JPH06215718A - Sample device of electron microscope and the like - Google Patents

Sample device of electron microscope and the like

Info

Publication number
JPH06215718A
JPH06215718A JP50A JP582793A JPH06215718A JP H06215718 A JPH06215718 A JP H06215718A JP 50 A JP50 A JP 50A JP 582793 A JP582793 A JP 582793A JP H06215718 A JPH06215718 A JP H06215718A
Authority
JP
Japan
Prior art keywords
movement
shaft
spring
bellows
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP50A
Other languages
Japanese (ja)
Other versions
JP2965186B2 (en
Inventor
Toru Kasai
亨 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP5005827A priority Critical patent/JP2965186B2/en
Publication of JPH06215718A publication Critical patent/JPH06215718A/en
Application granted granted Critical
Publication of JP2965186B2 publication Critical patent/JP2965186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To achieve the fine movement of X movement by giving the force reverse to the atmospheric pressure working on a metallic bellows for sealing a sample chamber and the atmosphere, to a second hollow pipe for forming an X-movement shaft. CONSTITUTION:A non-magnetic tensile coil spring 10 is provided on the outer periphery of a bellows 42 provided on the vacuum side, and the one end of the spring is connected to the front end part of an X-movement shaft 50 and the other end to a device frame. The spring 10 is extended and contracted in relation to X-movement by mounting the coil spring 10 on the outer periphery of the bellows, while the spring is rotated and tilted around the supporting points of the both ends of the spring 10 serving as a center at the time of Y- and Z-movements. The atmospheric pressure applied to the shaft 50 is canceled by the spring force, and fine X-movement is possible while the abrasion of the feeding spring of the X-movement is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子顕微鏡等の試料装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample device such as an electron microscope.

【0002】[0002]

【従来の技術】超高真空透過型電子顕微鏡(TEM)に
使用する従来のサイドエンドリタイプのゴニオメータで
は、Y,Z動の支点である球面をOリングで真空シール
することはできない。そこで、本出願人は球面の真空側
にベローズを取付け、X,Y,Z動をベローズのたわみ
で動かすことを既に提案しており(特願平4ー2565
08)、これについて図4〜図9を参照して概略説明す
る。
2. Description of the Related Art In a conventional side end-reli type goniometer used for an ultra-high vacuum transmission electron microscope (TEM), a spherical surface which is a fulcrum of Y and Z movements cannot be vacuum-sealed by an O-ring. Therefore, the present applicant has already proposed to attach a bellows on the vacuum side of the spherical surface and move the X, Y, and Z movements by the deflection of the bellows (Japanese Patent Application No. 4-2565).
08), which will be briefly described with reference to FIGS. 4 to 9.

