JPH06268222A - Liquid crystal display device and manufacture thereof - Google Patents

Liquid crystal display device and manufacture thereof

Info

Publication number
JPH06268222A
JPH06268222A JP5536093A JP5536093A JPH06268222A JP H06268222 A JPH06268222 A JP H06268222A JP 5536093 A JP5536093 A JP 5536093A JP 5536093 A JP5536093 A JP 5536093A JP H06268222 A JPH06268222 A JP H06268222A
Authority
JP
Japan
Prior art keywords
layer
conductive layer
conductive
liquid crystal
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5536093A
Other languages
Japanese (ja)
Inventor
Hiroaki Asuma
宏明 阿須間
Kikuo Ono
記久雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5536093A priority Critical patent/JPH06268222A/en
Publication of JPH06268222A publication Critical patent/JPH06268222A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the breaking of wire caused by the adhesion of foreign substance and the residue of resist by a method wherein a laminated structure consisting of three or more layers of a plurality of materials having a high selectivity ratio of etching method with each other. CONSTITUTION:After formation of a scanning wiring and a gate electrode 2 on an insulated substrate 1, an insulating layer 7 and semiconductor layers 8 and 9 are deposited, the first layer of conductive material is deposited on the semiconductor layers 8 and 9 without conducting a photoetching process, and a photoetching treatment is conducted. Then, the insulating layer 7, on the lower part of the first conductive layer 13, and the semiconductor layers 8 and 9 are etched using the first layer of conductive layer 13 as a mask. Then, the second layer of conductive material is deposited on the upper part of the first conductive layer 13, and the second conductive layer 14 only is photoetched. Besides, the third layer of conductive material 15 only is photoetched. In other words, the deposition of a conductive material and a photoetching process are repeated, and a signal wire consisting of a three or more layer structure is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜半導体装置に係り、
特にアクティブマトリックス方式の液晶表示装置に使用
される信号配線,ドレイン電極及びソース電極の構造、
並びにその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film semiconductor device,
In particular, the structure of signal wiring, drain electrode and source electrode used in an active matrix liquid crystal display device,
And the manufacturing method thereof.

【0002】[0002]

【従来の技術】現在、量産されている薄膜トランジスタ
液晶表示装置(以下TFT−LCD)の信号配線には、
Cr,Ti,Al等の金属を主組成分とした単層構造、
またはMo/Al,Cr/Al等の2層構造が採用され
ている。2層構造の信号配線は、配線の強化による断線
防止,低抵抗率,表示画素電極である酸化インジウム
(以下ITO)膜との密着性等が考慮されている。従
来、このような2層信号配線を形成するには、逆スタガ
ー構造の薄膜トランジスタ(以下TFT)の場合、以下
に述べるような方法を用いている。まず絶縁性基板上に
スパッタ法,ホトエッチング工程によって走査配線及び
ゲート電極を形成し、その上にCVD法,ホトエッチン
グ工程を繰返し絶縁層,半導体層をパターニングした
後、信号配線,ドレイン電極及びソース電極各層の主組
成分となる各導電材料、すなわち上記にあげたMo,C
r,Al等の金属をスパッタ法により連続して堆積し、
ホトレジストパターニング後、各金属のエッチング液で
各金属層を別々に、または一括してエッチング後、ホト
レジストを除去して所望のパターンを形成する。このと
き、信号配線を2層に留まらず、さらに多層化すれば一
層の配線の強化,信頼性の向上が望めるのは自明であ
る。
2. Description of the Related Art Currently, the signal wiring of mass-produced thin film transistor liquid crystal display devices (hereinafter referred to as TFT-LCD) includes
A single layer structure mainly composed of metals such as Cr, Ti and Al,
Alternatively, a two-layer structure of Mo / Al, Cr / Al or the like is adopted. The signal wiring having a two-layer structure is considered in terms of prevention of disconnection due to strengthening of wiring, low resistivity, adhesion to an indium oxide (hereinafter referred to as ITO) film which is a display pixel electrode, and the like. Conventionally, in order to form such a two-layer signal wiring, in the case of a thin film transistor (hereinafter referred to as TFT) having an inverted stagger structure, the following method is used. First, a scanning wiring and a gate electrode are formed on an insulating substrate by a sputtering method and a photo-etching step, and a CVD method and a photo-etching step are repeated thereon to pattern an insulating layer and a semiconductor layer, and then a signal wiring, a drain electrode and a source. Each conductive material that constitutes the main composition of each layer of the electrode, that is, Mo and C mentioned above
metals such as r and Al are continuously deposited by the sputtering method,
After patterning the photoresist, each metal layer is separately or collectively etched with an etching solution for each metal, and then the photoresist is removed to form a desired pattern. At this time, it is obvious that further strengthening of the wiring and improvement of reliability can be expected if the signal wiring is not limited to two layers and is further multilayered.

