JPH05283336A - Formation of compound semiconductor layer - Google Patents

Formation of compound semiconductor layer

Info

Publication number
JPH05283336A
JPH05283336A JP7482592A JP7482592A JPH05283336A JP H05283336 A JPH05283336 A JP H05283336A JP 7482592 A JP7482592 A JP 7482592A JP 7482592 A JP7482592 A JP 7482592A JP H05283336 A JPH05283336 A JP H05283336A
Authority
JP
Japan
Prior art keywords
group
buffer layer
layer
low temperature
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7482592A
Other languages
Japanese (ja)
Inventor
Kazuo Mori
一男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7482592A priority Critical patent/JPH05283336A/en
Publication of JPH05283336A publication Critical patent/JPH05283336A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a group III-V semiconductor epitaxial layer of high quality and good surface flatness on a single crystal of non-polar or different lattice constant. CONSTITUTION:An Al layer 2 of one atomic layer is formed on an Si substrate 1 at a low temperature of 400 deg.C or below and then P is supplied successively. The processes are repeated to form an Al P low temperature buffer layer 3. A GaP low temperature buffer layer 4, an AlAs low temperature buffer layer 5 and a GaAs low temperature buffer layer 6 are made to grow one by one thereon by a similar alternate supply method. A temperature is made to rise while supplying As and a Gaps buffer layer 8 is formed by an ordinary simultaneous supply method. Then, a temperature is lowered and an InAlAs low temperature buffer layer 9 and an InP low temperature buffer layer 10 are made to grow one by one by the alternate supply method. Thereafter, a temperature is made to rise while supplying P and an InP layer 11 is formed by the simultaneous supply method. Since two dimensional growth from an initial stage can be thereby acquired even on a single crystal of non-polar or different lattice constant, interface defective density can be reduced and dislocation due to thermal strain can be restrained from rising again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無極性または格子定数の
異なる単結晶上へ高品質かつ表面平坦性に優れた3−5
族半導体エピタキシャル層を形成する3−5族化合物半
導体層の形成技術に関するものである。
INDUSTRIAL APPLICABILITY The present invention provides high quality and excellent surface flatness on non-polar or single crystals having different lattice constants.
The present invention relates to a technique for forming a Group 3-5 compound semiconductor layer for forming a Group semiconductor epitaxial layer.

【0002】[0002]

【従来の技術】近年、無極性または格子定数の異なる結
晶基板上へのヘテロエピタキシャル成長、中でもSiに
代表される4族半導体単結晶基板上にGaAsに代表さ
れる3−5族化合物半導体単結晶層を成長する試みが活
発に行なわれている。これは、このような構造が形成で
きると、3−5族化合物半導体高機能素子を安価なSi
基板上に作製でき、またSiの高い熱伝導率によって光
素子等の性能向上が期待できるためである。さらにSi
超高集積回路と3−5族化合物半導体超高速素子や光素
子を同一基板上に形成できれば、新しい高機能素子の開
発が予測されるからである。
2. Description of the Related Art In recent years, heteroepitaxial growth on a crystal substrate having a non-polarity or a different lattice constant, in particular, a Group 3-5 compound semiconductor single crystal layer typified by GaAs on a Group 4 semiconductor single crystal substrate typified by Si. There are many active attempts to grow. This is because if such a structure can be formed, the group 3-5 compound semiconductor high-performance element can be manufactured with inexpensive Si.
This is because it can be fabricated on a substrate, and the high thermal conductivity of Si can be expected to improve the performance of optical devices and the like. Furthermore Si
This is because if a super high-integrated circuit and a 3-5 group compound semiconductor ultra high-speed device or an optical device can be formed on the same substrate, the development of a new high-performance device is expected.

【0003】以下、主としてSi単結晶基板上への3−
5族化合物半導体単結晶の成長を例として説明する。3
−5族化合物半導体は3族と5族の2種類の元素から成
る有極性結晶であるのに対し、4族に属するSiは単一
元素から成る無極性結晶である。従って、通常用いられ
る(100)面方位を有するSi基板上に3−5族化合
物半導体薄膜をエピタキシャル成長させようとする場
合、3族と5族の配列の位相がずれ極性が反転した領
域、いわゆるアンチ・フェイズ・ドメインができやす
い。
In the following, mainly, on a Si single crystal substrate,
The growth of a Group 5 compound semiconductor single crystal will be described as an example. Three
The group-5 compound semiconductor is a polar crystal composed of two kinds of elements of groups 3 and 5, whereas Si belonging to the group 4 is a nonpolar crystal composed of a single element. Therefore, when attempting to epitaxially grow a group 3-5 compound semiconductor thin film on a Si substrate having a (100) plane orientation that is commonly used, a region where the arrangement of the groups 3 and 5 is out of phase and the polarity is reversed, that is, the so-called anti・ It is easy to create a phase domain.

【0004】この問題を解決したのが雑誌「ジャパニー
ズ・ジャーナル・オブ・アプライド・フィジクス(Jp
n.J.Appl.Phys.)」第24巻第6号(1
985)の第L391−393頁に説明されている「二
段階成長法」呼ばれる方法である。すなわち、(10
0)から<011>方向にoffしたSi基板を用い、
450℃以下の低温でまず200オングストローム程度
の微細な多結晶、もしくは非晶質状のGaAsバッファ
層を推積した後、Si基板の温度を通常の成長温度、上
記文献の場合は600℃としてGaAs単結晶薄膜を成
長させる方法である。この方法によってシングル・ドメ
イン単結晶薄膜を確実に得ることができるようになっ
た。微細な多結晶もしくは非晶質状のGaAs薄膜は温
度を600℃に昇温する間にアニールされて単結晶化す
る。上記文献の結果は有機金属気相成長法(MOCVD
法)によるものであったが、以後分子線エピタキシャル
成長法(MBE法)でも同様に有効であることが確認さ
れた。
The problem was solved by the magazine "Japanese Journal of Applied Physics (Jp.
n. J. Appl. Phys. ) ”Vol. 24, No. 6 (1
985), page L391-393, referred to as "two-step growth method". That is, (10
0) to the <011> direction off the Si substrate,
After depositing a fine polycrystalline or amorphous GaAs buffer layer of about 200 Å at a low temperature of 450 ° C. or lower, the temperature of the Si substrate is set to a normal growth temperature, 600 ° C. in the case of the above literature, and GaAs is set. This is a method of growing a single crystal thin film. By this method, a single domain single crystal thin film can be surely obtained. The fine polycrystalline or amorphous GaAs thin film is annealed while raising the temperature to 600 ° C. to be a single crystal. The results of the above-mentioned documents are based on metal organic chemical vapor deposition (MOCVD).
However, it was confirmed that the molecular beam epitaxial growth method (MBE method) is also effective.

