JPH0536605A - Manufacture of compound semiconductor substrate - Google Patents

Manufacture of compound semiconductor substrate

Info

Publication number
JPH0536605A
JPH0536605A JP5093991A JP5093991A JPH0536605A JP H0536605 A JPH0536605 A JP H0536605A JP 5093991 A JP5093991 A JP 5093991A JP 5093991 A JP5093991 A JP 5093991A JP H0536605 A JPH0536605 A JP H0536605A
Authority
JP
Japan
Prior art keywords
compound semiconductor
temperature
substrate
gaas
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5093991A
Other languages
Japanese (ja)
Inventor
Takayuki Nishimura
孝之 西村
Hisashi Katahama
久 片浜
Hiroshi Ishihara
石原  宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5093991A priority Critical patent/JPH0536605A/en
Publication of JPH0536605A publication Critical patent/JPH0536605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the manufacturing method of a compound semiconductor substrate wherein a compound semiconductor thin film having little crystal defect can be epitaxially grown on a single crystal substrate. CONSTITUTION:A compound semiconductor thin film is epitaxially grown on a single crystal substrate at a normal growth temperature. Annealing is performed at a specified temperature by applying a specified hydrostatic pressure. Heat treatment is performed at least one time at a temperature higher or lower than the above temperature. Thereby the dislocation density of the compound semiconductor thin film grown on the single crystal substrate and the warp of a substrate can be reduced, so that a compound semiconductor substrate whose crystallinity is improved can be manufactured. Hence a compound semiconductor substrate for an electronic device which substrate has excellent crystallinity and large area can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光あるいは高速デバイス
用等の化合物半導体基板を製造する分野に適用され、単
結晶基板上に化合物半導体薄膜をエピタキシャル成長さ
せる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to the field of manufacturing compound semiconductor substrates for optical or high speed devices, and relates to a method for epitaxially growing a compound semiconductor thin film on a single crystal substrate.

【0002】[0002]

【従来の技術】近年、大面積基板の製造が困難である材
料をその材料とは異なった材質の基板上にヘテロエピタ
キシャル成長させた基板が製作されている。このような
例として、シリコン基板上にGaAsをエピタキシャル
成長させた基板がある。GaAs等の化合物半導体は、
シリコンでは実現できない種々の特徴を備えており、光
あるいは高速デバイスに対する需要は大きい。これに対
し、GaAsウェハに対する大きな問題点は価格が非常
に高いということだけでなく、完全結晶の作成が困難
で、しかも機械的強度も小さく、もろいために大面積化
が困難であるという点である。従って、シリコン基板上
にGaAs層を形成した基板を作製できれば、GaAs
及びシリコンが有するそれぞれの長所をいずれも生かし
たデバイスを実現することができる。
2. Description of the Related Art In recent years, substrates in which a material for which a large-area substrate is difficult to manufacture are heteroepitaxially grown on a substrate made of a material different from that material have been manufactured. As such an example, there is a substrate in which GaAs is epitaxially grown on a silicon substrate. Compound semiconductors such as GaAs are
Since it has various features that cannot be realized with silicon, there is great demand for optical or high-speed devices. On the other hand, the major problems with GaAs wafers are not only that the price is very high, but also that it is difficult to form a perfect crystal, and the mechanical strength is small, and it is difficult to increase the area because it is fragile. is there. Therefore, if it is possible to fabricate a substrate in which a GaAs layer is formed on a silicon substrate, GaAs
It is possible to realize a device that takes advantage of each of the advantages of silicon and silicon.

【0003】このような状況下で、シリコン基板上にG
aAsをエピタキシャル成長させる技術が注目されてお
り、研究開発も活発に行なわれている。ところが、シリ
コンとGaAsとは格子定数が約4%程度(室温でのシ
リコンの格子定数:5.4309Å、室温でのGaAs
の格子定数:5.6533Å)異なるために、GaAs
基板の作製時と同様の成長条件でシリコン基板上に単結
晶のGaAs層をエピタキシャル成長させることはでき
ず、両者の格子不整合を緩和してシリコン基板上に単結
晶のGaAs層をエピタキシャル成長させるための工夫
が必要とされている。
Under such circumstances, G on the silicon substrate
A technique for epitaxially growing aAs has been attracting attention, and research and development have been actively conducted. However, the lattice constant of silicon and GaAs is about 4% (the lattice constant of silicon at room temperature: 5.4309Å, GaAs at room temperature).
Lattice constant: 5.6533 Å)
It is not possible to epitaxially grow a single crystal GaAs layer on a silicon substrate under the same growth conditions as when manufacturing the substrate, and it is necessary to relax the lattice mismatch between the two and to grow the single crystal GaAs layer epitaxially on the silicon substrate. Ingenuity is needed.

