JPH06283447A - Vapor phase growth of compound semiconductor film - Google Patents

Vapor phase growth of compound semiconductor film

Info

Publication number
JPH06283447A
JPH06283447A JP7240493A JP7240493A JPH06283447A JP H06283447 A JPH06283447 A JP H06283447A JP 7240493 A JP7240493 A JP 7240493A JP 7240493 A JP7240493 A JP 7240493A JP H06283447 A JPH06283447 A JP H06283447A
Authority
JP
Japan
Prior art keywords
temperature
growth
low
growth temperature
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7240493A
Other languages
Japanese (ja)
Inventor
Eiji Ikeda
英治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP7240493A priority Critical patent/JPH06283447A/en
Publication of JPH06283447A publication Critical patent/JPH06283447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a device having a good crystalline property such as a surface condition and X-ray half-value width and an excellent characteristic. CONSTITUTION:A low temperature buffer layer is made to grow on a semiconductor substrate at a temperature of low temperature growth, a buffer layer is made to grow at a temperature of a prescribed a growth temperature higher than the low growth temperature, thermocycle anneling performing a temperature rise to a higher temperature than the growth temperature and a temperature fall to a lower temperature than the low temperature growth temperature is performed so as to make a middle layer to grow at a prescribed temperature exceeding the low growth temperature and under the high growth temperature. Further, thermocycle annealing is performed followed by growing an active layer at a higher temperature than the low growth temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、Si半導体にGaA
sなどの格子整合しない化合物半導体結晶の薄膜を気相
成長させる方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to Si semiconductors having GaA
The present invention relates to a method of vapor-depositing a thin film of a compound semiconductor crystal such as s that does not lattice match.

【0002】[0002]

【従来の技術】従来より、比較的安価なSiウェハ上
に、GaAsなどの化合物半導体薄膜を形成することに
より、光デバイスなどのGaAsデバイスを安価に作成
することが研究されている。このGaAsデバイスは、
Siデバイスとの集積化も可能であり、特に高効率太陽
電池に有望である。
2. Description of the Related Art Conventionally, research has been conducted on forming a GaAs device such as an optical device at a low cost by forming a compound semiconductor thin film such as GaAs on a relatively inexpensive Si wafer. This GaAs device
It can be integrated with Si devices, and is particularly promising for high-efficiency solar cells.

【0003】Si基板とGaAsなどの化合物半導体薄
膜は、格子定数や熱膨張係数などが大きく異なるため、
成長した薄膜の転位密度(EPD)が高い(107 〜1
8cm-2)、あるいは表面状態が悪いなど結晶性が充
分でない。そこで、薄膜の特性を向上させるための成長
方法として、二段階成長法や熱サイクルアニール法が行
われている。
Since the Si substrate and the compound semiconductor thin film such as GaAs have greatly different lattice constants and thermal expansion coefficients,
The dislocation density (EPD) of the grown thin film is high (10 7 -1
0 8 cm -2 ), or the crystallinity is not sufficient due to poor surface condition. Therefore, as a growth method for improving the characteristics of the thin film, a two-step growth method or a thermal cycle annealing method is used.

【0004】これら二段階成長法と熱サイクルアニール
法を組み合わせて、Si基板上にGaAsを成長させる
際の基板温度プロセスを図3に示す。まず、Si基板を
水素中で900℃以上に加熱し、Si基板表面の酸化膜
を除去する(a)。次に、基板温度を300〜500℃
まで下げ、GaAs低温バッファ層を5〜50nm成長
させる(b)。
FIG. 3 shows a substrate temperature process for growing GaAs on a Si substrate by combining the two-step growth method and the thermal cycle annealing method. First, the Si substrate is heated to 900 ° C. or higher in hydrogen to remove the oxide film on the surface of the Si substrate (a). Next, the substrate temperature is set to 300 to 500 ° C.
And the GaAs low temperature buffer layer is grown to 5 to 50 nm (b).