【0003】ところで、TFT−LCDは、現状では非
常に高価なディスプレイ装置であるが、その理由とし
て、通常6〜8回ものホトエッチング工程を含む製造工
程の複雑さ,低い製造歩留まりがあげられる。従って、
TFT−LCDの低価格化には製造工程の簡略化,製造
歩留まり向上が必須である。歩留まり低下だけに注目す
れば、その原因として信号配線の断線があげられる。信
号配線の断線は、主に、配線金属堆積前のプロセスでで
きたパターンの段差形状に起因する断線,ゴミ等の異物
の付着,ホトレジストの欠落に起因する断線とに二分さ
れる。前者は、技術的要因であり、段差のテーパ角を緩
和する,段差を小さくする,段差上部に堆積する金属膜
厚を厚くする等、プロセスの設計条件を最適化すること
で対応可能な要因である。それに対して、後者は、クリ
ーンルームの清浄度に起因した不可抗力的要因であり、
後者による信号配線の断線を防止するのに、現状では、
信号配線幅を広くして、仮に異物の付着,ホトレジスト
の欠落によって信号配線パターンがエッチングされ欠損
してもかろうじて配線の一部を残すようにしている。
By the way, the TFT-LCD is a very expensive display device at present, but the reason therefor is that the manufacturing process usually includes 6 to 8 times of photoetching process, and the manufacturing yield is low. Therefore,
To reduce the price of TFT-LCD, it is essential to simplify the manufacturing process and improve the manufacturing yield. If attention is paid only to the yield reduction, the cause is the disconnection of the signal wiring. The disconnection of the signal wiring is mainly divided into a disconnection due to the step shape of the pattern formed in the process before the wiring metal deposition, a foreign matter such as dust adhered, and a disconnection due to the lack of photoresist. The former is a technical factor, and is a factor that can be dealt with by optimizing the process design conditions, such as relaxing the taper angle of the step, reducing the step, and increasing the metal film thickness deposited on the step. is there. On the other hand, the latter is a force majeure factor due to the cleanliness of the clean room,
In order to prevent the latter from disconnecting the signal wiring, at present,
The width of the signal wiring is widened so that even if the signal wiring pattern is etched and lost due to adhesion of foreign matter or lack of photoresist, a part of the wiring is barely left.

【0004】[0004]

【発明が解決しようとする課題】しかし、高精細液晶表
示装置の設計においては、開口率の向上が重要課題の一
つであり、画素ピッチが高くなるにつれ、従来のように
断線の発生率を低下させるために信号配線幅を広く取り
続けることは設計上問題となる。
However, in designing a high-definition liquid crystal display device, improvement of the aperture ratio is one of the important issues, and as the pixel pitch becomes higher, the rate of occurrence of wire breakage is reduced as in the conventional case. It is a design problem to keep the signal wiring width wide in order to reduce the width.

【0005】従来の方法で逆スタガー構造TFT−LC
Dを製造する場合、異物の付着,ホトレジストの欠落に
起因した配線断線のメカニズムは、次のようになる。
Inverse stagger structure TFT-LC by the conventional method
When D is manufactured, the mechanism of wire breakage due to the adhesion of foreign matter and the lack of photoresist is as follows.

【0006】第一に、信号配線,ドレイン電極及びソー
ス電極を組成する導電材料の堆積前に、絶縁層,半導体
層及び不純物半導体層を形成するのに1ないし2回のホ
トエッチング工程が入ることになり、基板表面にゴミ等
の異物が付着する可能性が高い。異物の付着箇所が信号
配線,ドレイン電極及びソース電極の形成場所にあたる
場合、異物の上部に導電材料が堆積し、その後のエッチ
ング工程では異物の除去が困難であり、また表面に凹凸
が発生し、異物が導電層の厚さよりも極端に大きい場合
は導電層を突き破り、仮にその上に第2,第3の導電材
料を堆積したとしても、異物によって発生した段差を第
2層目,第3層目が被覆できなくて配線の断線が生じ
る。
First, one or two photo-etching steps are required to form an insulating layer, a semiconductor layer and an impurity semiconductor layer before depositing a conductive material forming the signal wiring, the drain electrode and the source electrode. Therefore, it is highly possible that foreign matter such as dust adheres to the substrate surface. When the adhered portion of the foreign matter corresponds to the formation place of the signal wiring, the drain electrode, and the source electrode, the conductive material is deposited on the upper portion of the foreign matter, it is difficult to remove the foreign matter in the subsequent etching step, and unevenness occurs on the surface. If the foreign matter is extremely thicker than the thickness of the conductive layer, the conductive layer is pierced through, and even if the second and third conductive materials are deposited on the conductive layer, the step caused by the foreign matter is caused by the second and third layers. Since the eyes cannot be covered, the wiring breaks.

【0007】第二に、信号配線導電材料を堆積後、ホト
レジストパターニング工程での異物の付着,ホトレジス
トパターン欠落は、クリーンルームの清浄度に限界があ
る以上、確率的に免れられない。この場合、導電層のエ
ッチング時にホトレジストが欠落した部分の導電層まで
エッチングされ、配線が断線する。
Secondly, after the signal wiring conductive material is deposited, adhesion of foreign matter and missing of the photoresist pattern in the photoresist patterning step cannot be stochastically avoided because the cleanliness of the clean room is limited. In this case, even the conductive layer in the portion where the photoresist is missing during the etching of the conductive layer is etched, and the wiring is broken.