【0004】このような工夫の1つとして、低温状態と
高温状態との2段階に分け手GaAsをエピタキシャル
成長させる方法が公知である(日経マイクロデバイス1
986年1月号、p113〜127)。この方法によれ
ば、低温状態で非結晶質又はある程度結晶化したGaA
sをエピタキシャル成長させた後、高温状態にてGaA
sを更にエピタキシャル成長させる2段階成長により、
単結晶のGaAs層をシリコン基板上に形成する方法で
ある。
As one of such measures, there is known a method of epitaxially growing GaAs in two stages of a low temperature state and a high temperature state (Nikkei Microdevice 1).
January 986, p113-127). According to this method, GaA that is amorphous or crystallized to some extent at low temperature is used.
After epitaxially growing s, GaA is grown at high temperature.
By the two-step growth in which s is further epitaxially grown,
In this method, a single crystal GaAs layer is formed on a silicon substrate.

【0005】以下、この方法について説明する。まず図
3に示した成長温度プロファイルに従って、シリコン基
板を1000℃程度で熱処理して表面を清浄化した後、
MOCVD(Metal Organic Chemical Vapor Depositio
n ;有機金属の熱分解による気相成長)法またはMBE
(Molecular Beam Epitaxy;分子線エピタキシャル成
長)法を用い、MOCVD法ならば450℃程度、MB
E法ならば400℃程度の低温にてGaAsをエピタキ
シャル成長させ、図4(a)に示したような、膜厚20
0Å程度の低温成長のGaAs層12をシリコン基板1
1上に形成する。次に成長を一旦中断させた後、シリコ
ン基板11の温度を600〜750℃程度まで上昇させ
て再びGaAsをエピタキシャル成長させ、膜厚数μm
程度の単結晶のGaAs層13を形成する(図4
(b))。このような2段階成長法により、格子定数の
差による格子不整合を緩和してシリコン基板11上に単
結晶のGaAs層12、13を形成することができる。
This method will be described below. First, according to the growth temperature profile shown in FIG. 3, the silicon substrate is heat-treated at about 1000 ° C. to clean the surface,
MOCVD (Metal Organic Chemical Vapor Depositio)
n; vapor phase growth by pyrolysis of organic metal) or MBE
(Molecular Beam Epitaxy) method, if MOCVD method, 450 ℃, MB
In the case of the E method, GaAs is epitaxially grown at a low temperature of about 400 ° C. and a film thickness of 20 is obtained as shown in FIG.
Silicon substrate 1 with GaAs layer 12 grown at low temperature of 0Å
Form on 1. Next, after suspending the growth once, the temperature of the silicon substrate 11 is raised to about 600 to 750 ° C. and GaAs is epitaxially grown again, and the film thickness is several μm.
Forming a monocrystalline GaAs layer 13 (FIG. 4)
(B)). By such a two-step growth method, the lattice mismatch due to the difference in lattice constant can be relaxed and the single crystal GaAs layers 12 and 13 can be formed on the silicon substrate 11.

【0006】[0006]

【発明が解決しようとする課題】ところが上記化合物半
導体基板の製造方法においては、シリコン基板11上に
GaAs層12、13をエピタキシャル成長させた場
合、シリコンの熱膨張係数(αSi=2.6×10-6
℃)とGaAsの熱膨張係数(αGaAs=6.5×10-6
/℃)とが大きく異なるために、シリコン基板11に対
して非常に薄いGaAs層12、13には成長温度TG
(700℃)から室温TR(25℃)に冷却する際の温
度差ΔTによる熱歪みεT が発生する。この時の熱歪み
εT は下記の数1によって表わされる。
However, in the above method of manufacturing a compound semiconductor substrate, when the GaAs layers 12 and 13 are epitaxially grown on the silicon substrate 11, the coefficient of thermal expansion of silicon (α Si = 2.6 × 10 6) is used. -6 /
° C) and the coefficient of thermal expansion of GaAsGaAs = 6.5 × 10 -6
/ ° C.) is significantly different from the growth temperature T G of the GaAs layers 12 and 13 which are very thin with respect to the silicon substrate 11.
Thermal strain ε T occurs due to the temperature difference ΔT when cooling from (700 ° C.) to room temperature T R (25 ° C.). The thermal strain ε T at this time is expressed by the following formula 1.

