機器の期間中における、原子炉圧力容器内部を構成
する構造物及び機器の補修方法に係り、特に中性子照射
を受けておりかつ亀裂状の欠陥の発生している構造物及
び機器に対し、補修後の割れの発生しない信頼性の高い
補修を可能にするための、板材をスミ肉溶接する補修方
法に関する。
【0002】
【従来の技術】原子炉稼働中に、原子炉圧力容器内部の
構造物及び機器は、高温高圧水等の環境において応力腐
食割れなどの経年的な亀裂状欠陥の発生が懸念されてい
る。この応力腐食割れは、材料自身の局部的な組成変化
などの劣化因子,溶接施工などで構造物に負荷されてい
る引張残留応力の応力因子、及び高温高圧水での腐食環
境因子の重畳によって発生し、また亀裂は進展する。こ
の応力腐食割れが上記構造物及び機器を貫通すると、プ
ラントの重大な事故につながる恐れがあり、割れ貫通を
防止する補修技術が求められている。
【0003】このような亀裂状欠陥を補修する方法とし
て、亀裂部を除去し、肉盛で除去部を充填する補修方法
や、亀裂部を含む領域に板材を被覆して板材の縁部と構
造物とをスミ肉溶接することにより該欠陥を腐食環境か
ら隔離して亀裂の進展を防止する補修方法が知られてい
る。
【0004】この従来技術による補修方法は、原子力発
電プラント供用期間中で中性子の照射を受けた材料に適
用すると、補修した部分の周辺部に新たな割れが発生す
ることを認識していない。そのため図3に示すように、
亀裂上の欠陥1の発生している中性子の照射を受けた構
造物2に対し、板材3を構造物2とスミ肉溶接するよう
な補修を行なうと、補修部分においてスミ肉溶接部5の
周囲の構造物側の熱影響部6が新たな亀裂状欠陥7の発
生部になってしまう恐れがあった。
【0005】
【発明が解決しようとする課題】本発明は、上記の従来
技術の補修方法の問題点を考慮し、中性子の照射を受け
た原子炉圧力容器内部を構成するステンレス鋼,Ni基
合金,低合金鋼製の構造物及び機器に発生した応力腐食
割れなどの亀裂状欠陥を補修する際、補修部に発生する
割れを防止でき、かつその後の原子炉の運転期間中に亀
裂状欠陥の進展を防止できる溶接補修方法を提供するこ
とを目的とする。
【0006】
【課題を解決するための手段】上記目的を達成するため
に、本発明では、原子力発電プラントの供用期間中にお
ける、原子炉圧力容器内部を構成するステンレス鋼,N
i基合金,低合金鋼製の0〜5.0×1027n/m2の中
性子照射を受けておりかつ亀裂状の欠陥の発生している
構造物及び機器に対し、亀裂状の欠陥の発生している部
分を含む領域に板材を被覆し、板材の縁部をスミ肉溶接
する補修方法において、板材を設置する前に構造物側の
溶接熱影響を受けると予測される領域に表面溶融処理を
施し、その後に板材の縁部をスミ肉溶接することにした
ものである。ここで、本発明では、表面溶融処理を施す
施工において、TIGアーク,プラズマアーク,レーザ
をエネルギー源とし、入熱量を1×101〜1×103
/mmの範囲に制御して表面溶融処理を施し、その後に板
材を設置し、板材の縁部をスミ肉溶接することにしたも
のである。あるいは表面溶融処理の代わりに、上記エネ
ルギー源によって構造物側の溶接熱影響を受けると予測
される領域に肉盛処理を施し、その後に板材を設置し、
板材の縁部をスミ肉溶接することにしたものである。
【0007】また、本発明は上記の原子炉圧力容器内部
を構成するステンレス鋼,Ni基合金,低合金鋼製の0
〜5.0×1027n/m2の中性子照射を受けておりかつ
亀裂状の欠陥の発生している構造物及び機器に対し、亀
裂状の欠陥の発生している部分を含む領域を切削あるい
は放電加工で除去した後、除去部壁面に表面溶融処理を
施すことを特徴とし、その後に肉盛によって除去部を充
填することにしたものである。ここで、本発明では、表
面溶融処理を施す施工において、TIGアーク,プラズ
マアーク,レーザをエネルギー源とし、入熱量を1×1
1〜1×103J/mmの範囲に制御して表面溶融処理を
施し、その後に肉盛によって除去部を充填することにし
たものである。
【0008】また、本発明は、上記スミ肉溶接において
板材と構造物との間に0.1〜1.0mmの厚さを有するス
リーブ材を挿入し、フィラーワイヤを用いずに入熱量を
1×101〜1×103J/mmの範囲に制御して板材と構
造物とを溶接させることにしたものである。
【0009】また、本発明は上記の一連の施工の各段
階、すなわち板材のスミ肉溶接方式においては表面溶融
処理を施す前の段階、あるいは表面溶融処理した後で板