【0008】従って、本発明の目的は、信号配線幅を必
要最小限に抑え、ホトエッチング工程数を増やすことな
く、従来のプロセスに使用されている導電材料を使用
し、異物の付着,レジスト残りに起因する信号配線の断
線を防ぐことである。
Therefore, an object of the present invention is to suppress the signal wiring width to a necessary minimum and increase the number of photo-etching steps to use the conductive material used in the conventional process, to attach foreign matters and resist residue. This is to prevent disconnection of the signal wiring due to.

【0009】[0009]

【課題を解決するための手段】本発明は、逆スタガー構
造TFTをスイッチング素子とする液晶表示装置の信号
配線,ドレイン電極及びソース電極を、3層以上の層構
造とし、層構造を構成する3種類以上の導電材料を選択
するのにあたって、各導電材料が他の導電材料に対して
エッチングの選択比が高いようにする。
According to the present invention, a signal wiring, a drain electrode and a source electrode of a liquid crystal display device having an inverted staggered structure TFT as a switching element have a layered structure of three or more layers to form a layered structure. In selecting more than one kind of conductive material, each conductive material should have a high etching selection ratio with respect to other conductive materials.

【0010】上記の層構造を形成するにあたって、絶縁
性基板上に走査配線,ゲート電極を形成後、絶縁層,半
導体層を堆積し、ホトエッチング工程を行なうことな
く、続いて半導体層上に第1層目の導電材料をスパッタ
法により堆積し、ホトエッチングする。次に前記第1層
目の導電層をマスクとして第1導電層下部の絶縁層,半
導体層をエッチングする。つぎに第1導電層上部に第2
層目の導電材料を堆積し、第2導電層のみホトエッチン
グする。さらに第2導電層上部に第3層目の導電材料を
堆積し、第3導電層のみホトエッチングする。すなわ
ち、導電材料の堆積,ホトエッチングの工程を繰返し、
3層以上の層構造から成る信号配線を得るのである。
In forming the above-mentioned layer structure, after forming the scanning wiring and the gate electrode on the insulating substrate, the insulating layer and the semiconductor layer are deposited, and the photo-etching step is not performed. The conductive material of the first layer is deposited by the sputtering method and photoetched. Next, the insulating layer and the semiconductor layer under the first conductive layer are etched using the first conductive layer as a mask. Next, a second layer is formed on the first conductive layer.
A conductive material for the second layer is deposited and only the second conductive layer is photoetched. Further, a third layer conductive material is deposited on the second conductive layer, and only the third conductive layer is photoetched. That is, the steps of depositing the conductive material and photo-etching are repeated,
The signal wiring having a layered structure of three layers or more is obtained.

【0011】絶縁層,半導体層をエッチングするのに、
第2導電層をパターニング後、第2層目をマスクとして
使用しても良い。
For etching the insulating layer and the semiconductor layer,
After patterning the second conductive layer, the second layer may be used as a mask.

【0012】[0012]

【作用】本発明によれば、信号配線、ドレイン電極及び
ソース電極導電材料堆積前の絶縁層,半導体層のホトエ
ッチング工程を省略しているので、導電材料堆積前に基
板表面に付着する異物の量を低減できる。従って、異物
の付着による導電層表面の凹凸,導電層の突き破りの発
生を抑え、配線の断線を防止できる。
According to the present invention, since the photo-etching step of the insulating layer and the semiconductor layer before the deposition of the conductive material of the signal wiring, the drain electrode and the source electrode is omitted, the foreign matter adhering to the surface of the substrate before the deposition of the conductive material is eliminated. The amount can be reduced. Therefore, it is possible to suppress the occurrence of irregularities on the surface of the conductive layer and the breakage of the conductive layer due to the adhesion of foreign matter, and to prevent the disconnection of the wiring.

【0013】二つ目の作用として、信号配線、ドレイン
電極及びソース電極のホトエッチング時に発生するホト
レジスト欠落に起因した配線の断線を防止できる。なぜ
ならば、信号配線,ドレイン電極及びソース電極の各導
電層パターンの同一箇所が断線する可能性は極めて低い
から、第1導電層ホトエッチング後、第2導電層を堆積
すれば、1層目で発生した断線部を2層目が覆うことに
なり、1層目の断線を救済することができる。また、第
2導電層のホトレジストの欠落から2層目エッチングの
際、断線が生じ、その断線部から浸入した第2導電層の
エッチング液に1層目がさらされるが、1層目と2層目
のエッチングの選択比が高いため、1層目はエッチング
されないので配線は断線しない。さらに第1,第2導電
層の同一箇所に断線が生じた場合でも、第3導電層が前
記と同様に断線を修復することが可能である。また、第
3導電層のエッチング液は、1層目,2層目に対して選
択比が高いので下層の配線はエッチングされず断線しな
い。従って、本発明の多層信号配線製造法によれば、3
層形成する過程で同一箇所に異物が付着しホトレジスト
が欠損した場合のみ配線の断線が発生するので、断線の
発生は、極めて低くなる。
As a second function, it is possible to prevent the disconnection of the wiring due to the lack of photoresist which occurs during the photo etching of the signal wiring, the drain electrode and the source electrode. This is because it is extremely unlikely that the same portion of each conductive layer pattern of the signal wiring, the drain electrode and the source electrode will be broken. Therefore, if the second conductive layer is deposited after photoetching the first conductive layer, Since the generated disconnection portion is covered by the second layer, the disconnection of the first layer can be relieved. Moreover, when the second layer is etched due to the lack of the photoresist of the second conductive layer, a disconnection occurs, and the first layer is exposed to the etching solution of the second conductive layer that has penetrated from the disconnection portion. Since the etching selectivity of the eye is high, the wiring is not broken because the first layer is not etched. Furthermore, even if a disconnection occurs at the same location of the first and second conductive layers, the third conductive layer can repair the disconnection as described above. Further, since the etching solution for the third conductive layer has a high selection ratio with respect to the first and second layers, the wiring in the lower layer is not etched and is not broken. Therefore, according to the multilayer signal wiring manufacturing method of the present invention,
The occurrence of wire breakage is extremely low because wire breakage occurs only when foreign matter adheres to the same location and the photoresist is lost during the layer formation process.