【0007】[0007]

【数01】 [Equation 01]

【0008】このとき、この発生した熱歪みによりGa
As層12、13中に転位が導入され、結晶性を低下さ
せるという課題があった。
At this time, due to the generated thermal strain, Ga
There has been a problem that dislocations are introduced into the As layers 12 and 13 and the crystallinity is lowered.

【0009】また、この際発生する転位密度は1×10
7 /cm2 程度となり、FETや半導体レーザ等の半導
体デバイス作製に用いることができる実用的最大値1×
105 /cm2 より高くなる。そしてさらに前記熱歪み
により生じる応力により化合物半導体基板10は、図4
(c)に示したようにGaAs層12、13側に反るた
め、半導体デバイス製作時のフォトリソグラフィの工程
で、歩留まりの低下を起こすという課題があった。
The dislocation density generated at this time is 1 × 10.
It is about 7 / cm 2, which is the practical maximum value 1 × that can be used for the fabrication of semiconductor devices such as FETs and semiconductor lasers.
Higher than 10 5 / cm 2 . Further, the compound semiconductor substrate 10 is moved to the state shown in FIG.
Since the GaAs layers 12 and 13 are warped as shown in (c), there is a problem in that the yield is lowered in the photolithography process at the time of manufacturing a semiconductor device.

【0010】本発明はこのような課題に鑑み発明された
ものであって、単結晶基板上に結晶欠陥の少ない化合物
半導体薄膜をエピタキシャル成長させることができるよ
うな化合物半導体基板の製造方法を提供することを目的
としている。
The present invention has been made in view of the above problems, and provides a method of manufacturing a compound semiconductor substrate capable of epitaxially growing a compound semiconductor thin film having few crystal defects on a single crystal substrate. It is an object.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る化合物半導体基板の製造方法は、単結晶
基板上に化合物半導体薄膜をエピタキシャル成長させる
化合物半導体基板の製造方法において、前記化合物半導
体薄膜を通常の成長温度で成長させ、この後所定の温度
条件下、所定の静水圧を印加してアニール処理を施し、
続いて前記所定の温度より上下させた温度での熱処理を
少なくとも1回行なうことを特徴としている。
In order to achieve the above object, a method for producing a compound semiconductor substrate according to the present invention is a method for producing a compound semiconductor substrate in which a compound semiconductor thin film is epitaxially grown on a single crystal substrate. The thin film is grown at a normal growth temperature, after which, under a predetermined temperature condition, a predetermined hydrostatic pressure is applied to perform an annealing treatment,
Then, the heat treatment is performed at least once at a temperature above and below the predetermined temperature.

【0012】[0012]

【作用】低温状態と高温状態との2段階に分けてGaA
s等の化合物半導体をエピタキシャル成長させた場合、
図2(a)に示したように、格子不整合が緩和されてシ
リコン基板11上に単結晶のGaAs層12、13がエ
ピタキシャル成長する。ところが、シリコンの弾性ステ
ィフネスとGaAsの弾性スティフネスとが異なるため
に、ある温度T1 において静水圧力PO を印加すると、
図2(b)に示したように化合物半導体基板10には圧
縮歪みεPoによるそりが発生する。この時の圧縮歪みε
Poは下記の数2によって表わされる。
[Operation] GaA is divided into two stages, a low temperature state and a high temperature state.
When a compound semiconductor such as s is epitaxially grown,
As shown in FIG. 2A, the lattice mismatch is relaxed and the single crystal GaAs layers 12 and 13 are epitaxially grown on the silicon substrate 11. However, since the elastic stiffness of silicon and the elastic stiffness of GaAs are different, when hydrostatic pressure P O is applied at a certain temperature T 1 ,
As shown in FIG. 2B, the compound semiconductor substrate 10 is warped due to the compressive strain ε Po . Compressive strain ε at this time
Po is represented by the following equation 2.

【0013】[0013]

【数02】 [Equation 02]

【0014】この時、圧縮歪みεPoによる転位が発生し
てGaAs層12、13中の転位は増加する。しかしこ
の後、前記温度T1 と異なる温度T2 及び前記温度T
1 、T2 と異なるT3 にn回温度を上下させることによ
り、GaAs層12、13中の転位の移動が促進され、
図2(c)に示したように、GaAs層12、13の応
力が解放されて歪みが消滅するとともに、転位がGaA
s層12、13表面へぬけて転位が減少する。この際、
1 、T2 及びT3 の関係はT2 <T1 <T3 またはT
2 >T1 >T3 であればよいが、|T2 −T1 |や|T
3 −T1 |の値が小さいと転位及び歪み減少の効果が少
なく、熱サイクルの回数nを増す必要がある。この効果
によって熱サイクル終了後のGaAs層12、13の歪
みは0となる。
At this time, dislocations due to the compressive strain ε Po occur, and the dislocations in the GaAs layers 12 and 13 increase. However, after this, the temperature T 2 different from the temperature T 1 and the temperature T 2
By moving the temperature up and down n times to T 3 different from 1 and T 2 , migration of dislocations in the GaAs layers 12 and 13 is promoted,
As shown in FIG. 2C, the stress in the GaAs layers 12 and 13 is released, the strain disappears, and the dislocations become GaA.
Dislocations are reduced to the surface of the s layers 12 and 13. On this occasion,
The relationship between T 1 , T 2 and T 3 is T 2 <T 1 <T 3 or T
2> T 1> may be a T 3 but, | T 2 -T 1 | and | T
If the value of 3- T 1 | is small, the effect of reducing dislocations and strains is small, and it is necessary to increase the number n of thermal cycles. Due to this effect, the strain of the GaAs layers 12 and 13 after the thermal cycle is zero.

【0015】次に図1に示したように、熱サイクル終了
後の温度T1 であるD点から任意の温度TであるE点へ
降温すると、数3に示すようなシリコンとGaAsとの
熱膨張係数の差に基づく熱歪みεT が発生する。
Next, as shown in FIG. 1, when the temperature is lowered from point D, which is the temperature T 1 after the thermal cycle, to point E, which is an arbitrary temperature T, the heat of silicon and GaAs as shown in equation 3 is obtained. Thermal strain ε T is generated due to the difference in expansion coefficient.

【0016】[0016]

【数03】 [Equation 03]

【0017】また、熱サイクル終了後に印加されている
静水圧PO から任意の印加圧力Pに減圧したとすると、
これによって生じる圧縮歪みεP は数4のように表わさ
れる。
If the hydrostatic pressure P O applied after the heat cycle is reduced to an arbitrary applied pressure P,
The compressive strain ε P caused by this is expressed as in Equation 4.

【0018】[0018]

【数04】 [Formula 04]

【0019】よって図1中、熱サイクル終了後のD点か
ら任意のE点へ降温、降圧した際のGaAs層12、1
3に発生するトータルの歪みεは数3及び数4より、
Therefore, in FIG. 1, the GaAs layers 12 and 1 when the temperature is lowered and lowered from the point D to an arbitrary point E after the end of the thermal cycle.
From Equation 3 and Equation 4, the total strain ε that occurs in 3 is

【0020】[0020]

【数05】 [Equation 05]

【0021】となる。[0021]

【0022】従って、常温、大気圧中でGaAs層1
2、13に発生する歪みを無くすためには、つまり、常
温TR 、印加圧力P=0の大気中で歪みε=0となるに
は数5より、
Therefore, the GaAs layer 1 is kept at room temperature and atmospheric pressure.
In order to eliminate the strains generated in Nos. 2 and 13, that is, in order to obtain the strain ε = 0 in the atmosphere at room temperature T R and the applied pressure P = 0, from the formula 5,

【0023】[0023]

【数06】 [Expression 06]

【0024】となり、これより熱サイクル終了後に印加
すべき静水圧POを求めると、
From this, when the hydrostatic pressure P O to be applied after the end of the thermal cycle is determined,

【0025】[0025]

【数07】 [Equation 07]

【0026】となり、GaAsのエピタキシャル成長終
了後に静水圧POを印加するC点(図1)において、数
7で求められる圧力に相当する静水圧PO を印加してお
けば常温、大気中でGaAs層12、13に歪みを発生
させない。
Therefore, at the point C (FIG. 1) where the hydrostatic pressure P O is applied after the epitaxial growth of GaAs, if the hydrostatic pressure P O corresponding to the pressure obtained by the equation 7 is applied, the GaAs is at room temperature and in the atmosphere. No strain is generated in the layers 12 and 13.

【0027】さらに、降温、降圧の過程においても歪み
を発生させないためには数5が0となればよいので、
Further, in order to prevent the strain from being generated even in the process of lowering the temperature and lowering the pressure, it suffices if the equation 5 becomes 0.

【0028】[0028]

【数08】 [Equation 08]

【0029】となる。これに数7を代入すると、It becomes Substituting equation 7 into this,

【0030】[0030]

【数09】 [Equation 09]

【0031】となり、よって数9の関係を満足させなが
ら大気圧、常温まで降温、減圧してゆけば降温、減圧の
過程においても歪みを発生させない。
Therefore, if the temperature is reduced to atmospheric pressure and room temperature and the pressure is reduced while satisfying the relationship of the equation 9, no strain is generated even in the process of temperature reduction and pressure reduction.

【0032】例えば、反応炉の降温時間レートをa、降
温開始からの時間をtとすると、任意のE点における温
度Tは、
For example, if the temperature decrease rate of the reactor is a and the time from the start of temperature decrease is t, the temperature T at an arbitrary point E is

【0033】[0033]

【数10】 [Equation 10]

【0034】と表わされ、Is represented as

【0035】[0035]

【数11】 [Equation 11]

【0036】となる。よって数10及び数11より静水
圧の減圧時間レートbを、
It becomes Therefore, from equations 10 and 11, the depressurization time rate b of hydrostatic pressure is

【0037】[0037]

【数12】 [Equation 12]

【0038】にすれば数9を満足させながら降温、減圧
させることができる。従って、
If this is done, the temperature can be lowered and the pressure can be reduced while satisfying the expression (9). Therefore,

【0039】[0039]

【数13】 [Equation 13]

【0040】のときに温度T=TR (常温)、印加圧力
P=0(大気圧)となる。
The temperature T = T R (room temperature), the applied pressure P = 0 (atmospheric pressure) at the time of.

【0041】従って上記した方法によれば、単結晶基板
上に半導体薄膜をエピタキシャル成長させる化合物半導
体基板の製造方法において、前記半導体薄膜を通常の成
長温度で成長させ、この後所定の温度条件下、所定の静
水圧を印加してアニール処理を施し、続いて前記所定の
温度より上下させた温度での熱処理を少なくとも1回行
なうので、単結晶基板上に成長させた化合物半導体薄膜
中の転位密度及び基板の反りが低減され、結晶性が向上
した化合物半導体基板が得られる。
Therefore, according to the method described above, in the method of manufacturing a compound semiconductor substrate in which a semiconductor thin film is epitaxially grown on a single crystal substrate, the semiconductor thin film is grown at a normal growth temperature, and thereafter, under a predetermined temperature condition, a predetermined temperature condition is applied. The hydrostatic pressure is applied to perform the annealing treatment, and then the heat treatment at a temperature above and below the predetermined temperature is performed at least once. Therefore, the dislocation density in the compound semiconductor thin film grown on the single crystal substrate and the substrate A compound semiconductor substrate with reduced warpage and improved crystallinity can be obtained.

【0042】[0042]

【実施例】以下、本発明に係る化合物半導体基板の製造
方法の実施例を説明する。なお、従来例と同一機能を有
する構成部品には同一付号を付すこととする。
EXAMPLES Examples of the method for manufacturing a compound semiconductor substrate according to the present invention will be described below. The components having the same functions as those of the conventional example are designated by the same reference numerals.

【0043】基板として(100)面から[011]方
向に2°オフしているシリコン基板を用い、原料として
TMG(トリメリルガリウム)及びAsH3(アルシン)
を使用し、MOCVD法により図2(a)に示したよう
にシリコン基板11上にGaAs層12、13を成長さ
せる。
A silicon substrate which is off by 2 ° in the [011] direction from the (100) plane is used as a substrate, and TMG (trimeryl gallium) and AsH 3 (arsine) are used as raw materials.
Is used to grow GaAs layers 12 and 13 on a silicon substrate 11 by MOCVD as shown in FIG.

【0044】図1に示したような成長温度プロファイル
に従って、まず、反応炉内のサセプタ上にウェット処理
が完了したシリコン基板11を搬送し、約1000℃で
30分間、H2 雰囲気中でRF加熱する。その後、45
0℃に降温し、AsH3 導入後、引き続いてTMGを導
入し、低温成長で200ÅのGaAs層12を成長させ
る。次に通常の成長温度である700℃に昇温して、そ
の上に、さらに3μmのGaAs層13を成長させる
(図2(a))。この際のGaAs層13の他の成長条
件は、低温成長させた場合のGaAs層12の成長条件
と同様である。
According to the growth temperature profile as shown in FIG. 1, first, the wet-processed silicon substrate 11 is transferred onto a susceptor in a reaction furnace, and RF heating is performed at about 1000 ° C. for 30 minutes in an H 2 atmosphere. To do. Then 45
The temperature is lowered to 0 ° C., AsH 3 is introduced, and then TMG is introduced to grow a 200 Å GaAs layer 12 by low temperature growth. Next, the temperature is raised to 700 ° C. which is a normal growth temperature, and a GaAs layer 13 having a thickness of 3 μm is further grown thereon (FIG. 2A). The other growth conditions of the GaAs layer 13 at this time are the same as the growth conditions of the GaAs layer 12 at the time of low temperature growth.

【0045】GaAs層12、13を成長させた後、炉
内をT1 =500℃に降温して静水圧を印加する。ここ
で、GaAsの弾性スティフネスはC11=1.18×1012
12=0.532 ×1012、シリコンの弾性スティフネスはC
11=1.66×1012、C12=0.639 ×1012(dyn/cm
2 )、αSi=2.6×10-6/℃、αGaAs=6.5×1
-6/℃であるので、数7より印加する静水圧PO
1.76×1010dyn/cm2 となり、これに相当す
る静水圧POをアルゴンガス雰囲気中で印加する。
After growing the GaAs layers 12 and 13, the temperature inside the furnace is lowered to T 1 = 500 ° C. and a hydrostatic pressure is applied. Here, the elastic stiffness of GaAs is C 11 = 1.18 × 10 12 ,
C 12 = 0.532 × 10 12 , the elastic stiffness of silicon is C
11 = 1.66 x 10 12 , C 12 = 0.639 x 10 12 (dyn / cm
2 ), α Si = 2.6 × 10 −6 / ° C., α GaAs = 6.5 × 1
Since at 0 -6 / ° C., the hydrostatic pressure P O is applied than the number 7 is applied 1.76 × 10 10 dyn / cm 2, and the hydrostatic pressure P O corresponding thereto in an argon gas atmosphere.

【0046】次にこの圧力PO を一定にしたまま、T2
=800℃に昇温、T3 =200℃に降温を3サイクル
繰り返す。この時の平均昇温、降温時間レートはそれぞ
れ100℃/分、50℃/分、また800℃、200℃
でのホールド時間は1分であった。そして再び500℃
に戻した後、降温時間レートaを1℃/分、減圧時間レ
ートbを3.7×107dyn/cm2 ・分で、降温、
減圧を行ない475分間かけて常温、常圧まで冷却し
た。
Next, while keeping this pressure P O constant, T 2
= 800 ° C., T 3 = 200 ° C. and 3 cycles. The average heating and cooling rates at this time are 100 ° C / min, 50 ° C / min, 800 ° C and 200 ° C, respectively.
Hold time was 1 minute. And again 500 ℃
Then, the temperature decrease time rate a was 1 ° C./minute, and the decompression time rate b was 3.7 × 10 7 dyn / cm 2 · minute.
The pressure was reduced and the mixture was cooled to room temperature and atmospheric pressure over 475 minutes.

【0047】このようにして得られた直径2インチの化
合物半導体基板10の転位密度、反り及びこの化合物半
導体基板10を用いて半導体レーザを作製し、30℃で
出力3mWのときの平均寿命(サンプル数100個の平
均)の値を比較例とともに表1に示した。なお、比較例
はGaAs層12、13成長終了後、加圧せずにそのま
ま室温まで冷却したものである。
The dislocation density and warpage of the thus obtained compound semiconductor substrate 10 having a diameter of 2 inches and a semiconductor laser was produced using this compound semiconductor substrate 10, and the average lifetime (sample at 30 ° C. and output of 3 mW) was measured. The average value of several hundreds) is shown in Table 1 together with the comparative examples. In the comparative example, after the growth of the GaAs layers 12 and 13 was completed, the GaAs layers were cooled to room temperature without applying pressure.

【0048】[0048]

【表1】 [Table 1]

【0049】表1より明らかなように、実施例のもので
は比較例のものに比べて転位密度及び反りが低減してい
ることが分かる。
As is clear from Table 1, the dislocation density and warpage of the example are lower than those of the comparative example.

【0050】このように、上記製造方法を用いて化合物
半導体薄膜を成長させた場合、転位密度及び反りを低減
させることができ、従来よりGaAs結晶性低下の大き
な原因の一つであった熱不整の影響を受けずに常温まで
降温させることができ、シリコン基板11上に結晶欠陥
の少ないGaAsのエピタキシャル膜を成長させること
ができる。さらにこれらを用いて電子デバイスを作製す
れば、特性の向上したデバイスを提供することが可能と
なる。
As described above, when a compound semiconductor thin film is grown by using the above-mentioned manufacturing method, the dislocation density and the warp can be reduced, and thermal imperfections, which have been one of the major causes of the deterioration of the GaAs crystallinity compared with the prior art. It is possible to lower the temperature to room temperature without being affected by, and it is possible to grow an GaAs epitaxial film with few crystal defects on the silicon substrate 11. Furthermore, by manufacturing an electronic device using these, it becomes possible to provide a device having improved characteristics.

【0051】[0051]

【発明の効果】以上詳述したように本発明に係る化合物
半導体基板の製造方法にあっては、単結晶基板上に化合
物半導体薄膜をエピタキシャル成長させる化合物半導体
基板の製造方法において、前記化合物半導体薄膜を通常
の成長温度で成長させ、この後所定の温度条件下、所定
の静水圧を印加してアニール処理を施し、続いて前記所
定の温度より上下させた温度での熱処理を少なくとも1
回行なうので、単結晶基板上に成長させた化合物半導体
薄膜の転位密度及び基板の反りを低減させることがで
き、結晶性が向上した化合物半導体薄膜を有する化合物
半導体基板を製造することができる。従って、結晶性の
よい大面積の電子デバイス用化合物半導体基板を提供す
ることが可能となる。
As described in detail above, in the method of manufacturing a compound semiconductor substrate according to the present invention, in the method of manufacturing a compound semiconductor substrate in which a compound semiconductor thin film is epitaxially grown on a single crystal substrate, the compound semiconductor thin film is It is grown at a normal growth temperature, then a predetermined hydrostatic pressure is applied under a predetermined temperature condition to perform an annealing treatment, and subsequently, at least one heat treatment is performed at a temperature higher or lower than the predetermined temperature.
Since this is repeated, the dislocation density of the compound semiconductor thin film grown on the single crystal substrate and the warp of the substrate can be reduced, and a compound semiconductor substrate having a compound semiconductor thin film with improved crystallinity can be manufactured. Therefore, it becomes possible to provide a large-area compound semiconductor substrate for electronic devices having good crystallinity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る化合物半導体基板の製造方法を実
施する際の成長温度プロファイルを示す図である。
FIG. 1 is a diagram showing a growth temperature profile when a method for manufacturing a compound semiconductor substrate according to the present invention is carried out.

【図2】(a)は成長終了直後の化合物半導体基板の断
面図、(b)は静水圧を印加したときの化合物半導体基
板の断面図、(c)は静水圧力を印加して一定時間保持
した後の化合物半導体基板を示す断面図である。
2A is a cross-sectional view of a compound semiconductor substrate immediately after completion of growth, FIG. 2B is a cross-sectional view of a compound semiconductor substrate when hydrostatic pressure is applied, and FIG. It is sectional drawing which shows the compound semiconductor substrate after doing.

【図3】従来の化合物半導体基板の製造方法を実施する
際の成長温度プロファイルを示す図である。
FIG. 3 is a diagram showing a growth temperature profile when performing a conventional method for manufacturing a compound semiconductor substrate.

【図4】(a)(b)(c)は製造工程を説明するため
の化合物半導体基板の断面図である。
4A, 4B, and 4C are cross-sectional views of a compound semiconductor substrate for explaining a manufacturing process.