【0005】二段階成長法における低温バッファ層は島
状成長をしているが、島が十分小さくそれぞれ接してい
れば後のアニールで優勢方位への並び替えが起こり、シ
ングル・ドメイン化すると考えられている。または成長
中に優勢方位のみが残ってシングル・ジメイン化すると
も考えられるが、この場合でも高温アニールは必要とな
る。これは低温で成長したバッファ層が多くの欠陥を含
むため、200オングストローム程度の薄いうちにアニ
ールして結晶性を回復させる必要があるためである。
The low-temperature buffer layer in the two-step growth method grows in an island shape, but if the islands are sufficiently small and are in contact with each other, rearrangement to the predominant azimuth occurs in subsequent annealing, and it is considered that a single domain is formed. ing. Alternatively, it is considered that only the dominant orientation remains during the growth, resulting in single-dimerization, but high-temperature annealing is necessary even in this case. This is because the buffer layer grown at a low temperature contains many defects, and it is necessary to anneal it while it is as thin as about 200 Å to recover the crystallinity.

【0006】ところで半導体薄膜の素子応用の観点から
はシングル・ドメイン化とともに結晶品質とさらに表面
平坦性の向上が重要である。しかし通常Si基板上に3
−5族化合物半導体を二段階成長すると、Siとの界面
には基板と成長層との格子不整合から予想されるよリは
るかに多くの転位や積層欠陥が発生し、さらにその一部
は容易に上層まで伸びて貫通転位となる。転位や積層欠
陥等の多くは成長初期の島状成長において島と島が合体
する際に発生すると考えられ、二段階成長法で成長した
GaAs層の転位密度は数μm厚の成長表面で約108
cm- 2 にも達する。また二段階成長法の場合、成長初
期の島状成長のために一般に平坦性が悪い。バッファ層
の成長をより低温で行なえば島が小さく密度も高くなる
ため平坦性は向上するが、しかし低温ほど原子のマイグ
レーションが不足するため結晶品質はより悪化する。結
晶性回復のためのアニールは膜厚が十分薄いうちにする
必要があるが、しかしこのアニールをしすぎると固相成
長によって表面に大きな凹凸が生じる。
From the viewpoint of device application of the semiconductor thin film, it is important to improve the crystal quality and the surface flatness together with the single domain. But usually 3 on Si substrate
When a Group-5 compound semiconductor is grown in two steps, much more dislocations and stacking faults are generated at the interface with Si than expected due to the lattice mismatch between the substrate and the growth layer. To the upper layer and become threading dislocations. Most dislocations, stacking faults, etc. are thought to occur when islands are united in the island-shaped growth in the initial stage of growth, and the dislocation density of the GaAs layer grown by the two-step growth method is about 10 μm on the growth surface of several μm thick. 8
cm - also reaches 2. Also, in the case of the two-step growth method, the flatness is generally poor due to the island-shaped growth in the initial stage of growth. If the growth of the buffer layer is carried out at a lower temperature, the flatness will be improved because the islands will be smaller and the density will be higher, but the lower the temperature, the less the migration of atoms and the worse the crystal quality. The annealing for recovering the crystallinity needs to be performed while the film thickness is sufficiently thin, but if this annealing is performed too much, solid-phase growth causes large irregularities on the surface.

【0007】その後、貫通転位を減らすために提案され
たのが歪超格子中間層の挿入によって転位を面内方向に
曲げる方法や熱サイクルアニール法で、これらによって
約106 cm- 2 まで転位密度は急速に改善された(雑
誌「アプライド・フィジクス・レター(Appl.Ph
ys.Lett.)」第54巻第1号(1989年)の
第24−26頁)。しかしながらこれらの方法では、約
106 cm- 2 の転位密度を大きな壁としてその後は進
展が見られない状態にある。この原因としてSi基板と
3−5族化合物半導体との熱膨張係数差の問題が最近指
摘された(雑誌「アプライド・フィジクス・レター(A
ppl.Phys.Lett.)」第56巻第22号
(1990年)の第2225−2227頁)。即ち熱サ
イクルアニールの導入などによって成長温度(650
℃)においては105 cm- 2 以下まで転位密度は減少
しているが、成長後の冷却中(転位の動きが凍結される
450℃程度(GaAs)以下まで)に熱膨張係数差に
よるストレスによって106 cm- 2 台の転位が導入さ
れるというものである。これはSi基板との界面付近に
多数残留する転位が熱歪によって上昇してくるためと考
えられている。成長中に上昇してくる転位に対しては、
これを横方向に曲げて上層部への到達を防ぐ目的で一般
に歪超格子中間層に挿入され大きな効果を上げている。
しかし熱歪によって上昇してくる転位に対しては、歪超
格子中間層の挿入効果が十分に得られないという問題が
ある。さらにこの様な問題はSiとの格子定数差が8%
と大きいSi上のInP成長でより顕著であり、転位密
度は約107 cm- 2 が壁となっていた(雑誌「ジャー
ナル・オブ・クリスタル・グロース(J.Crysta
lGrowth)」第99巻(1990年)の第365
−370頁)。
[0007] Then, in the method and thermal cycle annealing bending the dislocations in-plane direction by the insertion of the distortion super lattice intermediate layer was proposed to reduce the threading dislocations, these by about 10 6 cm - up to 2 dislocation density Was rapidly improved (magazine "Applied Physics Letter (Appl. Ph.
ys. Lett. ) ”Vol. 54, No. 1 (1989), pp. 24-26). However, in these methods, from about 10 6 cm - then the 2 dislocation density as a large wall is in a state not seen progress. As a cause of this, a problem of a difference in thermal expansion coefficient between the Si substrate and the group 3-5 compound semiconductor has recently been pointed out (Journal "Applied Physics Letter (A
ppl. Phys. Lett. ), Vol. 56, No. 22 (1990), pages 2225-2227). That is, the growth temperature (650
10 5 cm in ° C.) - dislocation density up to 2 or less is reduced, but the stress due to thermal expansion coefficient difference (450 ° C. about the movement of dislocations is frozen (GaAs) in the after growth cooled to below) 10 6 cm - 2 units dislocations is that is introduced. It is considered that this is because many dislocations remaining near the interface with the Si substrate rise due to thermal strain. For dislocations that rise during growth,
It is generally inserted in a strained superlattice intermediate layer for the purpose of preventing it from reaching the upper layer by bending it in the lateral direction, and a great effect is obtained.
However, there is a problem that the effect of inserting the strained superlattice intermediate layer cannot be sufficiently obtained with respect to dislocations that rise due to thermal strain. Furthermore, such a problem is that the lattice constant difference from Si is 8%.
And is more pronounced in InP growth on large Si, the dislocation density of about 10 7 cm - 2 has been a wall (the magazine "Journal of Crystal Growth (J.Crysta
lGrowth) ", Volume 99 (1990), 365
-370 page).