【0014】三つ目の作用として、本発明では信号配
線,ドレイン電極及びソース電極を形成するのに配線を
構成する層の数だけホトエッチング工程が必要であり、
配線の製造だけを考慮すれば、従来の製造方法よりも複
雑であるが、配線層をマスクとして絶縁層,半導体層を
パターニングすることより、絶縁層,半導体層のホトエ
ッチング工程を削減できるので、全体の製造工程数は増
えない。
As a third action, in the present invention, a photo-etching step is required to form the signal wiring, the drain electrode and the source electrode by the number of layers constituting the wiring.
Although it is more complicated than the conventional manufacturing method if only the manufacturing of the wiring is considered, the photo-etching process of the insulating layer and the semiconductor layer can be reduced by patterning the insulating layer and the semiconductor layer using the wiring layer as a mask. The total number of manufacturing processes does not increase.

【0015】[0015]

【実施例】以下、本発明の一実施例を図1に示す。図1
は、液晶表示装置のスイッチング素子アレイが形成され
た基板のTFT拡大平面図及び断面図である。図1にお
いて、1は絶縁性基板、2は走査配線並びにゲート電極
部、3は絶縁層である陽極化成膜、4は信号配線及びド
レイン電極部、5はソース電極部、6は表示画素電極
部、7は絶縁層、8は半導体層、9はn型半導体層、1
0は信号配線及びドレイン電極第1導電層、11は同様
に第2導電層、12は同様に第3導電層、13はソース
電極第1導電層、14は同様に第2導電層、15は同様
に第3導電層である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention is shown in FIG. Figure 1
FIG. 2A is an enlarged plan view and a sectional view of a TFT of a substrate on which a switching element array of a liquid crystal display device is formed. In FIG. 1, 1 is an insulating substrate, 2 is a scanning wiring and a gate electrode portion, 3 is an anodized film which is an insulating layer, 4 is a signal wiring and drain electrode portion, 5 is a source electrode portion, and 6 is a display pixel electrode. Part, 7 is an insulating layer, 8 is a semiconductor layer, 9 is an n-type semiconductor layer, 1
Reference numeral 0 is the signal wiring and drain electrode first conductive layer, 11 is the same second conductive layer, 12 is the same third conductive layer, 13 is the source electrode first conductive layer, 14 is the same second conductive layer, and 15 is the same. Similarly, it is the third conductive layer.

【0016】本発明のTFTの製造方法を図5を用いて
説明する。図5は、図1のC−C′断面で、各工程にお
けるTFT断面形状を表している。
A method of manufacturing the TFT of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view taken along the line CC ′ of FIG. 1, showing the TFT cross-sectional shape in each step.

【0017】絶縁性基板1上にスパッタ法によりAlを
主成分とする導電材料を堆積,ホトエッチング工程よ
り、走査配線並びにゲート電極2を形成する(図5
(a))。陽極化成法により、走査配線端子部を除き、
配線表面にAl23膜3を形成する(図5(b))。C
VD法等により絶縁層SiN7,半導体層アモルファス
シリコン(以下a−Si)8,n+アモルファスシリコ
ン(以下n+a−Si)層9を連続して堆積する。続い
てスパッタ法によりソース電極第1導電層13を堆積す
る(図5(c))。ホトエッチング工程より、第1導電
層13を所望のパターンに形成後、第1導電層13をマ
スクとしてドライエッチ法等によりSiN7,a−Si
8及びn+a−Si9を一括エッチングする(図5
(d))。スパッタ法によりソース電極第2導電層14
を堆積する(図5(e))。ホトエッチング工程によ
り、第2導電層14を第1導電層13の上部のみ、また
は上部及び側壁部を被覆するようなパターンを形成する
(図5(f))。スパッタ法によりソース電極第3導電
層15を堆積する(図5(g))。ホトエッチング工程
により、第3導電層15を第2導電層15の上部のみ、
または上部及び側壁部を被覆するようなパターンを形成
する(図5(h))。第2導電層14,第3導電層15
をマスクとしてゲート電極上部の第1導電層13をエッ
チング後、続いて第1導電層13,第2導電層14及び
第3導電層15をマスクとしてゲート電極上部のn+a
−Si9をエッチングし、n+a−Si9をドレイン側
とソース側に分離する。
A scanning wiring and a gate electrode 2 are formed by depositing a conductive material containing Al as a main component on the insulating substrate 1 by a sputtering method and performing a photoetching process (FIG. 5).
(A)). By the anodization method, except the scanning wiring terminal part,
An Al 2 O 3 film 3 is formed on the wiring surface (FIG. 5B). C
The insulating layer SiN7, the semiconductor layer amorphous silicon (hereinafter a-Si) 8, and the n + amorphous silicon (hereinafter n + a-Si) layer 9 are successively deposited by the VD method or the like. Subsequently, the source electrode first conductive layer 13 is deposited by the sputtering method (FIG. 5C). After the first conductive layer 13 is formed into a desired pattern by a photo-etching process, the first conductive layer 13 is used as a mask to dry the SiN7, a-Si film or the like.
8 and n + a-Si9 are collectively etched (FIG. 5).
(D)). The source electrode second conductive layer 14 is formed by the sputtering method.
Are deposited (FIG. 5E). A pattern is formed by the photoetching process so that the second conductive layer 14 covers only the upper part of the first conductive layer 13 or the upper part and the side wall part (FIG. 5F). The source electrode third conductive layer 15 is deposited by the sputtering method (FIG. 5G). By the photo-etching process, the third conductive layer 15 is formed only on the upper part of the second conductive layer 15,
Alternatively, a pattern is formed so as to cover the upper portion and the side wall portion (FIG. 5 (h)). Second conductive layer 14, third conductive layer 15
Is used as a mask to etch the first conductive layer 13 above the gate electrode, and then using the first conductive layer 13, the second conductive layer 14 and the third conductive layer 15 as a mask, n + a above the gate electrode is used as a mask.
-Si9 is etched to separate n + a-Si9 into a drain side and a source side.

【0018】本発明の第2の製造方法を図6に示す。図
6(a)〜(c)までは、図5と同様である。図6で
は、第1導電層13をパターニング後(図6(d))、
n+a−Si9,a−Si8及びSiN7のエッチング
を行なわず、第2導電層14を堆積する(図6
(e))。第2導電層14のパターニング後、第2導電
層14をマスクとしてn+a−Si9,a−Si8及び
SiN7をエッチングする(図6(f))。その後は、
第3導電層15を堆積(図6(g)),第3導電層15
をホトエッチング(図6(h)),第3導電層をマスク
として第2導電層14,第1導電層13,n+a−Si
9をエッチングする(図6(i))。
The second manufacturing method of the present invention is shown in FIG. 6A to 6C are the same as FIG. In FIG. 6, after patterning the first conductive layer 13 (FIG. 6D),
The second conductive layer 14 is deposited without etching n + a-Si9, a-Si8 and SiN7 (FIG. 6).
(E)). After patterning the second conductive layer 14, n + a-Si9, a-Si8 and SiN7 are etched using the second conductive layer 14 as a mask (FIG. 6 (f)). After that,
Depositing the third conductive layer 15 (FIG. 6G), the third conductive layer 15
By photo-etching (FIG. 6 (h)), using the third conductive layer as a mask, the second conductive layer 14, the first conductive layer 13, and n + a-Si.
9 is etched (FIG. 6 (i)).