材のスミ肉溶接する前の段階、あるいは板材のスミ肉溶
接施工した後の段階といった各段階,肉盛方式において
は亀裂部を除去する前の段階,亀裂を除去した後除去部
壁面に表面溶融を施す前の段階、あるいは表面溶融処理
した後で肉盛する前の段階、あるいは肉盛によって除去
部を充填した後の段階といった各段階において、一連の
段階のうちいずれかの段階または複数の段階で、表面溶
融部及びその近傍、あるいはスミ肉溶接部およびその近
傍、あるいは肉盛部およびその近傍に圧力を加える処理
を施すことにしたものである。ここで、本発明では、圧
力を加える手段として、構造物の施工当該部に対抗する
位置に水流噴射ノズルを設け、該ノズルからキャビティ
を内包する高速の噴射水流を当該部表面に衝突させるこ
とにより圧力を加えるか、あるいは、構造物の施工当該
部表面にガラス,セラミックス,金属いずれかよりなる
直径0.1〜10.0mmの複数個の球状物体を高速で複数
回衝突させることにより圧力を加えることにしたもので
ある。
【0010】さらに、本発明は、上記の各施工におい
て、表面溶融,スミ肉溶接,亀裂除去,肉盛,球状物体
の衝突施工のいずれかあるいは全ての施工の際、施工ト
ーチ周囲にワイヤーブラシカーテン,エアカーテン,高
速水流カーテンのいずれかあるいは複数の水シールドカ
ーテンを設け、カーテン内を高圧気体雰囲気に保持して
水排除することによって、一部あるいは全ての施工を水
中で実施するにしたものである。
【0011】
【作用】本発明の作用について詳述する。原子炉圧力容
器内部を構成するステンレス鋼,Ni基合金,低合金鋼
製の構造物及び機器において、供用期間中の原子炉内で
は材料は中性子の照射を受けた場合、材料構成元素の核
変換によりHeを内部に含有している。発明者らは、積
算的に1.0×1020n/m2以上の全中性子が照射され
た状態で生成Heが内包された上記合金製の材料に対
し、熱を与えて溶接施工した場合、溶融部周囲の溶接熱
影響部が高温に加熱され熱活性化によってHeの結晶粒
界への拡散が容易になり、かつ粒界に集まったHe気体
は集合してμm単位の大きさの気泡を形成し、そのため
粒界の強度が低下して、さらに溶接後の凝固収縮に伴う
引張応力が加わった際に非溶融熱影響部で粒界割れが発
生することを認識するに至った。これに関しては例えば
オーステナイト系ステンレス鋼に対し、Journal of Mat
erial Science Vol.26(1991),p2063−2070で報告されて
いる。同時に、発明者らは、上記溶接施工の溶融−凝固
部では、溶融中にHeが材料の外部に逃げたり、あるい
はHeが集合して気泡を形成しやすい局所的かつ連続的
な原子配列の大きな乱れである非溶融部における結晶粒
界とは異なり、Heが内包しても割れが発生しにくいこ
とを認識するに至った。これに関しては例えばオーステ
ナイト系ステンレス鋼に対し、Welding Journal Vol.67
(1988),p33−39で報告されている。
【0012】同時に、発明者らは、全中性子の照射量が
5.0×1027n/m2以下の状態の上記合金製の材料に
対し、TIGアーク,プラズマアーク,レーザのいずれ
かを熱エネルギー源とするような、入熱量を1×103
J/mm 以下に制御する溶融処理では、入熱量が小さい
ため高温保持時間が短く、非溶融熱影響部でのHeの拡
散が抑止されて溶融部のみならず周囲の熱影響部におい
ても割れは発生せず、かつ、上記の表面溶融内に大入熱
の溶接熱影響を受けても割れの発生しないことを発見
し、本発明に至った。
【0013】ここで本発明の目的である亀裂状欠陥が発
生した構造物の補修施工において、板材を被覆してスミ
肉溶接する補修方式では、板材と構造物とを密着させて
板材縁部側面と構造物表面の両面に接するような形でフ
ィラーワイヤーを供給しつつ熱エネルギーを投入し、フ
ィラーワイヤー及び板材縁部側面と構造物表面を溶融さ
せて溶接するので、構造物に加わる入熱量が局所的に1
×103J/mm 以上となる場合がある。このような場
合、本発明によれば、スミ肉溶接を実施する前に構造物
側の溶接熱影響を受ける部分に、請求項3に記載したT
IGアーク,プラズマアーク,レーザのいずれかをエネ
ルギー源とした1×103J/mm 以下の入熱量での表面
溶融処理を施すと、表面溶融部内のHeは除去されるあ
るいは低減する。かつ表面溶融部周囲の熱影響部でも割
れは発生しない。また、表面溶融の代わりに上記同様の
入熱条件で肉盛処理を施しても、肉盛部周囲の熱影響部