【0008】熱歪の問題を解決するための一つの方法と
しては成長初期の島状成長を回避して層状成長を実現
し、Si基板との界面付近に多数残留する転位自体を減
らすことが考えられる。例えば雑誌「ジャパニーズ・ジ
ャーナル・オブ・アプライド・フィジクス(Jpn.
J.Appl.Phys.)」第29巻第12号(19
90)の第L2457−2459頁に説明されているよ
うに500℃でトリメチルアルミニウム(TMA)とア
ルシン(AsH3 )を交互に供給する原子層エピタキシ
ャル成長法(ALE法)でAlAs層を成長し、かなり
初期からの層状成長と平坦性の改善が得られている。
As one method for solving the problem of thermal strain, it is considered to avoid island-shaped growth in the initial stage of growth to realize layered growth and reduce many dislocations themselves remaining near the interface with the Si substrate. Be done. For example, the magazine “Japanese Journal of Applied Physics (Jpn.
J. Appl. Phys. ) "Vol. 29, No. 12 (19
90) L2457-2459, the AlAs layer is grown at 500 ° C. by the atomic layer epitaxial growth method (ALE method) alternately supplying trimethylaluminum (TMA) and arsine (AsH 3 ). Layered growth and improved flatness have been obtained from the outset.

【0009】一方、熱膨張係数差の問題を根本的に回避
する試みとして、3族原料と5族原料とを低温で交互に
供給して直接単結晶膜を成長する方法がある。たとえば
雑誌「ジャパニーズ・ジャーナル・オブ・アプライド・
フィジクス(Jpn.J.Appl.Phys.)」第
30巻第4B号(1991年)の第L668−671頁
に説明されている高真空中でGa原子とAs原子を交互
に供給するマイグレーション・エンハンスト・エピタキ
シャル成長法(MEE法)では、途中580℃でのアニ
ールを除きすべて300℃の低温でGaAsの成長を行
っている。歪超格子中間層を導入することで転位密度1
6 cm- 2 の壁を突破して7×104cm- 2 を得て
いる。
On the other hand, as an attempt to fundamentally avoid the problem of the difference in coefficient of thermal expansion, there is a method of directly supplying a Group 3 raw material and a Group 5 raw material at a low temperature to directly grow a single crystal film. For example, the magazine Japanese Journal of Applied
Physics (Jpn. J. Appl. Phys.) Vol. 30, No. 4B (1991), L668-671, migration enhancement for alternately supplying Ga and As atoms in a high vacuum. In the epitaxial growth method (MEE method), GaAs is grown at a low temperature of 300 ° C. except for annealing at 580 ° C. on the way. Dislocation density 1 by introducing strained superlattice intermediate layer
0 6 cm - 2 wall breakthrough to 7 × 10 4 cm - 2 a is obtained.

【0010】[0010]

【課題を解決するための手段】3−5族化合物半導体層
のエピタキシャル成長法において、上記の従来技術の問
題点を考えてみる。
Consider the problems of the above-mentioned prior art in the epitaxial growth method of the group 3-5 compound semiconductor layer.

【0011】500℃でトリメチルアルミニウム(TM
A)とアルシン(AsH3 )を交互に供給するALE法
では、成長のかなり初期の段階からの層状成長への移行
が行なわれ、平坦性も改善されている。しかし依然とし
て島状成長であり、AlAs層中には多数の欠陥が発生
する。さらにその上に成長したGaAs層中にも欠陥の
一部が貫通するため、根本的な転位密度の低減には成功
していない。
Trimethyl aluminum (TM) at 500 ° C.
In the ALE method in which A) and arsine (AsH 3 ) are alternately supplied, a transition from a very early stage of growth to a layered growth is performed and flatness is also improved. However, the island-shaped growth still occurs, and many defects occur in the AlAs layer. Further, some of the defects penetrate into the GaAs layer grown on the GaAs layer, so that the fundamental reduction of dislocation density has not been successful.

【0012】一方、3族原料と5族原料とを低温で交互
に供給するMEE法では、転位がすでに凍結状態にある
300℃という低度で成長を行なうため、冷却時の熱歪
による新たな転位の発生が抑えられ、歪超格子中間層も
有効に働く結果7×104 cm- 2 が得られると考えら
れる。この方法では成長初期から比較的結晶性が良く、
膜厚が比較的厚い段階で初期アニールを行なえば良いた
め表面に大きな凹凸が生じる心配もない。しかしながら
厚膜成長後にアニールを行なうと再び転位が上昇してく
るため、複雑なデバイス構造でも最後までこの方法で成
長する必要がある。MEE法はMBEに比べ成長速度が
かなり遅いため成長に非常に長い時間を必要とするとい
う問題があった。
On the other hand, in the MEE method in which the Group 3 raw material and the Group 5 raw material are alternately supplied at a low temperature, since the dislocations grow at a low temperature of 300 ° C., which is already in a frozen state, new strain due to thermal strain during cooling is added. generation of dislocations is suppressed, the distortion super lattice intermediate layer also works effectively result 7 × 10 4 cm - 2 can be obtained. With this method, the crystallinity is relatively good from the beginning of growth,
Since the initial annealing may be performed at a stage where the film thickness is relatively large, there is no concern that large irregularities will occur on the surface. However, if annealing is performed after the thick film growth, the dislocations will rise again, so it is necessary to grow to the end even with a complicated device structure by this method. The MEE method has a problem that it takes a very long time to grow because the growth rate is considerably slower than that of MBE.

【0013】本発明の目的はこのような従来技術の欠点
を克服し、無極性または格子定数の異なる単結晶上へ高
品質かつ表面平坦性に優れた3−5族半導体エピタキシ
ャル層を形成する3−5族化合物半導体層の形成技術を
提供することにある。
The object of the present invention is to overcome such drawbacks of the prior art and form a Group 3-5 semiconductor epitaxial layer of high quality and excellent surface flatness on a non-polar or single crystal having a different lattice constant. It is to provide a technique for forming a Group-5 compound semiconductor layer.