【0019】つぎに本発明による信号配線の断線防止の
方法を図7を用いて説明する。図7は、図1のD−D′
断面で、各工程における信号配線の断面形状を表してい
る。上記の薄膜トランジスタの製造方法で説明したよう
に絶縁性基板1上に走査配線及びゲート電極2,陽極化
成膜3を形成後、SiN7,a−Si8,n+a−Si
9,信号配線及びドレイン電極第1導電層10を堆積す
る(図7(a))。ここで、第1導電層10の堆積前に
SiN7,a−Si8及びn+a−Si9のホトエッチ
ング工程がないので、基板表面に異物が付着する確率が
低い。従って、第1導電層10の表面は平坦で、異物に
よって突き破られる可能性も低い。第1導電層10上に
ホトレジストを塗布,現像工程を経て所望のホトレジス
トパターン16を作る。この際、ゴミ等の異物の付着に
よりホトレジストパターン16に欠落部ができる(図7
(b))。第1導電層10のエッチング工程で、この欠
落部からエッチング液が浸入し、第1導電層10に断線
が生じる(図7(c))。この上に信号配線及びドレイ
ン電極第2導電層11を堆積すると、段差は生じるが、
第1導電層10の断線部にも第2導電層11が埋め込ま
れ、配線の断線を救済できる(図7(d))。第2導電
層11上にホトレジストを塗布,現像工程を経てホトレ
ジストパターン16を形成するが、1層目と同様に欠落
部ができる(図7(e))。第2導電層11のエッチン
グ工程で、ホトレジストパターン16の欠落部からエッ
チング液が浸入し、第2導電層11に断線が生じる。こ
のとき、第2導電層の断線部からエッチング液が第1導
電層10に浸入するが、エッチング液の選択比が高いの
で第1導電層10に断線は生じない(図7(f))。従
って、1層目と2層目の断線部が一致しないかぎり、信
号配線の断線は起こらない。1層目と2層目の断線部が
一致したとしても、続いて堆積される信号配線及びドレ
イン電極第3導電層12がその断線部に埋め込まれ、断
線を救済できる(図7(g))。第3導電層12のホト
レジストパターンにも欠落部が生じるが(図7
(h))、エッチング液の選択比が高いため2層目と1
層目はエッチングされない。また1層目,2層目及び3
層目の断線部が一致する確率は、極めて低い。従って、
各層で発生したホトレジストの欠落による断線を他の層
で補修でき、信号配線全体として見たとき、断線の可能
性はほとんどなくなる。
Next, a method for preventing disconnection of signal wiring according to the present invention will be described with reference to FIG. FIG. 7 shows DD ′ of FIG.
The cross section shows the cross-sectional shape of the signal wiring in each step. As described in the method of manufacturing a thin film transistor, SiN7, a-Si8, n + a-Si are formed after forming the scanning wiring, the gate electrode 2, and the anodized film 3 on the insulating substrate 1.
9, signal wiring and drain electrode first conductive layer 10 is deposited (FIG. 7A). Here, since there is no photo-etching step of SiN 7, a-Si 8 and n + a-Si 9 before the deposition of the first conductive layer 10, the probability that foreign matter will adhere to the substrate surface is low. Therefore, the surface of the first conductive layer 10 is flat and is unlikely to be pierced by foreign matter. A photoresist is coated on the first conductive layer 10, and a desired photoresist pattern 16 is formed through a developing process. At this time, a missing portion is formed in the photoresist pattern 16 due to adhesion of foreign matter such as dust (FIG. 7).
(B)). In the etching process of the first conductive layer 10, the etching liquid penetrates through this missing portion, causing a disconnection in the first conductive layer 10 (FIG. 7C). When the signal wiring and the drain electrode second conductive layer 11 are deposited on this, a step is formed,
The second conductive layer 11 is also embedded in the disconnection portion of the first conductive layer 10 to relieve the disconnection of the wiring (FIG. 7D). A photoresist pattern 16 is formed on the second conductive layer 11 by applying a photoresist and a developing process, but a missing portion is formed as in the first layer (FIG. 7E). In the etching process of the second conductive layer 11, the etching liquid penetrates from the missing portion of the photoresist pattern 16 to cause a disconnection in the second conductive layer 11. At this time, the etching liquid penetrates into the first conductive layer 10 through the disconnection portion of the second conductive layer, but the disconnection does not occur in the first conductive layer 10 because the selectivity of the etching liquid is high (FIG. 7 (f)). Therefore, the disconnection of the signal wiring does not occur unless the disconnection portions of the first layer and the second layer match. Even if the disconnection portions of the first layer and the second layer coincide with each other, the signal wiring and the drain electrode third conductive layer 12 that are subsequently deposited are buried in the disconnection portion, and the disconnection can be repaired (FIG. 7 (g)). . Although the photoresist pattern of the third conductive layer 12 has a missing portion (see FIG. 7).
(H)), because the etching liquid has a high selectivity,
The layers are not etched. The first layer, the second layer and the third layer
The probability that the disconnection portions of the layers will coincide is extremely low. Therefore,
The disconnection due to the lack of photoresist generated in each layer can be repaired in another layer, and the possibility of disconnection is almost eliminated when viewed as the entire signal wiring.

【0020】上記の方法において、エッチング液の選択
比が異なる複数の導電材料として、例えば、Cr,A
l,ITOを使用する。この場合、Crには第2硝酸セ
リウムアンモニウム,Alにはリン酸,硝酸,酢酸の混
合液、ITOには塩酸,硝酸,水の混合液をエッチング
液として使用する。層の組合せとしては、第1層をA
l,第2層をCr,第3層をITOとした場合,第1層
をCr,第2層をAl,第3層をITOとした場合が考
えられる。
In the above method, a plurality of conductive materials having different etching liquid selection ratios, such as Cr and A, are used.
l, ITO is used. In this case, the second cerium ammonium nitrate is used as Cr, the mixed solution of phosphoric acid, nitric acid and acetic acid is used as Al, and the mixed solution of hydrochloric acid, nitric acid and water is used as ITO for the etching solution. As the combination of layers, the first layer is A
When the first layer is Cr, the second layer is Cr, and the third layer is ITO, the first layer may be Cr, the second layer is Al, and the third layer is ITO.

【0021】図2は、上記の方法により製造した第2の
実施例であり、信号配線及びソース電極の断面構造であ
る。
FIG. 2 shows a second embodiment manufactured by the above method, which is a sectional structure of a signal wire and a source electrode.

【0022】図3は、第3の実施例であり、多層構造に
おいて、各金属層の密着性を考慮し、上層部の金属が下
層部の金属の表面及び側壁を被覆したものである。
FIG. 3 shows a third embodiment, in which, in the multilayer structure, the metal of the upper layer covers the surface and the side wall of the metal of the lower layer in consideration of the adhesiveness of each metal layer.

【0023】図4は、第4の実施例であり、信号配線及
びソース電極の多層構造を4層にしたものである。この
場合、ITO膜との密着性を考慮して、第1導電層1
0,13にCr,第2導電層11,12にITO,第3
導電層12,15にCr,第4導電層17,18にAl
を使用する。さらに層の数を増やすことは、原理的に可
能であるが、ホトエッチング工程も層の数だけ必要なの
で、製造のコスト,スループットを考慮すると4層まで
が現実的である。
FIG. 4 shows a fourth embodiment, in which the signal wiring and the source electrode have a multilayer structure of four layers. In this case, considering the adhesion with the ITO film, the first conductive layer 1
0, 13 is Cr, second conductive layers 11, 12 are ITO, third
Cr for the conductive layers 12, 15 and Al for the fourth conductive layers 17, 18
To use. Further, it is possible in principle to increase the number of layers, but since the photoetching step is required by the number of layers, up to four layers are practical considering the manufacturing cost and throughput.

【0024】[0024]

【発明の効果】本発明によれば、液晶表示装置におい
て、製造工程をほとんど増やすことなく、異物の付着,
ホトレジストの欠落に起因する信号配線の断線を防止す
ることが可能となり、製造歩留まりを向上することがで
きる。
According to the present invention, in a liquid crystal display device, adhesion of foreign matter,
It is possible to prevent disconnection of the signal wiring due to the lack of the photoresist, and it is possible to improve the manufacturing yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜トランジスタの平面図及び断面図
である。
1A and 1B are a plan view and a cross-sectional view of a thin film transistor of the present invention.

【図2】本発明の多層配線構造の実施例2を示す図であ
る。
FIG. 2 is a diagram showing a second embodiment of the multilayer wiring structure of the present invention.

【図3】同様に実施例3を示す図である。FIG. 3 is a diagram similarly showing a third embodiment.

【図4】同様に実施例4を示す図である。FIG. 4 is a diagram similarly showing Example 4.

【図5】本発明の薄膜トランジスタの製造方法を示す図
である。
FIG. 5 is a diagram showing a method of manufacturing a thin film transistor according to the present invention.

【図6】本発明の薄膜トランジスタの製造方法2を示す
図である。
FIG. 6 is a diagram showing a method 2 for manufacturing a thin film transistor according to the present invention.

【図7】本発明の効果を説明するための多層配線の製造
方法を示す図である。
FIG. 7 is a diagram showing a method for manufacturing a multilayer wiring for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1…絶縁性基板、2…走査配線及びゲート電極、3…信
号配線及びドレイン電極、4…絶縁層、5…半導体層、
6…ソース電極、7…表示電極、8…陽極化成膜、9…
n型半導体層、10…信号配線及びドレイン電極第1導
電層、11…信号配線及びドレイン電極第2導電層、1
2…信号配線及びドレイン電極第3導電層、13…ソー
ス電極第1導電層、14…ソース電極第2導電層、15
…ソース電極第3導電層、16…ホトレジストパター
ン、17…信号配線及びドレイン電極第4導電層、18
…ソース電極第4導電層。
1 ... Insulating substrate, 2 ... Scan wiring and gate electrode, 3 ... Signal wiring and drain electrode, 4 ... Insulating layer, 5 ... Semiconductor layer,
6 ... Source electrode, 7 ... Display electrode, 8 ... Anodized film formation, 9 ...
n-type semiconductor layer, 10 ... Signal wiring and drain electrode first conductive layer, 11 ... Signal wiring and drain electrode second conductive layer, 1
2 ... Signal wiring and drain electrode third conductive layer, 13 ... Source electrode first conductive layer, 14 ... Source electrode second conductive layer, 15
Source electrode third conductive layer 16, photoresist pattern 17, signal wiring and drain electrode fourth conductive layer 18,
... Source electrode fourth conductive layer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上に、複数本の走査配線及び信
号配線を配し、前記走査配線及び信号配線の交点近傍に
スイッチング素子となる薄膜トランジスタ並びに表示画
素電極を備えた液晶表示装置の構造において、前記信号
配線及びドレイン電極、並びに前記薄膜トランジスタか
ら前記表示画素電極へ信号データを供給するソース電極
を、互いにエッチング方法の選択比が高い複数の導電材
料で3層以上の積層構造としたことを特徴とする液晶表
示装置。
1. A structure of a liquid crystal display device comprising a plurality of scanning wirings and signal wirings arranged on an insulating substrate, and a thin film transistor serving as a switching element and a display pixel electrode near an intersection of the scanning wirings and the signal wirings. In the above, the signal wiring and the drain electrode, and the source electrode for supplying signal data from the thin film transistor to the display pixel electrode have a laminated structure of three or more layers made of a plurality of conductive materials having a high etching method selection ratio. Characteristic liquid crystal display device.
【請求項2】請求項1において、前記信号配線及びドレ
イン電極、並びにソース電極の積層構造において、各層
を組成する導電材料を堆積,ホトレジスト塗布,ホトレ
ジストパターニング,エッチング,ホトレジスト除去の
プロセスを各層毎に繰り返し、3層以上の積層構造を形
成することを特徴とする液晶表示装置の製造方法。
2. The process of depositing a conductive material composing each layer, applying photoresist, patterning photoresist, etching, and removing photoresist for each layer in the laminated structure of the signal wiring, the drain electrode, and the source electrode according to claim 1. A method of manufacturing a liquid crystal display device, which comprises repeatedly forming a laminated structure of three or more layers.
【請求項3】請求項1において、前記信号配線及びドレ
イン電極、並びにソース電極より下側に半導体層,絶縁
層,ゲート電極が位置する前記液晶表示装置において、
前記絶縁層,半導体層を堆積後、続いて前記信号配線及
びドレイン電極、並びにソース電極を構成する導電層を
堆積,ホトエッチング後、前記導電層をマスクとして、
下の前記半導体層並びに絶縁層をエッチングすることを
特徴とする液晶表示装置の製造方法。
3. The liquid crystal display device according to claim 1, wherein a semiconductor layer, an insulating layer, and a gate electrode are located below the signal line, the drain electrode, and the source electrode.
After depositing the insulating layer and the semiconductor layer, subsequently depositing a conductive layer that constitutes the signal wiring, the drain electrode, and the source electrode, and after photoetching, using the conductive layer as a mask,
A method for manufacturing a liquid crystal display device, which comprises etching the semiconductor layer and the insulating layer below.
【請求項4】請求項1において、前記信号配線及びドレ
イン電極、並びにソース電極の3層以上の層構造におい
て、上部に形成される層が下部に形成される層の表面及
び側壁を被覆するように形成したことを特徴とする液晶
表示装置。
4. The layer structure of three or more layers of the signal wiring, the drain electrode and the source electrode according to claim 1, wherein the layer formed on the upper side covers the surface and the side wall of the layer formed on the lower side. A liquid crystal display device characterized by being formed in.
JP5536093A 1993-03-16 1993-03-16 Liquid crystal display device and manufacture thereof Pending JPH06268222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5536093A JPH06268222A (en) 1993-03-16 1993-03-16 Liquid crystal display device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5536093A JPH06268222A (en) 1993-03-16 1993-03-16 Liquid crystal display device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06268222A true JPH06268222A (en) 1994-09-22