で割れは発生しない。
【0014】その後、板材を被覆して構造物とスミ肉溶
接する際、構造物の溶接熱影響部は既にHeを除去した
表面溶融部内にあるので、溶接熱影響部での割れは発生
しない。但し、スミ肉溶接時の溶接熱影響を完全に含む
領域を溶融させるだけの深さを得る表面溶融処理を施す
ためには1×101J/mm 以上の入熱量が必要であり、
本発明における表面溶融処理では、入熱量を1×101
〜1×103J/mmの範囲に制御する必要がある。ま
た、表面溶融の代わりに上記同様の小入熱で肉盛処理を
施し、肉盛部の上にスミ肉溶接を施しても、肉盛部はH
eが生成されていないので溶接熱影響を受けても割れは
発生しない。
【0015】また、亀裂上の欠陥を含む領域を切削ある
いは放電加工などで除去して除去部を肉盛により充填す
る方式においても、多数回の肉盛時に構造物に加わる入
熱量は局所的に1×103J/mm 以上となる場合があ
る。このような場合においても本発明によれば、肉盛を
実施する前に構造物側の肉盛による熱影響を受ける部分
に、上記と同様の表面溶融処理を施すことによって、肉
盛時の熱影響部での割れは発生しない。
【0016】また、発明者らは、板材と構造物との間に
0.1〜1.0mmの厚さを有するスリーブ材を挿入し、フ
ィラーワイヤを用いずに入熱量を1×101〜1×103
J/mmの範囲に制御して板材と構造物とを溶接させた場
合、構造物側の熱影響部での割れを防止できることを発
見し、請求項5を発明するに至った。本発明によれば、
上記のフィラーワイヤーを供給するスミ肉溶接の代わり
に、板材と構造物との間に0.1〜1.0mmの厚さを有す
るスリーブ材を挿入し、フィラ−ワイヤを用いずに入熱
量を1×101〜1×103J/mmの範囲に制御して板材
と構造物とを溶接させた場合、構造物側の熱影響部での
割れは発生しない。
【0017】さらに、発明者らは、上記生成Heを内包
している構造物表面に対し、請求項8に記載の水流噴射
ノズルからキャビティを内包する高速の噴射水流を当該
部表面に衝突させることによる圧力、あるいは請求項9
に記載のガラス,セラミックス,金属いずれかよりなる
直径0.1〜10.0mmの複数個の球状物体を高速で複数
回衝突させることによる圧力を加えた場合、次に述べる
2つの理由で、溶接や表面溶融処理のような溶融を伴う
入熱を加えたときの割れ感受性が低減することを発見
し、本発明に至った。一つは、上記圧力を加えた際、表
面に塑性加工で圧縮応力が残留することにより、入熱を
加えたときの溶融−冷却過程で生じる引張応力が相殺さ
れて、入熱施工時の引張応力が低減され、構造物の溶接
熱影響部の結晶粒界に働く引張応力が低減されるからで
ある。もう一つは、上記圧力を加えた際、圧力の加わっ
た構造物の結晶粒内部の塑性変形による転位密度が増大
することにより、入熱施工時の溶融部周囲の熱影響部に
おいて、Heが転位との相互作用により粒内に留まりや
すくなり、結晶粒界へ拡散するHe量が低減され、粒界
の脆化が低減されるからである。
【0018】従って、本発明によれば、上記の表面溶
融,スミ肉溶接,肉盛,スリーブ溶融といった溶融を伴
う入熱施工の前に上記手法による圧力を加える、すなわ
ち、各施工段階の間に上記手法による圧力を加えること
によって、入熱施工時の熱影響部における割れ感受性は
低減する。一連の施工の最後の段階に上記手法による圧
力を加えることは、補修部に圧縮応力を残留させること
になり、補修部後の応力腐食割れの防止に有効である。
【0019】さらに、本発明の背景である供用期間中の
原子炉内では、原子炉圧力容器内部を構成するステンレ
ス鋼,Ni基合金,低合金鋼製の構造物及び機器は中性
子照射により放射化し、γ線を発生している場合があ
る。本発明によれば、一連の補修施工の一部あるいは全
てを水中で実施することにより、水中でγ線は減衰し、
施工機器のγ線照射による劣化を防止できる。
【0020】
【実施例】以下に、実施例として本発明の具体的な施工
例を、板材の構造物試験片を用いた実験例及び原子力プ
ラント炉内構造物に適用する例で説明する。
【0021】(実施例1)図1は、本発明による、構造
物を表面溶融した後板材をスミ肉溶接して補修したとき
の試験片断面である。1.0×1020n/m2以上5.0
×1027n/m2以下の全中性子が照射された状態でか
つ亀裂上の欠陥1が存在しているSUS304ステンレス鋼製
の構造物2に対し、SUS316Lステンレス鋼製の板
材3を被覆する前に入熱量が2.5×102J/mmのTI