【0003】図4は試料装置の電子線光軸に垂直な断面
図、図5は試料装置の電子線光軸方向における断面図、
図6はX動を説明するための図、図7はZ動を説明する
ための図、図8はZ動を説明するための図、図9はY動
を説明するための図である。図4、図5において、試料
装置の先端部は試料ホルダ受台32に試料ホルダ31が
取り付けられ、試料室壁33を通して試料室36に挿入
されている。試料装置は先端部内面が球面軸受41とな
っている円筒状支持体40内に電子線光軸に垂直な軸芯
を持つX動シャフト50が設けられ、この周囲に設けら
れたY・Z動シャフト51の球面状膨出部52が球面軸
受41に揺動可能に支持されている。X動シャフト50
内には、Y・Z動シャフト51に取付けられたマグネッ
ト54と磁気結合するマグネット56が取付けられたX
軸傾斜シャフト55が設けられ、Y・Z動シャフト51
の回転に追従して回転するようになっている。さらにシ
ャフト55内にはY軸試料傾斜用シャフト94が設けら
れている。X動シャフト50はX,Y,Z動等の動きを
許容するメタルベローズ42の一端に取り付けられてお
り、ベローズ42の他端は円筒状支持体40に固定され
て試料室内と試料装置の大気側との真空シールを行って
いる。
FIG. 4 is a sectional view of the sample apparatus perpendicular to the electron beam optical axis, and FIG. 5 is a sectional view of the sample apparatus in the electron beam optical axis direction.
6 is a diagram for explaining the X motion, FIG. 7 is a diagram for explaining the Z motion, FIG. 8 is a diagram for explaining the Z motion, and FIG. 9 is a diagram for explaining the Y motion. In FIG. 4 and FIG. 5, the sample holder 31 is attached to the sample holder pedestal 32 at the tip of the sample device, and is inserted into the sample chamber 36 through the sample chamber wall 33. In the sample device, an X-moving shaft 50 having an axis perpendicular to the electron beam optical axis is provided in a cylindrical support body 40 whose inner surface is a spherical bearing 41, and Y / Z movements provided around this are provided. The spherical bulging portion 52 of the shaft 51 is swingably supported by the spherical bearing 41. X motion shaft 50
A magnet 56 magnetically coupled to the magnet 54 mounted on the Y / Z moving shaft 51 is mounted inside the X
The shaft tilt shaft 55 is provided, and the Y / Z moving shaft 51 is provided.
It is designed to follow the rotation of. Further, inside the shaft 55, a Y-axis sample tilting shaft 94 is provided. The X-moving shaft 50 is attached to one end of a metal bellows 42 that allows movements such as X, Y, and Z movements, and the other end of the bellows 42 is fixed to a cylindrical support 40 and is held in the atmosphere in the sample chamber and the sample apparatus. The side is vacuum-sealed.

【0004】また、円筒状支持体40のY・Z動シャフ
ト51に対する軸受部はY,Z動の中心となっており、
軸受面にはベローズ42にかかる大気圧がかかり、Y・
Z動シャフト51の球面が押しつけられている。X動シ
ャフト50の外周部にはY・Z動シャフト51が設けら
れ、Y・Z動シャフト51をY軸駆動用テコでY方向に
押すことによりY動が得られる。
Further, the bearing portion for the Y / Z motion shaft 51 of the cylindrical support 40 is the center of Y, Z motion,
The bearing surface is exposed to the atmospheric pressure applied to the bellows 42, and Y.
The spherical surface of the Z moving shaft 51 is pressed. A Y / Z moving shaft 51 is provided on the outer peripheral portion of the X moving shaft 50, and Y motion can be obtained by pushing the Y / Z moving shaft 51 in the Y direction with a Y-axis driving lever.

【0005】すなわち、図5のC−C断面図である図9
を参照すると、Y軸駆動用モータ62によりギヤ63,
64が回転駆動され、ネジ65が回動することによりス
ライダ66がスライドし、その結果テコ60が支点60
aを中心に回動して反対側に設けられたスプリング61
に抗してY・Z動シャフト51をY軸方向に移動させ、
その反対側への移動はスプリング61によって行い、こ
うして試料はY軸方向に動かされる。
That is, FIG. 9 which is a sectional view taken along line CC of FIG.
With reference to FIG.
64 is driven to rotate, and the screw 65 rotates to slide the slider 66. As a result, the lever 60 moves to the fulcrum 60.
A spring 61 which is rotated around a and is provided on the opposite side
To move the Y / Z moving shaft 51 in the Y-axis direction,
The movement to the opposite side is performed by the spring 61, and thus the sample is moved in the Y-axis direction.

【0006】Z動は、図4の矢印D方向から見た図7、
および図5のA−A断面図である図8に示すように、Z
軸駆動用モータ70によりギヤ71,72が回転駆動さ
れて送りネジ73が回動スライドしてZ軸用テコ75が
支点76を中心に回転し、Y・Z動シャフト51をZ軸
方向に変位させるようになっている。この時反対側への
移動はスプリング77によって行われ、こうして試料を
Z軸方向に動かせるようになっている。
The Z movement is shown in FIG. 7 viewed from the direction of arrow D in FIG.
And as shown in FIG. 8 which is a sectional view taken along line AA of FIG.
The gears 71, 72 are rotationally driven by the shaft driving motor 70, the feed screw 73 is rotated and slid, and the Z-axis lever 75 is rotated about the fulcrum 76, and the Y / Z moving shaft 51 is displaced in the Z-axis direction. It is designed to let you. At this time, the movement to the opposite side is performed by the spring 77, and thus the sample can be moved in the Z-axis direction.