【0005】さらに、550〜800℃まで基板温度を
上げ、GaAsバッファ層を1μm成長させる(c)。
基板温度を850〜900℃まで上げた後、300℃以
下まで下げる工程を数回(1〜10回)繰り返す、いわ
ゆる熱サイクルアニールを行う(d)。最後に、プロセ
スcと同様に、基板温度を550〜800℃にし、デバ
イスの能動領域となるGaAs層を数μm成長させる。
Further, the substrate temperature is raised to 550 to 800 ° C. and the GaAs buffer layer is grown to 1 μm (c).
After raising the substrate temperature to 850 to 900 ° C., the step of lowering it to 300 ° C. or lower is repeated several times (1 to 10 times), so-called thermal cycle annealing is performed (d). Finally, as in the process c, the substrate temperature is set to 550 to 800 ° C., and the GaAs layer serving as the active region of the device is grown by several μm.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
成長方法では、X線半値幅などの結晶性が充分でなく、
特に薄膜の表面状態が粗いため、微細なデバイスを作成
することができないという問題があった。
However, in the conventional growth method, the crystallinity such as X-ray half width is not sufficient,
In particular, since the surface state of the thin film is rough, there is a problem that a fine device cannot be produced.

【0007】そこで、この発明は、このような従来の問
題を解決するためになされたものであり、その目的とす
るところは、表面状態やX線半値幅などの結晶性が良好
で、優れた特性のデバイスを作成することができる化合
物半導体薄膜の気相成長方法を提供することにある。
Therefore, the present invention has been made in order to solve such a conventional problem, and an object of the present invention is to obtain excellent crystallinity such as surface condition and X-ray full width at half maximum. It is an object of the present invention to provide a vapor phase growth method of a compound semiconductor thin film capable of producing a device having characteristics.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、半導体基板に、該半導体基板と格子整
合しない化合物半導体薄膜を気相成長させる方法におい
て、前記半導体基板上に所定の低温成長温度により低温
バッファ層を成長させ、前記低温成長温度よりも高温の
所定の高温成長温度によりバッファ層を成長させ、前記
高温成長温度よりも高温への昇温と前記低温成長温度よ
りも低温への降温を行う熱サイクルアニールを行い、前
記低温成長温度以上あるいは高温成長温度以下で中間層
を成長させ、さらに前記熱サイクルアニールを再度行っ
た後、前記低温成長温度よりも高温で能動層を成長させ
ることを要旨とする。
In order to achieve the above object, the present invention provides a method of vapor-depositing a compound semiconductor thin film which is not lattice-matched with a semiconductor substrate on a semiconductor substrate by vapor deposition at a predetermined low temperature. A low temperature buffer layer is grown at a growth temperature, a buffer layer is grown at a predetermined high temperature growth temperature that is higher than the low temperature growth temperature, a temperature rise to a temperature higher than the high temperature growth temperature and a temperature lower than the low temperature growth temperature. Thermal cycle annealing is performed to lower the temperature, the intermediate layer is grown at the low temperature growth temperature or higher or the high temperature growth temperature or lower, and the thermal cycle annealing is performed again, and then the active layer is grown at a temperature higher than the low temperature growth temperature. The main point is to do.

【0009】[0009]

【作用】上記手段により、この発明は、能動層を成長さ
せる直前の熱サイクルアニール中に、低温成長温度以上
あるいは高温成長温度以下で中間層を成長させているの
で、非晶質的な中間層をアニールすることによって、表
面の粗さ等の欠陥が能動層に伝搬することを防ぎ、特性
に優れた能動層を得ることができる。
According to the above means, according to the present invention, the intermediate layer is grown at the low temperature growth temperature or higher temperature or the high temperature growth temperature or lower during the thermal cycle annealing immediately before growing the active layer. Annealing makes it possible to prevent defects such as surface roughness from propagating to the active layer and obtain an active layer having excellent characteristics.

【0010】[0010]

【実施例】以下、図面を参照しながらこの発明の実施例
を説明する。図1に、この発明の成長方法を用いてSi
基板上にGaAsをエピタキシャル成長させるプロセス
を示す。今回の実施例で用いた原料ガスはTEG(トリ
エチルガリウム)とAsH3 、キャリアガスはH2 、ま
た圧力は75Torrである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows that the growth method of the present invention is used to produce Si.
A process for epitaxially growing GaAs on a substrate is shown. The raw material gas used in this example is TEG (triethylgallium) and AsH 3 , the carrier gas is H 2 , and the pressure is 75 Torr.

【0011】まず、Si基板を水素中で10分間、95
0℃(900℃以上でも良い)に加熱し、高温アニール
を行ってSi基板表面の酸化膜を除去する(a)。次
に、基板温度を400℃(300〜500℃でも良い)
まで下げ、GaAs低温バッファ層を10nm(5〜5
0nmでも良い)成長させる(b)。さらに、700℃
(550〜800℃でも良い)まで基板温度を上げ、G
aAsバッファ層を1.5μm(1μm〜3μmでも良
い)成長させる(c)。
First, the Si substrate was exposed to hydrogen in hydrogen for 10 minutes at 95.
The oxide film on the surface of the Si substrate is removed by heating at 0 ° C. (it may be 900 ° C. or higher) and performing high temperature annealing (a). Next, the substrate temperature is set to 400 ° C (300 to 500 ° C may be used).
Down to 10 nm (5-5
It may be grown to 0 nm) (b). Furthermore, 700 ° C
Raise the substrate temperature to (550 to 800 ° C)
An aAs buffer layer is grown to 1.5 μm (1 μm to 3 μm may be used) (c).