Family

ID=12996332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5536093A Pending JPH06268222A (en) 1993-03-16 1993-03-16 Liquid crystal display device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06268222A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100552298B1 (en) * 1998-09-24 2006-06-07 삼성전자주식회사 Liquid crystal display device and substrate manufacturing method for liquid crystal display device
KR100685945B1 (en) * 2000-12-29 2007-02-23 엘지.필립스 엘시디 주식회사 Liquid crystal display and manufacturing method of the same
JP2008209931A (en) * 2008-03-12 2008-09-11 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US9059045B2 (en) 2000-03-08 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100552298B1 (en) * 1998-09-24 2006-06-07 삼성전자주식회사 Liquid crystal display device and substrate manufacturing method for liquid crystal display device
US9059045B2 (en) 2000-03-08 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9368514B2 (en) 2000-03-08 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9786687B2 (en) 2000-03-08 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR100685945B1 (en) * 2000-12-29 2007-02-23 엘지.필립스 엘시디 주식회사 Liquid crystal display and manufacturing method of the same
JP2008209931A (en) * 2008-03-12 2008-09-11 Semiconductor Energy Lab Co Ltd Liquid crystal display device

Similar Documents

Publication Publication Date Title
US5036370A (en) Thin film semiconductor array device
JP4543385B2 (en) Manufacturing method of liquid crystal display device
US6927105B2 (en) Thin film transistor array substrate and manufacturing method thereof
JP2963529B2 (en) Active matrix display device
JP3516441B2 (en) Active matrix substrate, display device, and method of manufacturing active matrix substrate
US7514712B2 (en) Electro-optic display and connection between drain electrode and pixel electrode
JP2002076366A (en) Thin film transistor, method of manufacturing the same multilayer film structure, method of manufacturing the same
JP4166300B2 (en) Manufacturing method of liquid crystal display device
KR100264757B1 (en) Active matrix lcd and method of producing the same
JP3239504B2 (en) Method of manufacturing thin film transistor matrix
JP2001217427A (en) Thin film transistor, liquid crystal display panel and method of manufacturing thin film transistor
US6746959B2 (en) Liquid crystal display and method
JP2000002886A (en) Manufacture of liquid crystal display device
US6410211B1 (en) Method for manufacturing a liquid crystal display device
KR20010056591A (en) Liquid crystal display and method for fabricating the same
JPH06268222A (en) Liquid crystal display device and manufacture thereof
JP2003156764A (en) Manufacturing method for thin-film transistor array substrate and liquid crystal display unit equipped with the same
JP2002124680A (en) Array substrate and its manufacturing method
JP3424618B2 (en) Method of manufacturing thin film transistor array substrate
KR100496556B1 (en) Active matrix liquid crystal display and method of making the same
JPH0627981B2 (en) Display electrode array for active matrix type display device and manufacturing method thereof
JP3047859B2 (en) Active matrix type liquid crystal display device and manufacturing method thereof
JP2552365B2 (en) Active matrix display
JPH05257170A (en) Production of active matrix liquid crystal display device
JP2001311926A (en) Method for manufacturing active matrix type liquid crystal display panel