【0007】また図4におけるブロック45には、べア
リング44が取り付けられ、X軸傾斜用の軸受になって
いると共に、図示しない手段でブロック45を微小に動
かすことにより、ゴニオメータ全体の軸合わせ(ユーセ
ントリック合わせ)ができるようになっている。
Further, a bearing 45 is attached to the block 45 in FIG. 4 to form a bearing for tilting the X-axis, and the block 45 is finely moved by a means (not shown) to adjust the axis of the entire goniometer ( Eucentric matching) is possible.

【0008】X軸傾斜はX軸傾斜用駆動ユニット58に
よりウォームギヤ59、傾斜用ギヤ57が回転駆動さ
れ、その結果、Y・Z動シャフト51が回転駆動されて
マグネット54が回動し、このマグネットと磁気結合す
るマグネット56の回転により、これが取り付けられた
X軸傾斜シャフト55が回転して試料をX軸の周りに傾
斜させることができる。この時、ベアリング46がシャ
フト55の回転軸受となっている。
For the X-axis tilt, the worm gear 59 and the tilt gear 57 are rotationally driven by the X-axis tilt drive unit 58, and as a result, the Y / Z moving shaft 51 is rotationally driven and the magnet 54 is rotated. The rotation of the magnet 56 magnetically coupled with the X-axis tilting shaft 55 to which the magnet 56 is attached rotates to tilt the sample around the X-axis. At this time, the bearing 46 serves as a rotary bearing for the shaft 55.

【0009】次にX動について説明すると、図4および
図6(a)に示すように、X軸駆動用モータ80により
ギヤ81,82が回転駆動され、その結果ネジ83が回
転すると、スライダ84が軸方向に移動して、テコ85
を支軸86を中心に揺動させる。図4のB−B断面図で
ある図6(b)に示すように、支軸86を中心に揺動す
るテコ85にはベアリングからなる支点87が左右に設
けられ、X動シャフト51に取り付けられたリング89
を軸方向に押すようになっている。
Next, the X movement will be described. As shown in FIGS. 4 and 6A, when the gears 81 and 82 are rotationally driven by the X-axis driving motor 80, and as a result, the screw 83 is rotated, the slider 84 is rotated. Moves axially, lever 85
Is swung around the support shaft 86. As shown in FIG. 6B, which is a cross-sectional view taken along the line BB of FIG. 4, the lever 85 swinging around the support shaft 86 is provided with the support points 87, which are bearings, on the left and right, and is attached to the X motion shaft 51. Ring 89
Is pushed in the axial direction.

【0010】これらX軸駆動用モータ80、テコ85等
からなるX軸駆動機構はY・Z動シャフト51に取付け
られ、リング89はX動シャフト50に取付けられてい
る。その結果X動シャフト50が軸方向に移動し、軸方
向の移動が得られる。この時の移動はベローズ42によ
って真空を保ちながら許容される。なお、支点87はベ
アリングとなっており、図5に示すように、軸88の周
りに回動し、リング89と回転可能に係合するようにな
っている。
The X-axis drive mechanism including the X-axis drive motor 80 and the lever 85 is attached to the Y / Z moving shaft 51, and the ring 89 is attached to the X moving shaft 50. As a result, the X-moving shaft 50 moves in the axial direction, and the axial movement is obtained. The movement at this time is allowed by the bellows 42 while maintaining a vacuum. The fulcrum 87 serves as a bearing, and as shown in FIG. 5, the fulcrum 87 rotates about a shaft 88 and rotatably engages with a ring 89.