【0012】基板温度を850℃まで上げた後、300
℃と850℃の熱サイクルアニールを1サイクル繰り返
す(d)。なお、この熱サイクルアニールでは300℃
以下と850℃以上の繰り返しでも良い。この後、基板
温度を500℃の低温とし、中間層を0.5μm成長さ
せる(e)。なお、この時の基板温度は、低温バッファ
層成長温度以上、かつ能動層やバッファ層成長温度以下
であれば良く、また膜厚は0.2〜1μmでも良い。
After raising the substrate temperature to 850 ° C., 300
One cycle of thermal cycle annealing at 80 ° C. and 850 ° C. is repeated (d). In this thermal cycle annealing, 300 ° C
The following may be repeated at 850 ° C. or higher. After that, the substrate temperature is set to a low temperature of 500 ° C. and the intermediate layer is grown to 0.5 μm (e). The substrate temperature at this time may be at least the low temperature buffer layer growth temperature and at most the active layer or buffer layer growth temperature, and the film thickness may be 0.2 to 1 μm.

【0013】プロセスdと同様に、再び300℃と85
0℃の熱サイクルアニールを1サイクル繰り返す
(f)。最後に、700℃(550〜800℃でも良
い)に基板温度を調節し、2.5μm(数μmでも良
い)の能動層を成長させる(g)。
As in process d, again at 300 ° C. and 85
One cycle of 0 ° C. thermal cycle annealing is repeated (f). Finally, the substrate temperature is adjusted to 700 ° C. (may be 550 to 800 ° C.), and an active layer of 2.5 μm (may be several μm) is grown (g).

【0014】図2に、中間層を成長させない従来の方法
による評価結果(比較例)、上述の実施例による評価結
果(実施例1)、中間層の成長時の基板温度を能動層や
バッファ層の成長時の温度と同じ温度(700℃)と
し、それ以外は上述の実施例と同様に成長させたときの
評価結果(実施例2)を示す。
FIG. 2 shows an evaluation result by a conventional method in which an intermediate layer is not grown (comparative example), an evaluation result by the above-described example (Example 1), the substrate temperature during the growth of the intermediate layer, the active layer and the buffer layer. The evaluation result (Example 2) when the temperature is the same as that at the time of growing (700 ° C.) and the same as the above-described Example except for the above is shown.

【0015】この表から分かるように、表面の粗さは実
施例による結果が最も良く、700℃で中間層を成長さ
せた場合においても、従来に比べて良い結果が得られ
た。また、X線半値幅については、700℃で中間層を
成長させた場合が最も良く、実施例においても従来に比
べて良い結果が得られた。このことから、中間層の成長
時の基板温度は、低温バッファ層成長温度以上、かつ能
動層やバッファ層成長温度以下であっても効果が期待で
きる。
As can be seen from this table, the surface roughness is the best in the example, and even when the intermediate layer is grown at 700 ° C., a good result is obtained as compared with the conventional case. Regarding the X-ray full width at half maximum, the case where the intermediate layer was grown at 700 ° C. was the best, and in the example as well, good results were obtained as compared with the conventional case. From this, the effect can be expected even if the substrate temperature during the growth of the intermediate layer is equal to or higher than the low temperature buffer layer growth temperature and equal to or lower than the active layer or buffer layer growth temperature.

【0016】[0016]

【発明の効果】以上のように、この発明の化合物半導体
薄膜の気相成長方法によれば、能動層を成長させる前の
熱サイクルアニール中に、低温成長温度以上かつ高温成
長温度以下の所定の温度で中間層を成長させているの
で、表面状態やX線半値幅などの結晶性が良好であり、
優れた特性のデバイスを作成することができる。
As described above, according to the vapor phase growth method for a compound semiconductor thin film of the present invention, a predetermined temperature above the low temperature growth temperature and below the high temperature growth temperature is set during the thermal cycle annealing before growing the active layer. Since the intermediate layer is grown at a temperature, the crystallinity such as surface condition and X-ray half width is good,
A device with excellent characteristics can be created.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明における基板温度プロセスの一例を示
す図である。
FIG. 1 is a diagram showing an example of a substrate temperature process in the present invention.

【図2】従来の方法による評価結果と、実施例による評
価結果とを比較した表である。
FIG. 2 is a table comparing the evaluation results of the conventional method and the evaluation results of the examples.

【図3】従来の方法における基板温度プロセスの一例を
示す図である。
FIG. 3 is a diagram showing an example of a substrate temperature process in a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に、該半導体基板と格子整合
しない化合物半導体薄膜を気相成長させる方法におい
て、 前記半導体基板上に所定の低温成長温度により低温バッ
ファ層を成長させ、 前記低温成長温度よりも高温の所定の高温成長温度によ
りバッファ層を成長させ、 前記高温成長温度よりも高温への昇温と前記低温成長温
度よりも低温への降温を行う熱サイクルアニールを行
い、 前記低温成長温度以上かつ高温成長温度以下の所定の温
度で中間層を成長させ、 さらに前記熱サイクルアニールを行った後、前記低温成
長温度よりも高温で能動層を成長させることを特徴とす
る化合物半導体薄膜の気相成長方法。
1. A method of vapor-depositing a compound semiconductor thin film which is not lattice-matched to a semiconductor substrate on a semiconductor substrate, wherein a low-temperature buffer layer is grown on the semiconductor substrate at a predetermined low-temperature growth temperature, and the low-temperature growth temperature is higher than the low-temperature growth temperature. A buffer layer is grown at a predetermined high-temperature growth temperature of high temperature, and thermal cycle annealing is performed to raise the temperature to a temperature higher than the high-temperature growth temperature and to lower the temperature to a temperature lower than the low-temperature growth temperature, And growing the intermediate layer at a predetermined temperature not higher than the high temperature growth temperature, further performing the thermal cycle annealing, and then growing the active layer at a temperature higher than the low temperature growth temperature. How to grow.
JP7240493A 1993-03-30 1993-03-30 Vapor phase growth of compound semiconductor film Pending JPH06283447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7240493A JPH06283447A (en) 1993-03-30 1993-03-30 Vapor phase growth of compound semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7240493A JPH06283447A (en) 1993-03-30 1993-03-30 Vapor phase growth of compound semiconductor film

Publications (1)

Publication Number Publication Date
JPH06283447A true JPH06283447A (en) 1994-10-07

Family

ID=13488318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7240493A Pending JPH06283447A (en) 1993-03-30 1993-03-30 Vapor phase growth of compound semiconductor film

Country Status (1)

Country Link
JP (1) JPH06283447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199375A (en) * 2009-02-26 2010-09-09 Pacific Speed Ltd Compound semiconductor epitaxial wafer and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199375A (en) * 2009-02-26 2010-09-09 Pacific Speed Ltd Compound semiconductor epitaxial wafer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4177084A (en) Method for producing a low defect layer of silicon-on-sapphire wafer
JPH03160714A (en) Semiconductor device and manufacture thereof
JPH04198095A (en) Method for growing thin film of compound semiconductor
JPH0236059B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
US5438951A (en) Method of growing compound semiconductor on silicon wafer
JPH06283447A (en) Vapor phase growth of compound semiconductor film
JPS6170715A (en) Growing method of compound semiconductor
JPH0722312A (en) Method for manufacturing strain semiconductor film
JP2687445B2 (en) Heteroepitaxial growth method
JP3078927B2 (en) Method for growing compound semiconductor thin film
JPH0645249A (en) Growth method of gaas layer
JPH04186824A (en) Semiconductor substrate and manufacture thereof
JP2522428B2 (en) Method for crystal growth of InP layer on GaAs substrate
JP3107646U (en) Compound semiconductor epitaxial wafer
JP2719868B2 (en) Semiconductor substrate and method of manufacturing the same
JPH0256952A (en) Method of growing caf2 film
JPH0536605A (en) Manufacture of compound semiconductor substrate
JP2696928B2 (en) Heteroepitaxial growth method
JPS63137412A (en) Manufacture of semiconductor substrate
JPH09106949A (en) Compound semiconductor substrate and manufacture thereof
JP2790492B2 (en) Semiconductor thin film growth method
JPH04318922A (en) Growth method for compound semiconductor crystal
JPH05283336A (en) Formation of compound semiconductor layer
JPH01184815A (en) Semiconductor wafer and manufacture thereof
JPH0222812A (en) Method of growing compound semiconductor layer