【0014】[0014]

【課題を解決するための手段】本発明は4族、3−5
族、または2−6族からなる下地単結晶上に第一の3−
5族化合物半導体でなるバッファ層を形成する工程と、
該バッファ層上に第二の3−5族化合物半導体層を形成
する工程とを含む3−5族化合物半導体層の形成方法に
おいて、前記バッファ層は3族元素としてその一部また
はすべてにAlを含み、該バッファ層の格子定数は前記
第二の3−5族化合物半導体層の格子定数と1%以内で
整合しており、さらに前記バッファ層を形成するに際し
て、該バッファ層を構成する3族の原料と5族の原料を
交互に供給することを特徴とする。
Means for Solving the Problems The present invention includes groups 4 and 3-5.
On the underlying single crystal consisting of group 3 or 2-6
A step of forming a buffer layer made of a Group 5 compound semiconductor,
And a step of forming a second group 3-5 compound semiconductor layer on the buffer layer, wherein the buffer layer contains Al as a group 3 element in a part or all thereof. And the lattice constant of the buffer layer matches the lattice constant of the second Group 3-5 compound semiconductor layer within 1%, and when the buffer layer is formed, the Group 3 group constituting the buffer layer is formed. It is characterized in that the raw materials of No. 1 and the raw materials of Group 5 are alternately supplied.

【0015】またAlを含むバッファ層の形成は400
℃以下の低温で行なうと良い。
The formation of the buffer layer containing Al is 400
It is good to carry out at a low temperature of ℃ or less.

【0016】また第二の3−5族化合物半導体層形成の
全体または少なくともその初期の一部においては、3族
の原料と5族の原料とを交互に供給する方法によること
が望ましい。
Further, it is preferable that the raw material of the group 3 and the raw material of the group 5 are alternately supplied in the whole formation of the second group 3-5 compound semiconductor layer or at least a part of the initial stage thereof.

【0017】さらに下地結晶が4族単結晶の場合には、
下地4族単結晶上に前記Alを含むバッファ層を形成す
るに際して、該4族単結晶表面を清浄化後、まず3族の
原料をを供給し、次に5族の原料を供給すると初期成長
の二次元化の点から望ましい。
Further, when the base crystal is a Group 4 single crystal,
When the buffer layer containing Al is formed on the underlying Group 4 single crystal, the Group 4 single crystal surface is cleaned, then the Group 3 raw material is first supplied, and then the Group 5 raw material is supplied, whereby initial growth occurs. It is desirable from the viewpoint of two-dimensionalization.

【0018】[0018]

【作用】InP/GaAsなど3−5族化合物半導体の
格子不整合系の成長では、最初は歪を伴って二次元成長
し、膜厚がある臨界点を越えた時点で初めてミスフィッ
ト転位が導入されて歪が解放され、たいていはこの時点
から三次元島状成長となる。
[Function] In the growth of a lattice-mismatched system of a 3-5 group compound semiconductor such as InP / GaAs, misfit dislocations are first introduced when two-dimensional growth is accompanied by strain and the film thickness exceeds a certain critical point. The strain is released and the three-dimensional island growth usually starts from this point.

【0019】一方、Si上へのGaAsの成長で島状成
長するもの、ひとつにはSi結晶とGaAs結晶との大
きな格子定数差が原因となっていると考えられる。とこ
ろがたとえば雑誌「ジャーナル・オブ・クリスタル・グ
ロース(J.CrystalGrowth)」第95巻
(1989年)の第107−112頁に説明されている
ように、MEE法を用いて150℃でGaとAsを交互
供給しても、GaAsl分子層以下のごく初期から島状
成長となって表面被覆率が低下する。さらに格子定数差
が0.37%と十分に小さいはずのSi上へのGaPの
成長でも島状成長となる(雑誌「ジャーナル・オブ・ア
プライド・フィジクス(J.Appl.Phys.)」
第64巻第9号(1988年)の第4526−4530
頁)。
On the other hand, it is considered that the island-shaped growth of GaAs on Si is caused, in part, by the large difference in lattice constant between the Si crystal and the GaAs crystal. However, as described in, for example, pages 107-112 of the journal "J. Crystal Growth", Vol. Even if they are supplied alternately, the island-like growth starts from the very early stage below the GaAsl molecular layer and the surface coverage decreases. Further, GaP growth on Si, which should have a sufficiently small lattice constant difference of 0.37%, also results in island growth (Journal of Applied Physics (J. Appl. Phys.)).
Vol. 64, No. 9 (1988) No. 4526-4530
page).

【0020】従ってSi上への3−5族化合物半導体の
成長で一般に島状成長する原因は、単に格子定数差によ
るのではなく、むしろその成長初期における表面Si原
子と3族または5族原子間の化学結合状態や、そらに表
面再配列構造も関係した表面エネルギーの大小関係が深
くかかわっていると考えられる。
Therefore, the cause of the island-like growth in the growth of the 3-5 group compound semiconductor on Si is not merely due to the difference in the lattice constant, but rather between the surface Si atom and the group 3 or 5 atom at the initial stage of the growth. It is considered that the size relationship of the surface energies related to the chemical bond state and the surface rearrangement structure is deeply related.

【0021】即ちSi表面には再配列後もダングリング
ボンドが残り、表面エネルギーはかなり高い。一方、例
えばSi(100)面上へAsを付着させた場合、Si
表面は丁度1原子層分のAsによって全面が覆われてA
s−Asダイマーが形成される。5族Asは4族Siよ
り価電子が1つだけ多いためAsは安定なローンペアの
みを持ち、ダングリングボンドは存在しない。この様な
As付着構造の表面エネルギーは非常に低く極度に安定
である。極度に安定なAs付着表面をもし1原子層のG
aで覆うと表面エネルギーは増加する。そのためGaは
ドロップレットとなって表面エネルギーを減らそうとす
る。その状態でさらにAsが供給されると島状のGaA
sが成長する。
That is, dangling bonds remain on the Si surface even after rearrangement, and the surface energy is considerably high. On the other hand, for example, when As is deposited on the Si (100) surface,
The surface is completely covered by As for one atomic layer of As
An s-As dimer is formed. Since Group 5 As has only one valence electron than Group 4 Si, As has only stable loan pairs and no dangling bonds. The surface energy of such an As attachment structure is very low and extremely stable. Extremely stable As adhesion surface with 1 atomic layer of G
When covered with a, the surface energy increases. Therefore, Ga becomes a droplet and tries to reduce the surface energy. If more As is supplied in that state, island-shaped GaA
s grows.

【0022】これに対してSi上へGaを付着させた場
合も理論上はダングリングボンドを持たない。しかしA
s付着構造に比べると不安定で、さらにAsで全面が覆
われた方が安定と考えられ、その結果より層状成長しや
すいと考えられる。ただし温度が高いとAsはGaの下
に容易に潜り込み、Asがダイマーを形成すれば島状成
長の原因となる可能性もある。前記MEEによる従来技
術でも300℃でGaを先に供給した時により二次元的
な初期成長を得ている。
On the other hand, when Ga is deposited on Si, theoretically, it does not have a dangling bond. But A
It is considered to be more unstable than the s-attached structure, and more stable when the entire surface is covered with As, and as a result, layered growth is more likely to occur. However, when the temperature is high, As easily penetrates under Ga, and if As forms a dimer, it may cause island growth. Even in the conventional technique by MEE, a two-dimensional initial growth is obtained when Ga is first supplied at 300 ° C.

【0023】この様な考察に基づいて得られたのが本発
明の上層とほぼ格子整合したAlを含むバッファ層を、
3族原料と5族原料との交互供給法によって導入する方
法であり、特に下地が4族結晶である場合には4族結晶
表面を清浄化後、まずAlを含む3族の原料を供給し、
次に5族の原料を供給する方法である。
Based on the above consideration, a buffer layer containing Al substantially lattice-matched with the upper layer of the present invention was obtained.
This is a method of introducing the group 3 raw material and the group 5 raw material by the alternate supply method. Particularly, when the underlayer is a group 4 crystal, after cleaning the surface of the group 4 crystal, first, the group 3 raw material containing Al is supplied. ,
Next, it is a method of supplying Group 5 raw materials.

【0024】上記考察からSi上の3族付着構造には適
度な安定性も必要と考えられる。Si上のGaの場合は
特に高温で不安定となり、表面融解した液状である可能
性もある。これはGaの融点が約30℃と極めて低いこ
とに対応すると考えられる。一方、融点が約660℃と
高いAlではSi上で比較的安定な再配列構造を作り、
Asの潜り込みも起こりにくいため島になりにくいと思
われる。その後は3族原料と5族原料とを交互に供給す
る方法によれば、3族原子の表面拡散が促進されるため
三次元核の成長を抑制できる。ただしSiとAlの合金
化反応を抑えるため、Al層の形成は400℃以下の低
温で行なうのが望ましい。前記ALEによる従来技術で
はTMAの分解の問題から成長温度が500℃と高く、
そのためAsを先に供給する必要が生じ、また十分に二
次元的な初期成長が得られないと思われる。
From the above consideration, it is considered that the group III bond structure on Si also needs to have appropriate stability. In the case of Ga on Si, it becomes unstable especially at a high temperature, and there is a possibility that it is a surface-melted liquid. This is considered to correspond to the extremely low melting point of Ga, which is about 30 ° C. On the other hand, with Al having a high melting point of about 660 ° C., a relatively stable rearrangement structure is formed on Si,
It is unlikely that it will become an island because As does not easily submerge. After that, according to the method of alternately supplying the Group 3 raw material and the Group 5 raw material, the surface diffusion of the Group 3 atoms is promoted, so that the growth of the three-dimensional nucleus can be suppressed. However, in order to suppress the alloying reaction between Si and Al, the Al layer is preferably formed at a low temperature of 400 ° C. or lower. In the conventional technique using ALE, the growth temperature is as high as 500 ° C. due to the problem of TMA decomposition,
Therefore, it is necessary to supply As first, and it seems that sufficient two-dimensional initial growth cannot be obtained.

【0025】3−5族化合物半導体同士、また2−6族
化合物半導体上の格子不整合系の成長でもAlを含むバ
ッファ層を低温で、しかも3族原料と5族原料との交互
供給法によって成長すれば、Alと下地との強い結合が
期待でき比較的安定な再配列表面を維持できるため、臨
界膜厚を越えてミスフィット転位が導入された後でも二
次元成長を維持できる。
Even in the growth of lattice mismatched systems between 3-5 group compound semiconductors or in 2-6 group compound semiconductors, the buffer layer containing Al is formed at a low temperature by the alternate supply method of the group 3 raw material and the group 5 raw material. If grown, a strong bond between Al and the underlying layer can be expected and a relatively stable rearranged surface can be maintained, so that two-dimensional growth can be maintained even after misfit dislocations are introduced beyond the critical film thickness.

【0026】またAlを含むバッファ層の格子定数をそ
の上に積層する第二の3−5族化合物半導体層の格子定
数と1%以内で整合するように選べば、バッファ層より
後の成長でも引き続き二次元成長を維持できる。
Further, if the lattice constant of the buffer layer containing Al is selected so as to match with the lattice constant of the second Group III-V compound semiconductor layer laminated thereon within 1%, even in the growth after the buffer layer. Two-dimensional growth can be continuously maintained.

【0027】さらに第二の3−5族化合物半導体層の成
長でも、少なくとも十分な厚みが得られるまでは低温で
3族原料と5族原料とを交互に供給する方法によれば、
アニール時の固相反応による凹凸の発生も防止できるた
め、従って無極性または、格子定数の異なる単結晶上へ
高品質かつ表面平坦性に優れた3−5族半導体エピタキ
シャル層を形成する3−5族化合物半導体層の形成技術
を実現できる。
Further, even in the growth of the second Group 3-5 compound semiconductor layer, according to the method in which the Group 3 raw material and the Group 5 raw material are alternately supplied at a low temperature until at least a sufficient thickness is obtained,
Since unevenness due to a solid-phase reaction during annealing can be prevented, therefore, a group 3-5 semiconductor epitaxial layer having high quality and excellent surface flatness is formed on a single crystal having no polarity or different lattice constants 3-5 A technique for forming a group compound semiconductor layer can be realized.

【0028】[0028]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明する。 (実施例1)高真空下、アルシン(AsH3 )およびホ
スフィン(PH3 )をクラッキングして供給可能なガス
ソースMBE装置を用い、Si単結晶基板上へのGaA
s成長を行なった。Si(100)4°off to
<011>基板を洗浄済の基板装着用モリブデンブロッ
クにIn融着を用いずに装着し、10- 9 Torr台以
下の高真空下で900℃、20分間の熱クリーニングを
行なった後、基板温度を300℃に設定し、しかる後に
まず図1(a)に示すようにSi基板1上に1原子層分
のAlを供給してAl層2を成長した。続いてP(PH
3 )を供給し、さらにこのサイクルを10回繰り返すこ
とで図1(b)に示すように、10分子層のAlP低温
バッファ層3を成長した。
Embodiments of the present invention will now be described in detail with reference to the drawings. Example 1 Using a gas source MBE device capable of cracking and supplying arsine (AsH 3 ) and phosphine (PH 3 ) under high vacuum, GaA on a Si single crystal substrate was used.
s growth was performed. Si (100) 4 ° off to
<011> attached without using In fused to the substrate mounting molybdenum block cleaned substrate, 10 - 9 Torr table below 900 ° C. under high vacuum, after performing thermal cleaning for 20 minutes, the substrate temperature Was set to 300 ° C., and then, as shown in FIG. 1A, Al of one atomic layer was supplied onto the Si substrate 1 to grow the Al layer 2. Then P (PH
3 ) was supplied and this cycle was repeated 10 times to grow an AlP low temperature buffer layer 3 of 10 molecular layers as shown in FIG. 1 (b).

【0029】さらに図1(c)に示すように同じく30
0℃でGaとP(PH3 )の交互供給による20分子層
のGaP低温バッファ層4、Alと今度はAs(AsH
3 )の交互供給による10分子層のAlAs低温バッフ
ァ層5、さらにGaとAs(AsH3 )の交互供給によ
る70分子層のGaAs低温バッファ層6を順次成長し
た。ここでGaP低温バッファ層4の格子定数はAlP
低温バッファ層3の格子定数と、またGaAs低温バッ
ファ層6の格子定数はAlAs低温バッファ層5の格子
定数とほぼ等しい。この間、RHEEDパターンは若干
強度が低下するもののほぼストリークが保たれ、二次元
成長が維持された。
Further, as shown in FIG.
20 molecular layers of GaP low temperature buffer layer 4 by alternating supply of Ga and P (PH 3 ) at 0 ° C., Al and this time As (AsH
AlAs low-temperature buffer layer 5 of the 10 molecular layers by alternately supplying 3) were further sequentially growing a GaAs low temperature buffer layer 6 of the 70 molecular layers by alternately supplying Ga and As (AsH 3). Here, the lattice constant of the GaP low temperature buffer layer 4 is AlP.
The lattice constant of the low temperature buffer layer 3 and the lattice constant of the GaAs low temperature buffer layer 6 are substantially equal to the lattice constant of the AlAs low temperature buffer layer 5. During this time, although the RHEED pattern had a slight decrease in strength, streaks were almost maintained and two-dimensional growth was maintained.

【0030】最後にAs(AsH3 )を供給しながら基
板温度を550℃に昇温し、15分間にアニールを行な
った後、図1(d)に示すようにGaAs(AsH3
を同時に供給する通常のMBE法で厚さ2μmのGaA
s層7を成長した。
Finally, the substrate temperature was raised to 550 ° C. while supplying As (AsH 3 ) and annealed for 15 minutes, and then GaAs (AsH 3 ) was added as shown in FIG. 1 (d).
GaA with a thickness of 2 μm by the usual MBE method
The s layer 7 was grown.

【0031】このようにして得られたエピタキシャル成
長層はシングルドメインであり、極めて平坦な表面であ
った。また転位密度も約105 cm- 2 と低く、高温5
50℃でMBE成長を行なっても熱歪による転位の上昇
は十分に抑えることができた。
The epitaxially grown layer thus obtained was a single domain and had an extremely flat surface. The dislocation density of about 10 5 cm - as low as 2, high temperature 5
Even when MBE growth was performed at 50 ° C., the rise of dislocations due to thermal strain could be sufficiently suppressed.

【0032】(実施例2)実施例1と同じ装置を用い、
Si(100)4°off<011>基板上へのInP
成長を行なった。まずは実施例1と同様の手順でSi基
板上への高品質GaAsの成長を行なう。具体的にはま
ず図1(a)〜(c)と同様の手順で、図2(a)〜
(c)に示すようにAlP低温バッファ層3、GaP低
温バッファ層4、AlAs低温バッファ層5、さらにG
aAs低温バッファ層6を順次成長する。さらに実施例
1と同様にAs(AsH3 )を供給しながら基板温度を
550℃に昇温し、15分間のアニールを行なった後、
図2(d)に示すようにGaとAs(AsH3 )を同時
に供給する通常のMBE法で、この場合は厚さ0.3μ
mのGaAsバッファ層8を成長する。
(Embodiment 2) Using the same apparatus as in Embodiment 1,
InP on Si (100) 4 ° off <011> substrate
Grow. First, high quality GaAs is grown on a Si substrate by the same procedure as in the first embodiment. Specifically, first, in a procedure similar to that shown in FIGS.
As shown in (c), the AlP low temperature buffer layer 3, the GaP low temperature buffer layer 4, the AlAs low temperature buffer layer 5, and the G
The aAs low temperature buffer layer 6 is sequentially grown. Further, the substrate temperature was raised to 550 ° C. while supplying As (AsH 3 ) in the same manner as in Example 1, and after annealing for 15 minutes,
As shown in FIG. 2D, a normal MBE method in which Ga and As (AsH 3 ) are simultaneously supplied. In this case, the thickness is 0.3 μm.
m GaAs buffer layer 8 is grown.

【0033】次に再び基板温度を300℃に降温し、し
かる後に図2(e)に示すようにIn+AlとAs(A
sH3 )の交互供給による10分子層のInAlAs低
温バッファ層9、InとP(PH3 )の交互供給による
70分子層のInP低温バッファ層10を順次成長す
る。
Next, the substrate temperature is lowered to 300 ° C. again, and thereafter, as shown in FIG. 2E, In + Al and As (A
10 molecular layers of InAlAs low-temperature buffer layer 9 by alternately supplying sH 3 ) and 70 molecular layers of InP low-temperature buffer layer 10 by alternately supplying In and P (PH 3 ) are sequentially grown.

【0034】最後にP(PH3 )を供給しながら基板温
度を480℃に昇温し、15分間のアニールを行なった
後、図2(f)に示すようにInとP(PH3 )を同時
に供給する通常のMBE法で厚さ2μmのInP層11
を成長した。
Finally, the substrate temperature was raised to 480 ° C. while supplying P (PH 3 ), and after annealing for 15 minutes, In and P (PH 3 ) were mixed with each other as shown in FIG. InP layer 11 having a thickness of 2 μm, which is supplied by the ordinary MBE method
Grew up.

【0035】得られたInPエピタキシャル成長層は極
めて平坦であり、また転位密度も5×105 cm- 2
下と従来の約107 cm- 2 に比べ大幅に低減できた。
The resulting InP epitaxial layer is very flat, and dislocation density 5 × 10 5 cm - was significantly reduced compared to the 2 - 2 following the conventional about 10 7 cm.

【0036】以上、Si上のAlを含む低温バッファ層
としてAlPを用いる場合を例に説明したが。一部Ga
を含むAlGaPに代えても効果は得られる。同様にA
lAsはAlGaAsや、またInAl(Ga)Pに、
InAlAsはInAlGaAsや、またAl(Ga)
AsSbなどに代えても良く、さらにこれらを含む超格
子構造でもよい。なお超格子構造の場合はその平均の格
子定数がその上に積層する結晶とほぼ整合した歪超格子
でも良い。
The case where AlP is used as the low temperature buffer layer containing Al on Si has been described above. Part Ga
Even if it replaces with AlGaP containing, the effect is acquired. Similarly A
lAs is AlGaAs or InAl (Ga) P,
InAlAs is InAlGaAs or Al (Ga)
It may be replaced with AsSb or the like, and a superlattice structure including these may be used. In the case of a superlattice structure, a strained superlattice whose average lattice constant is almost matched with that of a crystal laminated thereon may be used.

【0037】低温バッファ層の膜厚としては適当に厚い
方が大きな効果が期待できるが、特にAlを含む低温バ
ッファ層の場合でも1分子層以上から効果は得られる。
A large effect can be expected when the film thickness of the low-temperature buffer layer is appropriately thick. However, even in the case of a low-temperature buffer layer containing Al, the effect can be obtained from one molecular layer or more.

【0038】結晶の面方位としては通常用いられる(1
00)面について説明したが、他の例えば(111)
面、また(211)、(311)など高次の面、さらに
これらから適当な角度だけoffした面などでも程度の
差こそあれ同様の効果が期待できる。
The crystal plane orientation usually used (1
Although the (00) plane has been described, other (111)
The same effect can be expected to some extent on a surface, a high-order surface such as (211) and (311), and a surface off from these by an appropriate angle.

【0039】成長装置としてはガスソースMBE装置を
用いたが、原料の交互供給が可能であればこれに限られ
るものではない。例えば通常の全メタルソースのMBE
装置でも良いが、この場合蒸気圧が高いPのソースには
特別の工夫が必要となる。また3族有機金属原料を用い
るMOMBE装置やMOCVD装置を用いても良い。こ
の場合、少なくともAlを含む低温バッファ層の成長は
400℃以下で行なえるように、熱分解の容易な有機金
属原料を選択することが望ましい。またMOCVD装置
の場合、周囲に反応生成物の付着のない清浄な雰囲気中
で基板の熱クリーニングが可能なサブチャンバーを備え
ていることが望ましい。一方、基板のクリーニングにつ
いては他の方法で行なってもよく、例えば、HF:H2
O液による酸化膜除去と純水リンスによるHパッシベー
ションを行なってから反応容器に導入しても良い。
Although the gas source MBE apparatus was used as the growth apparatus, it is not limited to this as long as the raw materials can be alternately supplied. For example, MBE of normal all metal source
A device may be used, but in this case, a special source is required for the source of P having a high vapor pressure. Further, a MONBE apparatus or MOCVD apparatus using a Group 3 organic metal raw material may be used. In this case, it is desirable to select an organometallic raw material that is easily pyrolyzed so that the low temperature buffer layer containing at least Al can be grown at 400 ° C. or lower. Further, in the case of the MOCVD apparatus, it is desirable to provide a sub-chamber capable of thermally cleaning the substrate in a clean atmosphere in which no reaction products adhere to the surroundings. On the other hand, the substrate may be cleaned by another method, for example, HF: H 2
The oxide film may be removed by the O liquid and H passivation may be performed by rinsing with pure water before the introduction into the reaction vessel.

【0040】また実施例ではSi基板上のGaAs、お
よびInPの成長を例に説明したが、他の例えばInA
sの成長や、さらにはこれら結晶の中間の格子定数を持
つGaAsPやInGaAs、またはInGaAsPな
どの混晶の成長にも応用できる。実施例でSi基板上へ
InPを成長する場合にGaAsバッファ層を挟んで成
長したが、格子定数差が大きい場合にはこの様に段階を
分けて成長した方が高品質な結晶を得やすい。さらに基
板がGeの場合、また3−5族のGaAsやInPの場
合、また2−6族のZnSやZnSeなどの場合におけ
る格子不整合系の成長にも広く本発明を適用することが
できる。
In the embodiment, the growth of GaAs and InP on the Si substrate has been described as an example.
It can also be applied to the growth of s, and also to the growth of mixed crystals of GaAsP, InGaAs, or InGaAsP having a lattice constant in the middle of these crystals. In the example, when InP was grown on a Si substrate, the growth was performed with a GaAs buffer layer sandwiched between them. However, when the difference in lattice constant is large, it is easier to obtain a high-quality crystal by performing such growth in stages. Further, the present invention can be widely applied to the growth of lattice mismatched systems when the substrate is Ge, GaAs or InP of 3-5 group, and ZnS or ZnSe of 2-6 group.

【0041】またさらに貫通転位の低減を目指すために
他の歪超格子導入法やまた不純物による転位のピン止め
法などと組み合わせても良い。
Further, in order to further reduce threading dislocations, it may be combined with another strained superlattice introduction method or a dislocation pinning method by impurities.

【0042】[0042]

【発明の効果】以上のように本発明によれば、4族、3
−5族、または2−6族からなる下地単結晶上にその初
期から二次元的な3−5族化合物半導体層を成長するこ
とができるため界面での欠陥密度を低減でき、また熱歪
による転位の再上昇も抑えられ貫通転位を大幅に減らす
ことができるため、従って無極性または格子定数の異な
る単結晶上へ高品質かつ表面平坦性に優れた3−5族半
導体エピタキシャル層を形成する3−5族化合物半導体
層の形成技術が実現でき、発明の効果が示された。
As described above, according to the present invention, groups 4 and 3
Since the two-dimensional 3-5 group compound semiconductor layer can be grown from the initial stage on the underlying single crystal of -5 group or 2-6 group, the defect density at the interface can be reduced, and due to thermal strain. Since re-raising of dislocations can be suppressed and threading dislocations can be significantly reduced, therefore, a high-quality Group 3-5 semiconductor epitaxial layer having high surface flatness can be formed on a non-polar or single crystal having a different lattice constant. The technology for forming the group-5 compound semiconductor layer was realized, and the effects of the invention were shown.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る一例としての結晶成長工
程を示す断面図である。
FIG. 1 is a cross-sectional view showing a crystal growth step as an example according to an example of the present invention.