【0011】このように円筒状支持体40に球面軸受さ
れてユーセントリックに駆動されるY・Z動シャフト5
1にX動テコとX動送り機構を取り付けることにより、
X,Y,Z動、X軸傾斜の4軸ユーセントリックゴニオ
メータが可能になる。
In this way, the Y / Z moving shaft 5 which is spherically supported by the cylindrical support 40 and is eucentrically driven.
By attaching the X motion lever and the X motion feed mechanism to 1,
A 4-axis eucentric goniometer with X, Y, Z movement and X-axis tilt is possible.

【0012】また、シャフト55内には、一端がメタル
ベローズ95に接続されたシャフト94が設けられてい
る。図5に示すように、Y軸傾斜駆動用モータ90によ
りギヤ91を介してギヤ92を回すと、ネジ93が前後
動し、これによってシャフト94が前後に移動する。シ
ャフト94の前後動はメタルベローズ95によって許容
されると共に、この部分の真空シールが行われる。この
結果図示しない機構により、試料ホルダ31がY軸の周
りに回転されるようになっている。
A shaft 94 having one end connected to the metal bellows 95 is provided in the shaft 55. As shown in FIG. 5, when the Y-axis tilt drive motor 90 rotates the gear 92 via the gear 91, the screw 93 moves back and forth, which causes the shaft 94 to move back and forth. The back and forth movement of the shaft 94 is allowed by the metal bellows 95, and the vacuum sealing of this portion is performed. As a result, the sample holder 31 is rotated around the Y axis by a mechanism (not shown).

【0013】[0013]

【発明が解決しようとする課題】ところで、上記既提案
のものにおいては、球面の真空側に取りつけたベローズ
は、ベローズ径が大きくなり、そのベローズに大気圧が
かかってその力がゴニオメータのX動シャフトにすべて
かかるため、X動シャフトは非常に大きな力を受け、大
きなX駆動力を必要としてスムーズなX動ができない。
By the way, in the above-mentioned proposal, the bellows mounted on the vacuum side of the spherical surface has a large bellows diameter, and atmospheric pressure is applied to the bellows, and the force is applied to the X-axis of the goniometer. The X-motion shaft receives a large amount of force because it is entirely applied to the shaft, and a large X-driving force is required so that smooth X-motion cannot be performed.

【0014】本発明は上記課題を解決するためのもの
で、X動シャフトにかかる力を軽減化し、X動の微妙な
動きを行うことができる電子顕微鏡等の試料装置を提供
することを目的とする。
The present invention is intended to solve the above problems, and an object of the present invention is to provide a sample device such as an electron microscope capable of reducing the force applied to the X-moving shaft and performing a delicate movement of the X-movement. To do.

【0015】[0015]

【課題を解決するための手段】本発明は筒状体フレーム
内面に形成された球面軸受によって支持され、少なくと
もY軸駆動手段及びZ軸駆動手段により前記軸受を中心
として揺動する第1の中空パイプと、第1の中空パイプ
内に同軸に設けられ、X軸駆動手段により軸方向に駆動
される第2の中空パイプと、第2の中空パイプ先端部と
筒状体フレーム間に配置され、試料室と大気とをシール
する金属ベローズとを備えたサイドエントリーゴニオメ
ータにおいて、前記金属ベローズに作用する大気圧と反
対方向の力を第2の中空パイプに付与する駆動力付与手
段を設けたことを特徴とする。
According to the present invention, there is provided a first hollow which is supported by a spherical bearing formed on the inner surface of a tubular body frame and which swings about the bearing by at least a Y-axis driving means and a Z-axis driving means. A pipe, a second hollow pipe coaxially provided in the first hollow pipe and axially driven by the X-axis driving means, and arranged between the second hollow pipe tip and the tubular body frame, In a side entry goniometer provided with a metal bellows for sealing the sample chamber and the atmosphere, a driving force applying means for applying a force in a direction opposite to the atmospheric pressure acting on the metal bellows to the second hollow pipe is provided. Characterize.