【符号の説明】[Explanation of symbols]

10 化合物半導体基板 11 シリコン基板(単結晶基板) 12、13 GaAs層(半導体薄膜) 10 Compound semiconductor substrate 11 Silicon substrate (single crystal substrate) 12, 13 GaAs layer (semiconductor thin film)

Claims (1)

【特許請求の範囲】 【請求項1】 単結晶基板上に化合物半導体薄膜をエピ
タキシャル成長させる化合物半導体基板の製造方法にお
いて、前記化合物半導体薄膜を通常の成長温度で成長さ
せ、この後所定の温度条件下、所定の静水圧を印加して
アニール処理を施し、続いて前記所定の温度より上下さ
せた温度での熱処理を少なくとも1回行なうことを特徴
とする化合物半導体基板の製造方法。
Claim: What is claimed is: 1. In a method for manufacturing a compound semiconductor substrate, which comprises epitaxially growing a compound semiconductor thin film on a single crystal substrate, the compound semiconductor thin film is grown at a normal growth temperature and then grown under a predetermined temperature condition. A method for producing a compound semiconductor substrate, characterized in that a predetermined hydrostatic pressure is applied to perform an annealing treatment, and then a heat treatment at a temperature above and below the predetermined temperature is performed at least once.
JP5093991A 1991-03-15 1991-03-15 Manufacture of compound semiconductor substrate Pending JPH0536605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5093991A JPH0536605A (en) 1991-03-15 1991-03-15 Manufacture of compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5093991A JPH0536605A (en) 1991-03-15 1991-03-15 Manufacture of compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH0536605A true JPH0536605A (en) 1993-02-12

Family

ID=12872795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5093991A Pending JPH0536605A (en) 1991-03-15 1991-03-15 Manufacture of compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0536605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615651A (en) * 1994-11-30 1997-04-01 Aisin Seiki Kabushiki Kaisha Valve gear device for internal combustion engines
WO2002027080A1 (en) * 2000-09-26 2002-04-04 Yong Keun Lee A technique for the desired crystalline phase formation for the manufacture of integrated circuits
KR100726888B1 (en) * 2005-07-20 2007-06-14 한국과학기술원 Composition of Solid polymer electrolyte based on organic-inorganic hybrid network structure and second lithium battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615651A (en) * 1994-11-30 1997-04-01 Aisin Seiki Kabushiki Kaisha Valve gear device for internal combustion engines
WO2002027080A1 (en) * 2000-09-26 2002-04-04 Yong Keun Lee A technique for the desired crystalline phase formation for the manufacture of integrated circuits
KR100726888B1 (en) * 2005-07-20 2007-06-14 한국과학기술원 Composition of Solid polymer electrolyte based on organic-inorganic hybrid network structure and second lithium battery

Similar Documents

Publication Publication Date Title
JP4150527B2 (en) Crystal production method
US5107317A (en) Semiconductor device with first and second buffer layers
US5252173A (en) Process for growing semiconductor layer on substrate
JP2003218031A (en) Method of manufacturing semiconductor wafer
JPH0536605A (en) Manufacture of compound semiconductor substrate
JPH0551295A (en) Production of compound semiconductor substrate
JPH0645249A (en) Growth method of gaas layer
US5183778A (en) Method of producing a semiconductor device
JPH0532486A (en) Production of compound semiconductor substrate
JPH04182386A (en) Substrate susceptor for epitaxial growth
JPH04186824A (en) Semiconductor substrate and manufacture thereof
JPH0760790B2 (en) Compound semiconductor substrate
JP2712505B2 (en) Vapor phase epitaxy
JP2696928B2 (en) Heteroepitaxial growth method
JPH04280898A (en) Process for growing compound semiconductor crystal on si substrate
JPS63276218A (en) Growing process of semiconductor thin film crystal
JPH01184815A (en) Semiconductor wafer and manufacture thereof
JPH0532487A (en) Production of semiconductor substrate and production device used therefor
JPH01107515A (en) Manufacture of semiconductor element
JPH05275328A (en) Method for forming semiconductor substrate
JPH047819A (en) Gaas thin film
JPH04199812A (en) Semiconductor crystal growth method
JPH09106949A (en) Compound semiconductor substrate and manufacture thereof
JPH0573335B2 (en)
JPH05213693A (en) Formation of crystalline layer of compound semiconductor