【図2】本発明の別の実施例に係る一例としての結晶成
長工程を示す断面図である。
FIG. 2 is a cross-sectional view showing a crystal growth step as an example according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2 Al層 3 AlP低温バッファ層 4 GaP低温バッファ層 5 AlAs低温バッファ層 6 GaAs低温バッファ層 7 GaAs層 8 GaAsバッファ層 9 InAlAs低温バッファ層 10 InP低温バッファ層 11 InP層 1 Si substrate 2 Al layer 3 AlP low temperature buffer layer 4 GaP low temperature buffer layer 5 AlAs low temperature buffer layer 6 GaAs low temperature buffer layer 7 GaAs layer 8 GaAs buffer layer 9 InAlAs low temperature buffer layer 10 InP low temperature buffer layer 11 InP layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 4族、または3−5族、または2−6族
からなる下地単結晶上に第一の3−5族化合物半導体で
なるバッファ層を形成する工程と、該バッファ層上に第
二の3−5族化合物半導体層を形成する工程とを含む3
−5族化合物半導体層の形成方法において、前記バッフ
ァ層は3族元素としてその一部またはすべてにAlを含
み、該バッファ層の格子定数は前記第二の3−5族化合
物半導体層の格子定数と1%以内で整合しており、さら
に前記バッファ層を形成するに際して、該バッファ層を
構成する3族の原料と5族の原料を交互に供給すること
を特徴とする3−5族化合物半導体層の形成方法。
1. A step of forming a buffer layer made of a first 3-5 group compound semiconductor on a base single crystal made of 4 group, 3-5 group, or 2-6 group, and on the buffer layer. And a step of forming a second Group 3-5 compound semiconductor layer 3
-5. In the method for forming a Group 5 compound semiconductor layer, the buffer layer contains Al as a Group 3 element in a part or all thereof, and the lattice constant of the buffer layer is the lattice constant of the second Group 3-5 compound semiconductor layer. And 3% or less, and when the buffer layer is formed, the group 3 raw material and the group 5 raw material forming the buffer layer are alternately supplied. Method of forming layer.
【請求項2】 前記Alを含むバッファ層の形成を40
0℃以下の低温で行なうことを特徴とする請求項1記載
の3−5族化合物半導体層の形成方法。
2. The formation of a buffer layer containing Al is 40
The method for forming a Group 3-5 compound semiconductor layer according to claim 1, wherein the method is performed at a low temperature of 0 ° C. or lower.
【請求項3】 前記第二の3−5族化合物半導体層形成
の全体または少なくともその初期の一部が、3族の原料
と5族の原料とを交互に供給する方法によることを特徴
とする請求項1又は請求項2記載の3−5族化合物半導
体層の形成方法。
3. The whole or at least part of the initial formation of the second Group 3-5 compound semiconductor layer is based on a method of alternately supplying Group 3 raw material and Group 5 raw material. The method for forming a Group 3-5 compound semiconductor layer according to claim 1 or 2.
【請求項4】 前記下地結晶が4族単結晶であり、該4
族単結晶上に前記Alを含むバッファ層を形成する際し
て、該4族単結晶表面を清浄化後、まず3族の原料を供
給し、次に5族の原料を供給することを特徴とする請求
項1又は請求項2又は請求項3記載の3−5族化合物半
導体層の形成方法。
4. The base crystal is a Group 4 single crystal,
When the buffer layer containing Al is formed on the Group 1 single crystal, the Group 4 single crystal surface is cleaned, and then the Group 3 raw material is supplied first, and then the Group 5 raw material is supplied. The method for forming a 3-5 group compound semiconductor layer according to claim 1, 2, or 3.
JP7482592A 1992-03-31 1992-03-31 Formation of compound semiconductor layer Withdrawn JPH05283336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7482592A JPH05283336A (en) 1992-03-31 1992-03-31 Formation of compound semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7482592A JPH05283336A (en) 1992-03-31 1992-03-31 Formation of compound semiconductor layer

Publications (1)

Publication Number Publication Date
JPH05283336A true JPH05283336A (en) 1993-10-29

Family

ID=13558484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7482592A Withdrawn JPH05283336A (en) 1992-03-31 1992-03-31 Formation of compound semiconductor layer

Country Status (1)

Country Link
JP (1) JPH05283336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers

Similar Documents

Publication Publication Date Title
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
JP3114809B2 (en) Semiconductor device
JPH0760791B2 (en) Compound semiconductor substrate
JPH04315419A (en) Insulating film/compound semiconductor lamination structure on element semiconductor substrate
US5492860A (en) Method for growing compound semiconductor layers
JPH05283336A (en) Formation of compound semiconductor layer
JP2845464B2 (en) Compound semiconductor growth method
JP2687445B2 (en) Heteroepitaxial growth method
JPH0822800B2 (en) III-Method of forming group V compound semiconductor thin film
JP3270945B2 (en) Heteroepitaxial growth method
JP2629625B2 (en) Method for growing semiconductor layer on heterogeneous substrate
JP3078927B2 (en) Method for growing compound semiconductor thin film
JP3985288B2 (en) Semiconductor crystal growth method
JP2560601B2 (en) Method for manufacturing metal film / compound semiconductor laminated structure on elemental semiconductor substrate
JPH05267175A (en) Compound semiconductor substrate
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JPH0620968A (en) Metal film/compound semiconductor laminated structure on element semiconductor substrate and manufacture thereof
JPH0737806A (en) Semiconductor thin film growth method
JP2503255B2 (en) Method for manufacturing compound semiconductor substrate
JPH04202097A (en) Semiconductor substrate and its production
JPH047819A (en) Gaas thin film
JPH09106949A (en) Compound semiconductor substrate and manufacture thereof
JPH01184815A (en) Semiconductor wafer and manufacture thereof
JPH02263427A (en) Compound semiconductor substrate and manufacture thereof
JPH05275328A (en) Method for forming semiconductor substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608