【0016】[0016]

【作用】本発明は、超高真空電子顕微鏡に使用するサイ
ドエントリータイプのゴニオメータにおいて、試料室と
大気とをシールする金属ベローズに作用する大気圧と反
対方向の力をX動シャフトを構成する第2の中空パイプ
に付与することにより、大気圧を軽減化することができ
るので、X動の微妙な動きを行うことが可能となる。
According to the present invention, in a side-entry type goniometer used in an ultra high vacuum electron microscope, a force acting in the direction opposite to the atmospheric pressure acting on the metal bellows that seals the sample chamber from the atmosphere constitutes the X-moving shaft. Since the atmospheric pressure can be reduced by providing the hollow pipe to the second hollow pipe, it is possible to perform a delicate X movement.

【0017】[0017]

【実施例】以下、実施例を図面を参照して説明する。図
1は本発明の一実施例の試料装置の電子線光軸に平行な
断面図、図2は本発明で使用するコイルバネの取付け状
態を説明する図である。なお、装置の全体の構成、参照
符合は図4〜図9と同じであるので説明は省略する。
Embodiments Embodiments will be described below with reference to the drawings. FIG. 1 is a cross-sectional view parallel to the electron beam optical axis of a sample device according to an embodiment of the present invention, and FIG. 2 is a view for explaining a mounting state of a coil spring used in the present invention. Note that the overall configuration of the device and the reference numerals are the same as those in FIGS.

【0018】本実施例は、図1に示すように、真空側に
設けられたベローズ42の外周に、非磁性の引っ張りコ
イルバネ10を設けたものであり、一端をX動シャフト
50の先端部に、他端を装置フレームに接続する。この
コイルバネは、図1のAーA断面図、BーB断面図であ
る図2(a)、(b)に示すように、また図2(c)に
示すように、コイル端を引っ掛ける形でシャフト外周に
複数取付ける。このとき、全体のバネ力はベローズ42
にかかる大気圧より少なめに設定する。
In this embodiment, as shown in FIG. 1, a non-magnetic tension coil spring 10 is provided on the outer circumference of a bellows 42 provided on the vacuum side, and one end of the extension coil spring 50 is provided at the tip of the X-moving shaft 50. , The other end is connected to the device frame. This coil spring has a shape in which the coil end is hooked as shown in FIGS. 2 (a) and 2 (b) which are AA sectional views and BB sectional views of FIG. 1 and as shown in FIG. 2 (c). Mount multiple on the outer circumference of the shaft. At this time, the overall spring force is the bellows 42.
Set a little lower than the atmospheric pressure applied to.

【0019】このように、ベローズ外周に引っ張りコイ
ルバネを取りつけることでX動に際してはコイルバネが
伸び縮みし、Y,Z動に際してはコイルバネ両端の支持
点を中心に回転して傾く。このような構成とすることに
より、X動シャフト50にかかる大気圧はバネ力でキャ
ンセルされ、微妙なX動を行うことが可能となる。ま
た、コイルバネは、球面軸受け41の近傍に配置するこ
とが、動きが最も少なくてすみ、かつ他の構成部品のじ
ゃまにならないので望ましい。
As described above, by attaching the tension coil spring to the outer circumference of the bellows, the coil spring expands and contracts during the X movement, and rotates and tilts about the support points at both ends of the coil spring during the Y and Z movements. With such a configuration, the atmospheric pressure applied to the X-movement shaft 50 is canceled by the spring force, and it becomes possible to perform a delicate X-movement. Further, it is desirable that the coil spring is arranged in the vicinity of the spherical bearing 41 because it requires the least amount of movement and does not interfere with other components.