Gアークによって構造物2の表面に表面溶融部4を形成
し、その後板材3を被覆してSUS308L成分で直径
1mmのフィラーワイヤを供給しつつ入熱量が1.5×1
3J/mmのTIGアークによってスミ肉溶接したもの
である。この際、スミ肉溶接の溶融部5及びその周囲の
熱影響部6及び表面溶融部4及び構造物2には、当初の
欠陥1以外に新たな割れは発生しなかった。(b)は
(a)のA部の拡大図である。
【0022】図2は、図1における表面溶融部4を形成
する代わりにプラズマアークによる肉盛処理を施した時
の試験片断面である。図2(a)に示すように粉末8あ
るいは0.5mm のフィラーワイヤを供給する供給口9の
付いているノズル10からSUS308L成分の粉末あるいは
0.5mmのフィラーワイヤを供給しつつ、プラズマ発生
トーチ11より入熱量が6.0×102J/mmのプラズマ
アーク12を放電させることによって構造物2の表面に
表面肉盛部13を形成し、その後同図(b)に示すよう
に、板材3を被覆してSUS308L 成分で直径1mmのフィラ
ーワイヤを供給しつつ入熱量が1.5×103J/mmのT
IGアークによってスミ肉溶接したものである。この
際、スミ肉溶接の溶融部5及びその周囲の熱影響部6及
び表面肉盛部13及び構造物2には、当初の欠陥1以外
に新たな割れは発生しなかった。
【0023】(実施例2)図4は、構造物の割れ除去部
の壁面を表面溶融処理した後肉盛によって除去部を充填
した時の試験片断面の模式図である。1.0×1020
/m2以上の全中性子が照射された状態でかつ亀裂上の
欠陥1が存在しているSUS304ステンレス鋼製の構造物2
に対し、亀裂を含む領域を切削あるいは放電加工で除去
した後、除去部の壁面15に入熱量が2.5×102J/
mmのレーザによって壁面14の表面に表面溶融部4を形
成し、その後SUS308L 成分で直径1mmのフィラーワイヤ
を供給しつつ入熱量が1.7×103J/mmのTIGアー
クによって肉盛部15を形成したものである。この際、
肉盛部16及びその周囲の肉盛熱影響部16及び表面溶
融部4及び構造物2には、割れは発生しなかった。
(b)はC部拡大図である。 (実施例3)本発明を原子炉炉内構造物へ適用する一実
施例として、シュラウドに実施する例を説明する。図5
は、運転を停止して圧力容器上蓋を外し、燃料棒を取り
外した状態での、補修施工中の圧力容器17の内部の断
面図である。補修施工の前にシュラウド19の受けてい
る中性子照射線当量、及び亀裂上の欠陥の発生している
位置と欠陥部を被覆する領域の面積を測定しておく。補
修装置は、駆動系20,制御系21,伝送系22,シー
ルドガスボンベ23,シールドガスホース24,ロボッ
ト25,ヘッド26,モニター27,モニター伝送系2
8,先端モニタリングカメラ29から構成されており、
ヘッド26にはTIGアーク,プラズマアーク,YAG
レーザなどの入熱施工の際用いるフィラーワイヤ供給可
能なトーチ、及び補修板材を保持するロボットアームが
取り付けられるようになっている。まず亀裂上の欠陥の
発生している部分に補修板材をあてがうように設置し、
板材の縁部をふくむ領域を記憶させる。次に補修板材を
離した後、スミ肉溶接する部分を含む領域をTIGアー
ク,プラズマアーク,YAGレーザのいずれかで表面溶
融させる。この時の入熱量は1.0×101〜1.0×1
3J/mmの範囲に制御する。続いて再び補修板材を被
覆させて、板材の縁部とシュラウドとをスミ肉溶接させ
る。これら一連の施工は常に27〜29のモニター系で
監視する。最後にモニター系で補修施工部及びその周囲
に割れの発生していないことを確認して、補修施工を終
了させる。
【0024】上記一連の施工の各段階の間に本発明によ
る圧力を加える施工を施す場合は、上記ヘッド26に圧
力付与装置を組み込んで施工すればよい。
【0025】また、上記一連の施工を水中で実施する場
合は、圧力容器17内に炉水18を見たした状態で、ヘ
ッド26に本発明による水シールドカーテンを取付け、
カーテン内をシールドガスによって高圧気体雰囲気に保
持してヘッド26とシュラウド19との間の水を排除し
て上記補修施工を実施する。
【0026】
【発明の効果】本発明によれば、原子炉圧力容器内の中
性子照射を受けており、かつ亀裂上の欠陥が発生してい
る構造物及び機器に対しても亀裂進展を防止すると同時
に補修時の割れ発生を防止することが可能であり、原子
力プラントの応力腐食割れによる事故の防止や、プラン
トの健全性を長期化させるのに効果がある。
【図面の簡単な説明】
【図1】図1は、構造物を表面溶融した後板材をスミ肉
溶接して補修したときの試験片断面の模式図。
【図2】構造物の割れ除去部の壁面を表面溶融処理した
後肉盛によって除去部を充填した時の試験片断面の模式
図。
【図3】中性子照射を受けた構造物に対する従来技術で
の板材のスミ肉溶接方式で補修したときの試験片断面の
模式図。
【図4】他の実施例の溶接部の断面図。
【図5】本発明を原子炉圧力容器内部のシュラウドに適
用した場合の、補修施工中の圧力容器の断面図。
【符号の説明】
1…亀裂上の欠陥、2…中性子照射を受けた構造材、3
…補修用板材、4…表面溶融部、5…スミ肉溶接の溶融
部、6…スミ肉溶接の熱影響部、7…補修溶接時に新た
に発生した割れ、8…粉末、9…粉末供給口、10…ノ
ズル、11…プラズマ発生トーチ、12…プラズマアー
ク、13…表面肉盛部、14…欠陥除去部壁面、15…
肉盛部、16…肉盛による熱影響部、17…原子炉圧力
容器、18…炉水、19…シュラウド、20…駆動系、
21…制御系、22…伝送系、23…シールドガスボン
ベ、24…シールドガスホース、25…ロボット、26
…ヘッド、27…モニター、28…モニター伝送系、2
9…先端モニタリングカメラ。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小沼 勉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 青野 泰久 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小林 正宏 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 玉井 康方 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 永田 徹也 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 加藤 隆彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 林 英策 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】原子力発電プラントの供用期間中におけ
    る、原子炉圧力容器内部を構成するステンレス鋼,Ni
    基合金,低合金鋼製の0〜5.0×1027n/m2の中性
    子照射を受けておりかつ亀裂状の欠陥の発生している構
    造物及び機器に対し、亀裂状の欠陥の発生している部分
    を含む領域に板材を被覆し、板材の縁部をスミ肉溶接す
    る補修方法において、板材を被覆する前に構造物側の板
    材の縁部と溶接される部分を含む領域に表面溶融処理を
    施し、その後に板材を被覆して板材の縁部と構造物とを
    スミ肉溶接することを特徴とする原子炉内構造物の補修
    方法。
  2. 【請求項2】原子力発電プラントの供用期間中におけ
    る、原子炉圧力容器内部を構成するステンレス鋼,Ni
    基合金,低合金鋼製の0〜5.0×1027n/m2の中性
    子照射を受けておりかつ亀裂状の欠陥の発生している構
    造物及び機器に対し、亀裂状の欠陥の発生している部分
    を含む領域を切削あるいは放電加工で除去した後、除去
    部壁面に表面溶融処理を施すことを特徴とし、その後に
    肉盛によって除去部を充填することを特徴とする原子炉
    内構造物の補修方法。
  3. 【請求項3】請求項1又は2における表面溶融処理にお
    いて、TIGアーク,プラズマアーク,レーザのいずれ
    かを熱エネルギー源とし、入熱量を1×101〜1×1
    3J/mm の範囲に制御する表面溶融処理を施す構造物
    の補修方法。
  4. 【請求項4】請求項1又は2に記載において、表面溶融
    処理の代わりに、プラズマアーク,レーザ,TIGアー
    クを熱エネルギー源として入熱量を1×101〜1×1
    3J/mmの範囲に制御した肉盛処理を施す構造物の補
    修方法。
  5. 【請求項5】請求項1におけるスミ肉溶接において、板
    材と構造物との間にスリーブ材を挿入し、フィラーワイ
    ヤーを用いずに、TIGアーク,プラズマアーク,レー
    ザを熱エネルギー源として入熱量を1×101〜1×1
    3J/mmの範囲に制御して板材と構造物とを溶接させ
    る、構造物の補修方法。
  6. 【請求項6】請求項1における補修方法において、表面
    溶融処理あるいは肉盛処理を施す前の段階、あるいは表
    面溶融処理あるいは肉盛処理をした後スミ肉溶接する前
    の段階、あるいは板材のスミ肉溶接施工した後の段階の
    うち、いずれかの段階または複数の段階で、表面溶融部
    あるいは肉盛処理及びその近傍、あるいはスミ肉溶接部
    およびその近傍に圧力を加える処理を施すことを特徴と
    する、構造物の補修方法。
  7. 【請求項7】請求項2における補修方法において、亀裂
    状の欠陥の発生している部分を含む領域を切削あるいは
    放電加工で除去するまえの段階、あるいは亀裂部を除去
    した後表面溶融処理を施す前の段階、あるいは表面溶融
    処理した後肉盛する前の段階、あるいは肉盛によって除
    去部を充填した後の段階のうち、いずれかの段階または
    複数の段階で、表面溶融部及びその近傍、あるいは肉盛
    部およびその近傍に圧力を加える処理を施すことを特徴
    とする、構造物の補修方法。
  8. 【請求項8】請求項6又は7における圧力は、前記当該
    部に対抗する位置に水流噴射ノズルを設け、該ノズルか
    らキャビティを内包する高速の噴射水流を当該部表面に
    衝突させることにより加えることを特徴とする、請求項
    4記載の構造物の補修方法。
  9. 【請求項9】請求項6及び7における圧力は、前記当該
    部表面にガラス,セラミックス,金属いずれかよりなる
    直径0.1〜10.0mmの複数個の球状物体を高速で複数
    回衝突させることにより、加えるとともに請求項4に記
    載のエネルギーにて肉盛溶接する構造物の補修方法。
  10. 【請求項10】請求項1〜9のいずれかに記載した各施
    工において、前記表面溶融,スミ肉溶接,亀裂除去,肉
    盛,球状物体の衝突施工のいずれかあるいは全ての施工
    の際、施工トーチ周囲にワイヤーブラシカーテン,エア
    カーテン,高速水流カーテンのいずれかあるいは複数の
    水シールドカーテンを設け、カーテン内を高圧気体雰囲
    気に保持して水排除することによって、一部あるいは全
    ての施工を水中で実施することを特徴とする、構造物の
    補修方法。
JP5079254A 1993-04-06 1993-04-06 原子炉炉内構造物の補修方法 Pending JPH06289183A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5079254A JPH06289183A (ja) 1993-04-06 1993-04-06 原子炉炉内構造物の補修方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5079254A JPH06289183A (ja) 1993-04-06 1993-04-06 原子炉炉内構造物の補修方法

Publications (1)

Publication Number Publication Date
JPH06289183A true JPH06289183A (ja) 1994-10-18

Family

ID=13684724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5079254A Pending JPH06289183A (ja) 1993-04-06 1993-04-06 原子炉炉内構造物の補修方法

Country Status (1)

Country Link
JP (1) JPH06289183A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122018A3 (en) * 2000-02-07 2003-04-02 Hitachi, Ltd. Unterwater processing device and underwater processing method
JP2008036682A (ja) * 2006-08-08 2008-02-21 Toshiba Corp 原子炉構造物の補修方法
JP2008207234A (ja) * 2007-02-28 2008-09-11 Toshiba Corp 水中補修溶接方法
US7767318B2 (en) * 2006-11-21 2010-08-03 United Technologies Corporation Laser fillet welding
CN103769725A (zh) * 2014-01-24 2014-05-07 中国核工业二三建设有限公司 一种返修小型容器的焊缝背面的表面缺陷的方法
CN104148806A (zh) * 2013-05-14 2014-11-19 中国石油大学(华东) 一种高铬铸钢轧辊表层疲劳微裂纹激光快速修复方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122018A3 (en) * 2000-02-07 2003-04-02 Hitachi, Ltd. Unterwater processing device and underwater processing method
JP2008036682A (ja) * 2006-08-08 2008-02-21 Toshiba Corp 原子炉構造物の補修方法
US7767318B2 (en) * 2006-11-21 2010-08-03 United Technologies Corporation Laser fillet welding
JP2008207234A (ja) * 2007-02-28 2008-09-11 Toshiba Corp 水中補修溶接方法
CN104148806A (zh) * 2013-05-14 2014-11-19 中国石油大学(华东) 一种高铬铸钢轧辊表层疲劳微裂纹激光快速修复方法
CN103769725A (zh) * 2014-01-24 2014-05-07 中国核工业二三建设有限公司 一种返修小型容器的焊缝背面的表面缺陷的方法

Similar Documents

Publication Publication Date Title
EP1287936B1 (en) Repair method for structure
US6054672A (en) Laser welding superalloy articles
EP2373456B1 (en) Method of repairing a metallic artefact
JP3079902B2 (ja) 原子炉炉内構造物の溶接補修方法
CN105408056A (zh) 利用部件支撑的填料对基底的修复
JPH0775893A (ja) 構造物の補修方法および予防保全方法
JP2008055461A (ja) 原子力発電プラント構造材の溶接方法
JP2005326417A (ja) 沸騰水型原子炉における漏洩している細長い中空部材を補修する方法
JPH06289183A (ja) 原子炉炉内構造物の補修方法
Kong et al. High-rate laser metal deposition of Inconel 718 component using low heat-input approach
EP1383136B1 (en) Method of repairing leaking elongate hollow members in boiling water reactors
Yoda et al. Underwater laser beam welding for nuclear reactors
US10363631B2 (en) Neutron irradiated material repair
JP2003311463A (ja) 亀裂状欠陥の補修方法
JP2002066745A (ja) ガスタービン動翼の溶接方法
JP2002219585A (ja) 構造物とその補修方法
JP2000275384A (ja) 原子炉圧力容器の補修方法
JP2000230996A (ja) 原子炉構造物の補修方法
JPH10153682A (ja) 炉心シュラウドの交換方法
JP2001242280A (ja) 欠陥補修方法
JP2003066183A (ja) 原子炉構造物の補修方法
JP2001347392A (ja) 欠陥補修方法および欠陥補修装置
JPH0857637A (ja) 中性子照射を受けた部材の補修方法
JPH10339041A (ja) 原子炉炉内構造物の補修方法および補修装置
Pope et al. Industrial Application of Local Vacuum Electron Beam Welding for Nuclear Reactor Components