【0020】図3は本発明の他の実施例を示す図であ
る。試料装置のX動シャフト50の外側の球面状膨出部
52と一体のY・Z動シャフト51の外側にはマグネッ
ト54が、X動シャフト50の内側に配置されたX軸傾
斜シャフト55にはマグネット56が取付けられている
が、本実施例では、図3に示すように両マグネットをシ
ャフト方向にずらして取りつける。このマグネットの位
置のずれにより、X軸傾斜シャフト55とつながってい
るX動シャフト50には大気圧で受ける力の方向と逆方
向にマグネット同士間に生ずる磁気力が作用するので、
X動シャフト50が真空側に押しつけられる力を軽減化
することができる。なお、磁気力は反発力、吸引力どち
らでもよいが、吸引力の方が効果的である。
FIG. 3 is a diagram showing another embodiment of the present invention. A magnet 54 is provided on the outside of the Y / Z moving shaft 51 that is integral with the spherical bulging portion 52 on the outside of the X moving shaft 50 of the sample device, and on the X-axis tilt shaft 55 that is arranged inside the X moving shaft 50. Although the magnet 56 is attached, in the present embodiment, both magnets are displaced in the shaft direction as shown in FIG. Due to the displacement of the magnets, a magnetic force generated between the magnets acts on the X-moving shaft 50 connected to the X-axis tilted shaft 55 in a direction opposite to the direction of the force received by the atmospheric pressure.
The force with which the X-moving shaft 50 is pressed against the vacuum side can be reduced. The magnetic force may be either repulsive force or attractive force, but attractive force is more effective.

【0021】また、上記実施例では内側のマグネット5
6をX軸傾斜シャフト55に取りつけるようにしたが、
X動シャフト50に取りつけるようにしてもよい。
In the above embodiment, the inner magnet 5 is used.
6 was attached to the X-axis tilt shaft 55,
It may be attached to the X motion shaft 50.

【0022】[0022]

【発明の効果】以上のように本発明によれば、X動シャ
フトにかかる大気圧を軽減化することができるので、X
動駆動力を大幅に少なくし、X動の微妙な動きを行うこ
とが可能となり、X動の送りネジの摩耗等を低減化する
ことも可能となる。
As described above, according to the present invention, it is possible to reduce the atmospheric pressure applied to the X-moving shaft.
It is possible to significantly reduce the dynamic driving force and perform a delicate movement of the X movement, and it is also possible to reduce wear of the feed screw for the X movement.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の試料装置の電子線光軸に垂直な断面
図である。
FIG. 1 is a sectional view perpendicular to an electron beam optical axis of a sample device of the present invention.

【図2】 コイルバネの取付け状態を説明する図であ
る。
FIG. 2 is a diagram illustrating a mounting state of a coil spring.

【図3】 本発明の他の実施例の電子線光軸に垂直な断
面図である。
FIG. 3 is a sectional view perpendicular to the electron beam optical axis of another embodiment of the present invention.

【図4】 既提案の試料装置の電子線光軸に垂直な断面
図である。
FIG. 4 is a sectional view perpendicular to the electron beam optical axis of the proposed sample device.

【図5】 既提案の試料装置の電子線光軸方向における
断面図である。
FIG. 5 is a cross-sectional view of an already proposed sample device in an electron beam optical axis direction.

【図6】 X動を説明するための図である。FIG. 6 is a diagram for explaining an X movement.

【図7】 Z動を説明するための図である。FIG. 7 is a diagram for explaining Z movement.

【図8】 Z動を説明するための図である。FIG. 8 is a diagram for explaining Z movement.

【図9】 Y動を説明するための図である。FIG. 9 is a diagram for explaining a Y movement.

【符号の説明】[Explanation of symbols]

10…コイルバネ、41…球面軸受、42…メタルベロ
ーズ、50…X動シャフト、51…Y・Z動シャフト、
52…球面状膨出部、54…マグネット、55…X軸傾
斜シャフト、56…マグネット。
10 ... Coil spring, 41 ... Spherical bearing, 42 ... Metal bellows, 50 ... X moving shaft, 51 ... Y / Z moving shaft,
52 ... Spherical bulge, 54 ... Magnet, 55 ... X-axis tilted shaft, 56 ... Magnet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 筒状体フレーム内面に形成された球面軸
受によって支持され、少なくともY軸駆動手段及びZ軸
駆動手段により前記軸受を中心として揺動する第1の中
空パイプと、第1の中空パイプ内に同軸に設けられ、X
軸駆動手段により軸方向に駆動される第2の中空パイプ
と、第2の中空パイプ先端部と筒状体フレーム間に配置
され、試料室と大気とをシールする金属ベローズとを備
えたサイドエントリーゴニオメータにおいて、前記金属
ベローズに作用する大気圧と反対方向の力を第2の中空
パイプに付与する駆動力付与手段を設けたことを特徴と
する電子顕微鏡等の試料装置。
1. A first hollow pipe, which is supported by a spherical bearing formed on the inner surface of a tubular body frame and swings about the bearing by at least Y-axis driving means and Z-axis driving means, and a first hollow pipe. It is installed coaxially in the pipe, and X
A side entry including a second hollow pipe axially driven by a shaft driving means, and a metal bellows arranged between the tip end of the second hollow pipe and the tubular body frame to seal the sample chamber from the atmosphere. A sample device such as an electron microscope, wherein the goniometer is provided with a driving force applying means for applying a force in the direction opposite to the atmospheric pressure acting on the metal bellows to the second hollow pipe.
JP5005827A 1993-01-18 1993-01-18 Sample equipment such as electron microscope Expired - Fee Related JP2965186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5005827A JP2965186B2 (en) 1993-01-18 1993-01-18 Sample equipment such as electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5005827A JP2965186B2 (en) 1993-01-18 1993-01-18 Sample equipment such as electron microscope

Publications (2)

Publication Number Publication Date
JPH06215718A true JPH06215718A (en) 1994-08-05
JP2965186B2 JP2965186B2 (en) 1999-10-18

Family

ID=11621892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5005827A Expired - Fee Related JP2965186B2 (en) 1993-01-18 1993-01-18 Sample equipment such as electron microscope

Country Status (1)

Country Link
JP (1) JP2965186B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258439A (en) * 1999-03-11 2000-09-22 Jeol Ltd Scanning probe microscope
EP4174903A1 (en) * 2017-10-30 2023-05-03 Gatan, Inc. Cryotransfer holder and workstation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258439A (en) * 1999-03-11 2000-09-22 Jeol Ltd Scanning probe microscope
EP4174903A1 (en) * 2017-10-30 2023-05-03 Gatan, Inc. Cryotransfer holder and workstation
US11908655B2 (en) 2017-10-30 2024-02-20 Gatan, Inc. Cryotransfer holder and workstation

Also Published As

Publication number Publication date
JP2965186B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JPH06208000A (en) Molecular beam optical device
US4587431A (en) Specimen manipulating mechanism for charged-particle beam instrument
JP2000021345A (en) Scanning type electron microscope
JP3986778B2 (en) Holder support device
JP3736772B2 (en) Sample holder for electron microscope
JP2965186B2 (en) Sample equipment such as electron microscope
JPH06111747A (en) Specimen device for electron microscope, etc.
JP2839695B2 (en) Sample equipment for electron microscopes, etc.
JP2001312989A (en) Sample stage for electron microscope
JPS6244942A (en) Rotary inclination sample holder
JPH1116530A (en) Sample moving apparatus for electron microscope
JP3510113B2 (en) Shutter device for cylindrical wall
JP2895673B2 (en) Sample equipment such as electron microscope
WO2023127083A1 (en) Charged particle beam device
JPH06215717A (en) Sample holder holding mechanism
JP3702685B2 (en) Charged particle beam equipment
JP3623672B2 (en) Ultra high vacuum pulse current driver
JP3392257B2 (en) Sample holder support device
JP2004214087A (en) Sample transferring device for charged particle beam device
JPH04129151A (en) Shutter device for electron microscope or device similar thereto
JPS6244453Y2 (en)
JP2001256912A (en) Sample holder and sample mover using the same as well as electron microscope
JPH0744021B2 (en) Sample tilt moving device for electron microscope etc.
JPH0831746A (en) Hollow-type rotation introducing machine
JPH0322846Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees