JP2001312989A - Sample stage for electron microscope - Google Patents

Sample stage for electron microscope

Info

Publication number
JP2001312989A
JP2001312989A JP2000131050A JP2000131050A JP2001312989A JP 2001312989 A JP2001312989 A JP 2001312989A JP 2000131050 A JP2000131050 A JP 2000131050A JP 2000131050 A JP2000131050 A JP 2000131050A JP 2001312989 A JP2001312989 A JP 2001312989A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
sample holder
fine movement
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000131050A
Other languages
Japanese (ja)
Inventor
Masaya Iwaki
正哉 岩木
Toshiki Shinno
俊樹 新野
Masanari Takaguchi
雅成 高口
Shosaku Yamaoka
正作 山岡
Ruriko Tokida
るり子 常田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Hitachi Ltd
Priority to JP2000131050A priority Critical patent/JP2001312989A/en
Publication of JP2001312989A publication Critical patent/JP2001312989A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sample stage for an electron microscope, capable of setting an eucentric position around the visual field of the electron microscope at all times during a large inclination of a sample. SOLUTION: The sample stage comprises a mechanism for adjusting the direction of an overall stage system eucentrically adjusted and passing a rotating shaft through the center of the electron microscope, namely, an adjusting mechanism containing second spherical seat for adjusting the direction of mounting the whole stage eucentrically adjusted on the electron microscope. The whole stage is rotated on the second spherical seat, without marring the eucentric conditions of a rotating cylinder and a sample holder, so that the direction of the rotating shaft of the cylinder can be set to pass the center of the visual field of the electron microscope. Three-dimensional observation of the sample from all directions is ensured, irrespective of the shape of the sample, observing magnification and inclination angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】電子顕微鏡において、ナノメ
ータレベルの高精度で試料位置を微動可能とし、さらに
試料を様々な角度から観察するために試料を大傾斜させ
ても視野ずれ、焦点ずれの少ない試料ステージに関す
る。
BACKGROUND OF THE INVENTION In an electron microscope, a sample position can be finely moved with high accuracy on the order of nanometers, and a sample with a small visual field shift and a small focus shift even when the sample is greatly inclined to observe the sample from various angles. About the stage.

【0002】[0002]

【従来の技術】透過電子顕微鏡(TEM:Transmission Ele
ctron Microscope)は、100〜300kVに加速された電子線
を試料に照射し、試料と相互作用して透過した電子線を
結像・拡大表示する。TEM像は、試料を透過した電子線
の投影像であるため、厚さ方向の情報は加算され、1枚
の像からは分離できない。そこで試料を傾斜して撮影し
た複数枚の像から厚さ方向の情報を抽出することが試み
られている。しかし、従来試料を傾斜する試料ステージ
がユーセントリック構造でない場合、試料傾斜時の視野
ずれが数100μmになり操作性を損なうのみならず、焦
点合わせが可能な視野が数μm角に限定されるという問
題があり、観察可能な試料が極めて限定されることにな
る。こうした問題に対処するため、ユーセントリック構
造の試料ステージが考案され、既に市場に供給されてい
る。ここでユーセントリック構造とは、回転体の上に、
回転軸に垂直な面内に対象物を微動させる機構を持たせ
た回転構造である。従って、対象物を常に回転軸上に移
動できるため、回転時に試料が回転軸周りに回転せず、
静止位置を保つことが出来る。
2. Description of the Related Art Transmission Electron Microscope (TEM)
The ctron microscope) irradiates the sample with an electron beam accelerated to 100 to 300 kV, and forms an enlarged image of the transmitted electron beam by interacting with the sample. Since a TEM image is a projection image of an electron beam transmitted through a sample, information in the thickness direction is added and cannot be separated from one image. Therefore, attempts have been made to extract information in the thickness direction from a plurality of images obtained by tilting the sample. However, if the sample stage that tilts the sample in the past is not a eucentric structure, the field of view shift when the sample is tilted is several hundred μm, which not only impairs operability but also limits the viewable field of view to several μm square. There is a problem and the sample that can be observed is very limited. To address these problems, a eucentric sample stage has been devised and already available on the market. Here, the eucentric structure is
This is a rotating structure having a mechanism for finely moving an object in a plane perpendicular to the rotation axis. Therefore, since the object can always be moved on the rotation axis, the sample does not rotate around the rotation axis during rotation,
The stationary position can be maintained.

【0003】電子顕微鏡用の試料ステージとしては、特
開平08-017380記載の2軸傾斜試料微動装置及び像の逃
げ補正方法がその代表に挙げられる。本従来例の動作原
理を図2を用いて説明する。ここで、紙面垂直方向をz
方向、紙面左右、上下方向をそれぞれx、y方向と呼ぶ
ことにする。また、x方向を回転軸とした回転角をθと
呼ぶことにする。本図は電子顕微鏡鏡体上方向から見た
装置動作の原理図である。試料は通常電子顕微鏡同様3m
mφ程度のメッシュに固定され、試料ホルダ先端に設置
される。試料ホルダ1は試料ホルダさや2に挿入・固定
されている。試料ホルダさや2の先端は球面になってお
り、球面座3内に納められる構造である。従って、試料
ホルダ1は球面座3中心を不動点としてx軸に対して才
差運動でき、任意のy、z位置に試料を移動できる。ま
た、試料ホルダ1全体がθ回転可能となる。ここで、試
料位置をy、z位置に高精度に制御するため、試料ホル
ダさや2の外層に設けられた回転シリンダ4上に、通常
y、z2方向から固定された微動アクチュエータ5を設
け、微動アクチュエータ5の向かい側に設置された押し
返しばね6とで挟まれる。微動アクチュエータ5は電気
的パルス入力により出し入れ可能であり、数ナノメータ
での移動動作が可能である。位置復元力は押し返しばね
6で生成する。試料ホルダ1は回転シリンダ4を介して
θモータ7によりx軸周りに回転する。微動アクチュエ
ータ5はユーセントリック機能を持たせるためにこの回
転シリンダ4上に設置され、回転シリンダ4と一緒にx
軸周りを回転する。何故ならば、回転シリンダ4の持つ
シリンダ回転軸上にあるものは、回転時に方位は変える
もののx、y、zの何れの方向にも移動することがな
い。従って、微動アクチュエータ5は回転体、即ち回転
シリンダ4上に固定されていて、試料は絶えず微動アク
チュエータ5により回転軸上に移動させるようにすれ
ば、回転時の視野ずれ、焦点ずれが存在しない状態にで
きるためである。また、x方向の試料微動は試料を挟ん
で回転シリンダ4に対向した位置にある電子顕微鏡鏡体
8に固定されたx微動てこ9により実現される。すなわ
ち、試料ホルダ1先端をx微動てこ9がx方向に前後す
ることで試料10は微動できる。反対方向への復元力
は、大気と真空の差圧で試料ホルダ1が鏡体側に吸引さ
れる力を利用している。さて、試料ホルダ1は回転シリ
ンダ4をガイドとして回転するほか、球面座3をもガイ
ドにして回転する構造であるため、シリンダ回転軸が球
面座3中心を通る様に両者の位置関係を調整する必要が
ある。この調整がない場合、試料ホルダ1は微動アクチ
ュエータ5との接触部分でシリンダ回転軸と球面座3中
心の離心距離を半径とした首振り回転現象を起し、試料
10もシリンダ回転軸周りに才差運動を起こす。そこで
シリンダ回転軸を球面座3中心に通すための回転シリン
ダ位置微調用調整機構11をy、z2方向に設けられて
いる。さて、この調整プロセスをユーセントリック調整
と呼ぶ。この調整により、不動の回転軸を形成でき、こ
の軸上に試料の目的部位を微動アクチュエータ5で移動
できることから、試料回転時の視野ずれ、焦点ずれを抑
えることが可能になる。このほかにも電子顕微鏡用の試
料ステージに関する出願は認められ、例えば特開昭62-1
36744が挙げられる。この出願では、x方向の試料微動
を作るx微動てこが図2のように試料を挟んで試料ステ
ージに対向した位置にあるのではなく、試料ホルダさや
上にある点が外見上異なるが、本出願の趣旨であるユー
セントリック調整機能に付いては原理が特開平08-01738
0と同様であり、事項で述べる問題点も同様に有してい
る。
A typical example of a sample stage for an electron microscope is a two-axis tilt sample fine-movement apparatus and an image relief correction method described in Japanese Patent Application Laid-Open No. 08-017380. The operation principle of this conventional example will be described with reference to FIG. Here, the direction perpendicular to the paper is z
The directions, left and right and up and down directions on the paper are referred to as x and y directions, respectively. The rotation angle with the x direction as the rotation axis is referred to as θ. This figure is a principle diagram of the operation of the apparatus viewed from above the electron microscope body. Specimen is usually 3m like electron microscope
It is fixed to a mesh of about mφ and installed at the tip of the sample holder. The sample holder 1 is inserted and fixed in a sample holder sheath 2. The tip of the sample holder sheath 2 is spherical, and is structured to be housed in the spherical seat 3. Therefore, the sample holder 1 can perform precession with respect to the x-axis with the center of the spherical seat 3 as a fixed point, and can move the sample to arbitrary y and z positions. Further, the entire sample holder 1 can be rotated by θ. Here, in order to control the sample position to the y and z positions with high precision, a fine movement actuator 5 which is usually fixed in the y and z2 directions is provided on a rotating cylinder 4 provided on the outer layer of the sample holder sheath 2 and the fine movement is performed. It is sandwiched by a push-back spring 6 installed on the opposite side of the actuator 5. The fine movement actuator 5 can be moved in and out by an electric pulse input, and can be moved by several nanometers. The position restoring force is generated by the return spring 6. The sample holder 1 is rotated around the x axis by a θ motor 7 via a rotary cylinder 4. The fine actuator 5 is installed on the rotary cylinder 4 so as to have a eucentric function.
Rotate around an axis. This is because the one on the cylinder rotation axis of the rotary cylinder 4 does not move in any of the x, y, and z directions although the direction changes during rotation. Therefore, if the fine movement actuator 5 is fixed on the rotating body, that is, the rotating cylinder 4, and the sample is constantly moved on the rotation axis by the fine movement actuator 5, there is no visual field shift and focus shift during rotation. This is because The fine movement of the sample in the x direction is realized by an x fine movement lever 9 fixed to the electron microscope body 8 at a position facing the rotary cylinder 4 with the sample interposed therebetween. That is, the sample 10 can be finely moved by the x fine movement of the tip of the sample holder 1 back and forth in the x direction. As the restoring force in the opposite direction, a force is used in which the sample holder 1 is sucked toward the mirror body by a pressure difference between the atmosphere and vacuum. Now, since the sample holder 1 is configured to rotate using the rotary cylinder 4 as a guide and also using the spherical seat 3 as a guide, the positional relationship between the two is adjusted so that the cylinder rotation axis passes through the center of the spherical seat 3. There is a need. If this adjustment is not made, the sample holder 1 causes a swinging rotation phenomenon with the radius of the eccentric distance between the cylinder rotation axis and the center of the spherical seat 3 at the contact portion with the fine movement actuator 5, and the sample 10 also moves around the cylinder rotation axis. Cause a differential movement. Therefore, a rotating cylinder position fine adjustment mechanism 11 for passing the cylinder rotating shaft through the center of the spherical seat 3 is provided in the y and z2 directions. Now, this adjustment process is called eucentric adjustment. By this adjustment, an immovable rotation axis can be formed, and the target portion of the sample can be moved by the fine movement actuator 5 on this axis, so that it is possible to suppress a visual field shift and a focus shift during sample rotation. In addition to this, an application for a sample stage for an electron microscope has been acknowledged.
36744. In this application, the point that the x fine movement lever that creates the fine movement of the sample in the x direction is not at the position facing the sample stage with the sample interposed therebetween as shown in FIG. The principle of the eucentric adjustment function, which is the purpose of the application, is disclosed in Japanese Patent Application Laid-Open No. 08-01738.
It is the same as 0, and also has the problems described in the items.

【0004】[0004]

【発明が解決しようとする課題】前記特開平08-017380
記載の試料ステージの問題点は、回転軸方向は回転シリ
ンダと電子顕微鏡鏡体の位置関係で決まるため、常に電
子顕微鏡中心、すなわち視野中心を通るとは限らないと
いう点である。低倍増観察時は、視野のどこかに回転軸
が含まれる確率は高いが、数万倍以上ではきわめて困難
である。つまり従来方式では高倍率でのユーセントリッ
ク観察は困難だといえる。同様に試料傾斜角が大きい場
合も試料が視野から外れる確率が上がり、事実上大傾斜
でのユーセントリック観察も困難である。以上を総括す
ると、ユーセントリック調整された回転軸を電子顕微鏡
中心に調整するプラスの機構の実現が、電子顕微鏡本来
の特長である高倍率での試料大傾斜観察・全方位3次元
観察に求められる課題である。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 08-017380.
The problem with the described sample stage is that, since the direction of the rotation axis is determined by the positional relationship between the rotating cylinder and the electron microscope body, it does not always pass through the center of the electron microscope, that is, the center of the visual field. At the time of low-magnification observation, there is a high probability that the rotation axis is included somewhere in the visual field, but it is extremely difficult to use a tens of thousands or more. In other words, it can be said that eucentric observation at high magnification is difficult in the conventional method. Similarly, when the sample tilt angle is large, the probability that the sample falls out of the visual field increases, and it is practically difficult to perform eucentric observation with a large tilt. Summarizing the above, the realization of a positive mechanism for adjusting the rotation axis adjusted eucentrically to the center of the electron microscope is required for large-magnification oblique observation and omnidirectional three-dimensional observation at high magnification, which is a feature inherent in electron microscopes. It is an issue.

【0005】[0005]

【課題を解決するための手段】上記課題に対処するた
め、本出願ではユーセントリック調整されたステージ系
全体の方向を調整し、回転軸を電子顕微鏡中心に通す機
構を新たに提案する。即ち、回転シリンダを保持し、球
面座を含む回転シリンダガイドを第2の球面座で電子顕
微鏡鏡体に固定する形とし、電子顕微鏡鏡体と回転シリ
ンダガイドの相対位置関係を調整する第2の調整機構を
設けことにした。これにより回転シリンダや試料ホルダ
のユーセントリック条件を崩すことなくステージ全体を
第2の球面座で回転させ、シリンダ回転軸方向を対物レ
ンズ中心に通るように設定できるようになる。
In order to address the above-mentioned problem, the present application proposes a new mechanism for adjusting the direction of the eucentrically adjusted stage system as a whole and passing the rotation axis through the center of the electron microscope. That is, a second cylinder for holding the rotary cylinder, fixing the rotary cylinder guide including the spherical seat to the electron microscope body at the second spherical seat, and adjusting the relative positional relationship between the electron microscope body and the rotary cylinder guide. An adjustment mechanism was provided. As a result, the entire stage can be rotated by the second spherical seat without breaking the eucentric conditions of the rotating cylinder and the sample holder, and the setting can be made so that the direction of the cylinder rotation axis passes through the center of the objective lens.

【0006】[0006]

【発明の実施の形態】(実施例1)考案したステージの
電子顕微鏡鏡体上方向から見た装置原理図を図1に示
す。図2の従来例と同様、試料ホルダ1は試料ホルダさ
や2に挿入・固定されている。試料ホルダさや2の先端
は球面になっており、球面座3内に納められる構造であ
るため、試料ホルダ1は球面座3中心を不動点としてx
軸に対して才差運動でき、任意のy、z位置に試料を移
動できる。また、試料ホルダ1全体がθ回転可能とな
る。ここで、試料位置をy、z位置に高精度に制御する
ため、試料ホルダさや2の外層に設けられた回転シリン
ダ4上に、y、z2方向から固定された微動アクチュエ
ータ5を設け、微動アクチュエータ5の向かい側に設置
された押し返しばね6とで挟まれる。微動アクチュエー
タ5は電気的パルス入力により出し入れ可能であり、位
置復元力は押し返しばね6で生成する。試料ホルダ1は
回転シリンダ4を介してθモータ7によりx軸周りに回
転する。微動アクチュエータ5はユーセントリック機能
を持たせるためにこの回転シリンダ4上に設置され、回
転シリンダ4と一緒にx軸周りを回転する。何故なら
ば、回転シリンダ4の持つシリンダ回転軸上にあるもの
は、回転時に方位は変えるもののx、y、zの何れの方
向にも移動することがない。従って、微動アクチュエー
タ5は回転体、即ち回転シリンダ4上に固定されてい
て、試料10は絶えず微動アクチュエータ5により回転
軸上に移動させるようにすれば、回転時の視野ずれ、焦
点ずれが存在しない状態にできるためである。また、x
方向の試料微動は試料10を挟んで回転シリンダ4に対
向した位置にある電子顕微鏡鏡体8に固定されたx微動
てこ9により実現される。すなわち、試料ホルダ1先端
をx微動てこ9がx方向に前後することで試料は微動で
きる。反対方向への復元力は、大気と真空の差圧で試料
ホルダ1が鏡体側に吸引される力を利用している。さ
て、試料ホルダ1は回転シリンダ4をガイドとして回転
するほか、球面座3をもガイドにして回転数構造である
ため、シリンダ回転軸が球面座3中心を通る様に両者の
位置関係を調整する必要がある。この調整がない場合、
試料ホルダ1は微動アクチュエータ5との接触部分でシ
リンダ回転軸と球面座3中心の離心距離を半径とした首
振り回転現象を起し、試料10もシリンダ回転軸周りに
才差運動を起こす。そこでシリンダ回転軸を球面座3中
心に通すための回転シリンダ位置微調用調整機構11を
y、z2方向に設ける。この調整プロセスをユーセント
リック調整と呼ぶ。この調整により、不動の回転軸を形
成でき、この軸上に試料10の目的部位を微動アクチュ
エータ5で移動できることから、試料回転時の視野ず
れ、焦点ずれを抑えることが可能になった。しかしこの
回転軸方向は回転シリンダ4と電子顕微鏡鏡体8の位置
関係で決まるため、常に電子顕微鏡中心(すなわち視野
中心)を通るとは限らない。そこで、ユーセントリック
調整されたステージ系全体の方向を調整し、回転軸を電
子顕微鏡の視野中心(対物レンズ中心)に通す機構を新た
に考案・製作した。即ち、回転シリンダ4を保持し、球
面座3を含む回転シリンダガイド12を第2球面座13
で電子顕微鏡鏡体8に固定する形とし、電子顕微鏡鏡体
8と回転シリンダガイド12の相対位置関係を調整する
回転シリンダガイド位置微調用調整機構14を設けた。
これにより回転シリンダ4や試料ホルダ1のユーセント
リック条件を崩すことなく、また試料の形状や試料ホル
ダにおける試料のz方向取りつけ位置、観察倍率によら
ず、ステージ全体を第2球面座13で回転させ、シリン
ダ回転軸方向を電子顕微鏡の視野中心に通るように設定
できるようになった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 shows the principle of the apparatus as viewed from above the electron microscope body of the stage devised. As in the conventional example of FIG. 2, the sample holder 1 is inserted and fixed to the sample holder sheath 2. Since the tip of the sample holder sheath 2 is spherical and has a structure that can be accommodated in the spherical seat 3, the sample holder 1 has the center of the spherical seat 3 as a fixed point and x
It can precess about the axis and move the sample to any y, z position. Further, the entire sample holder 1 can be rotated by θ. Here, in order to control the sample position to the y and z positions with high accuracy, a fine actuator 5 fixed in the y and z2 directions is provided on a rotary cylinder 4 provided on the outer layer of the sample holder sheath 2. 5 is sandwiched by a push-back spring 6 installed on the opposite side. The fine movement actuator 5 can be moved in and out by an electric pulse input, and the position restoring force is generated by the push-back spring 6. The sample holder 1 is rotated around the x axis by a θ motor 7 via a rotary cylinder 4. The fine movement actuator 5 is mounted on the rotary cylinder 4 to have a eucentric function, and rotates around the x-axis together with the rotary cylinder 4. This is because the one on the cylinder rotation axis of the rotary cylinder 4 does not move in any of the x, y, and z directions although the direction changes during rotation. Therefore, if the fine movement actuator 5 is fixed on the rotating body, that is, the rotating cylinder 4, and the sample 10 is constantly moved on the rotation axis by the fine movement actuator 5, there is no visual field shift or focus shift during rotation. It is because it can be in a state. Also, x
The fine movement of the sample in the direction is realized by the x fine movement lever 9 fixed to the electron microscope body 8 at a position facing the rotary cylinder 4 with the sample 10 interposed therebetween. That is, the sample can be finely moved by the x fine movement of the tip of the sample holder 1 in the x direction. As the restoring force in the opposite direction, a force is used in which the sample holder 1 is sucked toward the mirror body by a pressure difference between the atmosphere and vacuum. Now, since the sample holder 1 is rotated by using the rotary cylinder 4 as a guide and also has a rotational speed structure using the spherical seat 3 as a guide, the positional relationship between the two is adjusted so that the cylinder rotation axis passes through the center of the spherical seat 3. There is a need. Without this adjustment,
The sample holder 1 causes a swinging rotation phenomenon with the radius of the eccentric distance between the cylinder rotation axis and the center of the spherical seat 3 at a contact portion with the fine movement actuator 5, and the sample 10 also causes precession about the cylinder rotation axis. Therefore, a rotating cylinder position fine adjustment mechanism 11 for passing the cylinder rotating shaft through the center of the spherical seat 3 is provided in the y and z2 directions. This adjustment process is called eucentric adjustment. By this adjustment, an immovable rotation axis can be formed, and the target portion of the sample 10 can be moved by the fine movement actuator 5 on this axis, so that it is possible to suppress a visual field shift and a focus shift during sample rotation. However, since the rotation axis direction is determined by the positional relationship between the rotation cylinder 4 and the electron microscope body 8, it does not always pass through the center of the electron microscope (that is, the center of the visual field). Therefore, a new mechanism that adjusts the direction of the eucentrically adjusted stage system as a whole and passes the rotation axis through the center of the field of view (center of the objective lens) of the electron microscope was newly devised and manufactured. That is, the rotary cylinder guide 12 holding the rotary cylinder 4 and including the spherical seat 3 is moved to the second spherical seat 13.
And a rotary cylinder guide position fine adjustment mechanism 14 for adjusting the relative positional relationship between the electron microscope mirror 8 and the rotary cylinder guide 12 is provided.
Thereby, the entire stage is rotated by the second spherical seat 13 without breaking the eucentric conditions of the rotary cylinder 4 and the sample holder 1 and irrespective of the shape of the sample, the mounting position of the sample in the sample holder in the z direction, and the observation magnification. It is now possible to set so that the direction of the cylinder rotation axis passes through the center of the field of view of the electron microscope.

【0007】(実施例2)実施例1では、x微動が、試
料ホルダ先端でホルダを大気側に押し出すx微動機構で
あるため、ホルダの片持ち構造でなく、試料ホルダの回
転と共に試料ホルダのフレームが電子線上を横切ること
になり、例えば3次元観察に適した円筒形試料の全方位
観察等が不可能になる。そこで、実施例1に示した2重
のユーセントリック調整機能と片持ち試料ホルダの形状
の組み合わせを考案し、図3に示した。すなわち、x方
向の試料微動は試料ホルダさや2に固定されたx微動て
こ9により実現される。試料ホルダ取手15をてこでア
クチュエータにより紙面右方向に押し上げることで試料
は微動できる。反対方向への復元力は、大気と真空の差
圧で試料ホルダが鏡体側に吸引される力を利用してい
る。この方式では、x微動の動作伝達は大気中で行うた
め、真空シールとすべり面形成を兼ねたOリングを幾つ
か廃止でき、真空度向上の利点がある。さらに図1方式
では、x微動の押す方向と試料ホルダ移動方向が直線状
に並んでいないことから、x微動の+方向と−方向の変
換時に蛇行が発生する恐れがあるが、図3方式ではこれ
が解決できると考えられる。
(Embodiment 2) In Embodiment 1, since the x fine movement is an x fine movement mechanism for pushing the holder toward the atmosphere at the tip of the sample holder, it is not a cantilever structure of the holder, but a rotation of the sample holder. Since the frame crosses over the electron beam, it becomes impossible to perform, for example, omnidirectional observation of a cylindrical sample suitable for three-dimensional observation. Therefore, a combination of the dual eucentric adjustment function shown in the first embodiment and the shape of the cantilever sample holder was devised, and shown in FIG. That is, the fine movement of the sample in the x direction is realized by the fine movement lever 9 fixed to the sample holder sheath 2. The sample can be finely moved by pushing up the sample holder handle 15 to the right side of the paper by an actuator with a lever. The restoring force in the opposite direction utilizes the force of the sample holder being sucked toward the mirror body by the pressure difference between the atmosphere and vacuum. In this method, since the operation of the x-fine movement is performed in the atmosphere, some O-rings serving both as a vacuum seal and forming a slip surface can be eliminated, and there is an advantage of improving the degree of vacuum. Further, in the method of FIG. 1, since the pushing direction of the x fine movement and the moving direction of the sample holder are not arranged in a straight line, there is a possibility that meandering may occur when the x fine movement is changed between the + direction and the − direction. It is thought that this can be solved.

【0008】微動アクチュエータとてこ、試料ホルダさ
や間は、隙間を極力減らし、回転軸がたを抑える構造と
することで剛体的に接合するように配慮をする。例えば
x微動てこ9と試料ホルダ取手15の接合点はてこ側を
サファイヤピポットとし、試料ホルダ側に超硬チップを
埋め込むことにより、両者の弾性変形を抑える構造とす
る。試料ホルダ1と試料ホルダさや2間のOリングすべ
り面部分には真空グリース(ホンブリン)を薄く塗布し、
すべり摩擦力によるx方向のロストモーションを極力押
さえるようにする。例えば、試料ホルダ1の出し入れに
必要な力を、大気中で300g以下とすれば、x方向駆動力
である大気圧1kg(試料ホルダOリンク゛中心径12mmとした場
合、大気圧〜1kg/cm2より、差圧は1130g)より十分に小
さい値にすることができ、スムーズなx微動が得られる
と考えられる。
[0008] Consideration is given to rigidly joining the fine movement actuator and the lever and the sample holder by adopting a structure in which the gap is reduced as much as possible and the rotation shaft is suppressed. For example, a sapphire pivot is used at the joint side between the x fine movement lever 9 and the sample holder handle 15 and a carbide tip is embedded in the sample holder side to suppress the elastic deformation of both. Apply a thin layer of vacuum grease (Homblin) to the slip surface of the O-ring between sample holder 1 and sample holder sheath 2.
The lost motion in the x direction due to sliding friction is suppressed as much as possible. For example, if the force required for loading and unloading the sample holder 1 is 300 g or less in the atmosphere, the x-direction driving force is 1 kg of atmospheric pressure (when the sample holder O-link is 12 mm in center diameter, the atmospheric pressure is 1 kg / cm 2 or less. Therefore, the differential pressure can be set to a value sufficiently smaller than 1130 g), and it is considered that a smooth x fine movement can be obtained.

【0009】(実施例3)本実施例では、実施例2で示
されたx微動てこについて詳細に検討する。図4(a)の
てこでの駆動系には、回転モータ20を用いた。この回
転はギアA21を介してギアB22に伝達される。ギア
B22とホルダ押しジグ23の接触面もお互いギアでか
み合っており、この結果、回転モータ20の回転により
ホルダ押しジグ23がz方向に前後し、ホルダ取手24
に例えばサファイヤ製のx微動ピポット25を介して接
触するため、ホルダをx方向に動かすことができる。こ
の方式では、広いスペースの必要なてこ棒を用いないた
め、コンパクトに構成される特長を持つ。一方で2回の
ギア接触により微動を伝達しているが、動作の反転時に
ギアはバックラッシュ(不動領域)を発生するという欠点
がある。図4(b)の方式では、駆動系にはy、z微動と
同じ直進運動型のアクチュエータ26を用いた。アクチ
ュエータ26の直進運動はてこ支点28を中心に回転運
動するx微動てこ27を介してホルダ押しジグ23に伝
達される。 x微動てこ27の復元力は押し返しばね2
9で生成される。尚、 x微動てこ27とホルダ押しジ
グ23はホルダ押しジグ23からでた腕部分で2点接触
している。この方式ではギアが用いられないため、バッ
クラッシュが大きく低減される。しかし一方で、ホルダ
押しジグ23と試料ホルダ1の間に僅かな隙間があるた
め、てこから力を受けた際、ホルダ押しジグ23はx軸
方向には移動せず、方向が微妙に傾くという問題があ
り、微小微動精度が不十分な場合が予想される。そこで
図4(c)の構造を考案した。図4(b)方式では、てこ支点
28は試料ホルダ1の下側に存在したため、アクチュエ
ータ26先端を出した場合、試料ホルダ1は真空から大
気方向に引き出される構造であったが、図4(c)方式で
は、てこ支点28は試料ホルダ1上に存在し、このた
め、アクチュエータ26先端を出した場合、試料ホルダ
1は真空の力に引っ張られ、大気から真空側に移動す
る。x微動てこ27の先端にはサファイヤ製のx微動ピ
ポット25が設置され、x微動てこ27先端は切り欠き
の入れられた試料ホルダ取手24内に挿入され、取手内
壁に貼られた超硬チップ部分を押す構造にする。さら
に、てこ支点28の回転軸はがたのないピポット構造と
した。従って、アクチュエータ26先端から試料ホルダ
1まで全て剛体的結合を施し、がたの発生しない構造と
したため、アクチュエータ26の動きを直ちに試料ホル
ダ1の微動として伝達できるようになった。 x微動て
こ27の復元力は図4(b)方式同様、押し返しばね29
で生成される。
(Embodiment 3) In this embodiment, the x fine movement lever shown in Embodiment 2 will be examined in detail. A rotary motor 20 was used for the drive system at the lever in FIG. This rotation is transmitted to the gear B22 via the gear A21. The contact surfaces of the gear B22 and the holder pressing jig 23 are also engaged with each other by gears. As a result, the rotation of the rotary motor 20 causes the holder pressing jig 23 to move back and forth in the z direction, and the holder handle 24
For example, the holder can be moved in the x direction because the contact is made through the x fine movement pivot 25 made of sapphire. This method has the feature of being compact because it does not use a lever that requires a large space. On the other hand, although the fine movement is transmitted by two gear contacts, there is a disadvantage that the gears generate a backlash (immobile area) when the operation is reversed. In the system shown in FIG. 4B, the same linear motion actuator 26 as the y and z fine movement is used for the drive system. The linear movement of the actuator 26 is transmitted to the holder pushing jig 23 via the x fine movement lever 27 that rotates around the lever fulcrum 28. The restoring force of the x fine movement lever 27 is the pushback spring 2
9 is generated. Note that the x fine movement lever 27 and the holder pressing jig 23 are in two-point contact with each other at the arm portion of the holder pressing jig 23. Since no gear is used in this method, backlash is greatly reduced. However, on the other hand, since there is a slight gap between the holder pressing jig 23 and the sample holder 1, when receiving a force from a lever, the holder pressing jig 23 does not move in the x-axis direction, and the direction slightly tilts. It is expected that there is a problem and the precision of the fine movement is insufficient. Then, the structure of FIG. 4C was devised. In the method shown in FIG. 4B, since the lever fulcrum 28 is located below the sample holder 1, when the tip of the actuator 26 comes out, the sample holder 1 is pulled out from the vacuum toward the atmosphere. In the c) method, the lever fulcrum 28 is present on the sample holder 1, and therefore, when the tip of the actuator 26 is protruded, the sample holder 1 is pulled by the vacuum force and moves from the atmosphere to the vacuum side. An x-fine movement pivot 27 made of sapphire is installed at the tip of the x-fine movement lever 27, and the tip of the x-fine movement lever 27 is inserted into the notched sample holder handle 24, and is a cemented carbide part attached to the inner wall of the handle. Press to make the structure. Further, the pivot shaft of the lever fulcrum 28 has a pivot structure without play. Therefore, the rigid connection is entirely performed from the distal end of the actuator 26 to the sample holder 1 to prevent the rattle from occurring. Therefore, the movement of the actuator 26 can be immediately transmitted as the fine movement of the sample holder 1. The restoring force of the x fine movement lever 27 is the same as the method shown in FIG.
Generated by

【0010】(実施例4)実施例2,3の場合、x微動
機構を回転体上に設けたため、試料ホルダさや2を制御
する微動アクチュエータ5と押し返しばね6への重量負
担が増加し、ステージ傾斜角によってはステージの動作
不良が予想される。図5を用い、この問題への対応につ
いて説明する。図5には、本試料ステージについて、傾
斜角と各方向のアクチェータ、押し返しばねの位置関係
をx軸方向から見た図を示す。本ステージの問題は、傾
斜をマイナス方向に増やしていった際、ある角度以上で
アクチュエータマイナス方向、即ちy押し返しばねで押
す方向の動作が停止してしまう可能性である。これは、
ステージの重量が大きくなると、規定の強さのばねで押
し返せない状況になるためである。一方、z押し返しば
ねは絶えず試料ステージより上方にあり、その力は十分
に機能している。ステージ重量を4kg、押し返しばね力
を3kgとし、傾斜角を−90°から+90°まで変化させた
際のy押し返しばね力、ステージの重量がアクチュエー
タに与える与圧の関係を図6(a)に示した。ここではア
クチュエータに与える力方向をプラスとしてある。ステ
ージ重量がアクチュエータに及ぼす力は、+90°で最大
4kgとなり、角度に応じて正弦関数の関係にある。一
方、押し返しばねはアクチュエータと一緒に回転するた
め、その及ぼす力は変化しない。(ばね力+ステージ重
量)がアクチュエータへの与圧となる。ばね力が3kgのと
きは、傾斜が40°未満では与圧がマイナスとなってい
る。これは押し返しばね力が弱く、アクチュエータと試
料ステージの間に隙間が発生し、微動制御が不可能にな
ることを示している。一方プラス方向の傾斜では、ばね
力と重量がすべてばねに乗り、その力は最大7kgとな
る。マイナス傾斜でのばね力を強化するためには、強力
なばね、例えば図中に示した7.5kgのばねを採用する方
法が考えられる。しかし、この場合、−90で1kg程度の
与圧が得られるものの、+90°では与圧は11.5kgに達し
てしまう。アクチュエータはその微動精度を達成するた
めには、最低1kg程度の与圧をかける必要があるが、5kg
以上の与圧をかけると寿命が短くなり、微動精度も保証
されない。従って、単純に強力なばねは採用できず、マ
イナス傾斜ではばね力を強化し、プラス傾斜では減じる
構造を考えねばならなかった。この問題に対処するため
に、図7に示したばね力可変なy押し返しばね機構を考
案した。この機構では、固定ばね40(1〜3kgに調整
可能) から傾斜角に関係なく一定の力をばね先端41に
及ぼすほか、てこ42を介して、重り43が重力で下が
る力を固定ばね40の力に重畳してばね先端41に及ぼ
すことができるようにしている。従って、θ=0°では
本機構は重力に対して水平面内にあるため、位置Aにあ
り、そのばね力は固定ばね40の力のみである。マイナ
ス傾斜時は、本機構の重り43は位置Bにあり、重り4
3の重力が加算される。プラス傾斜時は、重り43は位
置Cにあり、この時てこ42はばね先端41を押さない
ような構造になっているため、角度に関係なく固定ばね
40の力のみばね先端41にかかるようにできる。今
回、固定ばね40の力を1kg、重りを780gとし、てこ比
を1:6としたため、加算された力は最大で(1+0.78×
6)kg、即ち5.68kgを発生させることができるようにし
た。このように、y押し返しばね力は図6(b)図示の通
り、プラス傾斜で固定の1kg、マイナス傾斜では角度に
応じた正弦関数的変化し、最大5.67kgの力を発生でき
る。結局ステージ重量との関係から、アクチュエータの
与圧は最小1kg、最大5kgとなり、アクチュエータの動作
条件を満足できるようになり、全方位での試料微動を可
能とした。
(Embodiment 4) In the case of Embodiments 2 and 3, since the x fine movement mechanism is provided on the rotating body, the weight burden on the fine movement actuator 5 for controlling the sample holder sheath 2 and the push-back spring 6 increases, and the stage Depending on the angle of inclination, malfunction of the stage is expected. The solution to this problem will be described with reference to FIG. FIG. 5 is a diagram showing the positional relationship between the tilt angle, the actuator in each direction, and the return spring as viewed from the x-axis direction for this sample stage. The problem of this stage is that when the inclination is increased in the minus direction, the operation in the minus direction of the actuator, that is, the pushing direction by the y-return spring may stop at a certain angle or more. this is,
This is because if the weight of the stage increases, the stage cannot be pushed back by the spring having the specified strength. On the other hand, the z pushback spring is constantly above the sample stage and its force is working well. Fig. 6 (a) shows the relationship between the y-return spring force and the preload applied to the actuator by the stage weight when the stage weight is 4kg, the return spring force is 3kg, and the tilt angle is changed from -90 ° to + 90 °. Indicated. Here, the direction of the force applied to the actuator is defined as plus. Stage weight exerts maximum force on actuator at + 90 °
4 kg, which is in a sine function relationship according to the angle. On the other hand, since the push-back spring rotates together with the actuator, the applied force does not change. (Spring force + stage weight) is the pressure applied to the actuator. When the spring force is 3 kg, the preload is negative when the inclination is less than 40 °. This indicates that the pushback spring force is weak, a gap is generated between the actuator and the sample stage, and fine movement control becomes impossible. On the other hand, in the positive tilt, the spring force and weight are all on the spring, and the force is up to 7 kg. In order to increase the spring force at the negative inclination, a method of using a strong spring, for example, a 7.5 kg spring shown in the drawing can be considered. However, in this case, although about 1 kg of pressurization can be obtained at −90, the pressurization reaches 11.5 kg at + 90 °. To achieve the fine movement accuracy of the actuator, it is necessary to apply a pressure of at least about 1 kg.
When the above preload is applied, the life is shortened, and the precision of the fine movement is not guaranteed. Therefore, a strong spring cannot be simply employed, and a structure in which the spring force is strengthened when the inclination is negative and reduced when the inclination is positive must be considered. To cope with this problem, a y-return spring mechanism with variable spring force shown in FIG. 7 has been devised. In this mechanism, a fixed force is applied from the fixed spring 40 (adjustable to 1 to 3 kg) to the spring tip 41 irrespective of the inclination angle, and the force by which the weight 43 is reduced by gravity via the lever 42 is applied to the fixed spring 40. The force can be exerted on the spring tip 41 by being superimposed on the force. Therefore, at θ = 0 °, the mechanism is in the horizontal plane with respect to gravity, and is at position A, and its spring force is only the force of the fixed spring 40. At the time of minus inclination, the weight 43 of this mechanism is at the position B, and the weight 4
A gravity of 3 is added. At the time of plus inclination, the weight 43 is at the position C, and at this time, the lever 42 is structured so as not to push the spring tip 41, so that only the force of the fixed spring 40 is applied to the spring tip 41 regardless of the angle. it can. This time, the force of the fixed spring 40 was 1 kg, the weight was 780 g, and the lever ratio was 1: 6, so the added force was (1 + 0.78 ×
6) kg, that is, 5.68kg. In this way, as shown in FIG. 6B, the y-return spring force changes by a sine function according to the angle at a fixed inclination of 1 kg at a plus inclination and at a maximum inclination of 5.67 kg at a minus inclination. Eventually, from the relation with the stage weight, the pressurization of the actuator became 1 kg at the minimum and 5 kg at the maximum, and the operation conditions of the actuator could be satisfied, and the sample could be finely moved in all directions.

【0011】[0011]

【発明の効果】試料形状や観察倍率、傾斜角度によら
ず、常に回転軸を電子顕微鏡鏡体の中心に設定できるよ
うになるため、電子顕微鏡本来の特長である高倍率での
試料の全方位3次元観察が可能になる。
The rotation axis can always be set at the center of the electron microscope body regardless of the sample shape, observation magnification, and tilt angle. Three-dimensional observation becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本出願の試料ステージの構成概略と動作原理を
示した図。
FIG. 1 is a diagram showing a schematic configuration and an operation principle of a sample stage of the present application.

【図2】従来の試料ステージの構成概略と動作原理を示
した図。
FIG. 2 is a diagram showing a schematic configuration and operation principle of a conventional sample stage.

【図3】本出願の試料ステージにおいてx微動を試料ホ
ルダさや上に載せた構成を示した図。
FIG. 3 is a diagram showing a configuration in which x fine movement is placed on a sample holder sheath on the sample stage of the present application.

【図4】x微動てこの構成を示す図。FIG. 4 is a diagram illustrating this configuration by x fine movement.

【図5】試料大傾斜時のy、zアクチュエータと押し返
しばねの位置関係を示した図。
FIG. 5 is a diagram showing a positional relationship between a y, z actuator and a return spring when the sample is tilted at a large angle.

【図6】試料大傾斜時のy、zアクチュエータと押し返
しばねの力関係を示した図。
FIG. 6 is a diagram showing a force relationship between a y, z actuator and a return spring when the sample is tilted at a large angle.

【図7】y押し返しばねの構成を示す図。FIG. 7 is a diagram showing a configuration of a y-return spring.

【符号の説明】[Explanation of symbols]

1:試料ホルダ、2:試料ホルダさや、3:球面座、
4:回転シリンダ、5:微動アクチュエータ、6:押し
返しばね、7:θモータ、8:電子顕微鏡鏡体、9:x
微動てこ、10:試料、11:回転シリンダ位置微調用
調整機構、12:回転シリンダガイド、13:第2球面
座、14:回転シリンダガイド位置微調用調整機構、1
5:試料ホルダ取手、20:回転モータ、21:ギア
A、22:ギアB、23:ホルダ押しジグ、24:ホル
ダ取手、25:x微動ピポット、26:アクチュエー
タ、27:x微動てこ、28:てこ支点、29:押し返
しばね、40:固定ばね、41:ばね先端、42:て
こ、43:重り
1: sample holder, 2: sample holder sheath, 3: spherical seat,
4: rotating cylinder, 5: fine actuator, 6: pushback spring, 7: θ motor, 8: electron microscope body, 9: x
Fine movement lever, 10: sample, 11: adjustment mechanism for fine adjustment of rotary cylinder position, 12: rotary cylinder guide, 13: second spherical seat, 14: adjustment mechanism for fine adjustment of rotary cylinder guide position, 1
5: sample holder handle, 20: rotary motor, 21: gear A, 22: gear B, 23: holder pressing jig, 24: holder handle, 25: x fine movement pivot, 26: actuator, 27: x fine movement lever, 28: Lever fulcrum, 29: Push-back spring, 40: Fixed spring, 41: Spring tip, 42: Lever, 43: Weight

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高口 雅成 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山岡 正作 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 常田 るり子 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5C001 AA03 AA05 CC03  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Masanari Takaguchi 1-280 Higashi Koigabo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Hitachi, Ltd. Central Research Laboratory (72) Inventor Ruriko Tsuneda 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5C001 AA03 AA05 CC03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子顕微鏡内に試料を挿入し、電子線に
対する試料の位置や角度を制御する電子顕微鏡用試料ス
テージにおいて、試料を保持する試料ホルダと、回転機
構の力を試料ホルダに伝達する回転部材と、該試料ホル
ダの回転時動作をガイドする第1の球面座と、該回転部
材上に固定され該回転部材と該試料ホルダの相対位置を
調整する微動機能と、該回転部材の回転軸と第1の球面
座の球面座中心との相対位置を調整するために該回転軸
に垂直な面内に該回転部材位置を移動させる第1の調整
機能を有し、該回転部材の電子顕微鏡鏡体への取り付け
角度と該回転軸位置を変化させるための第2の球面座と
角度を調整するための第2の調整機能を有することを特
徴とした電子顕微鏡用試料ステージ。
1. A sample stage for inserting a sample into an electron microscope and controlling a position and an angle of the sample with respect to an electron beam, and transmitting a force of a sample holder for holding the sample and a rotation mechanism to the sample holder. A rotating member, a first spherical seat for guiding the operation of rotating the sample holder, a fine movement function fixed on the rotating member and adjusting a relative position between the rotating member and the sample holder, and rotation of the rotating member A first adjusting function of moving the position of the rotating member in a plane perpendicular to the rotation axis in order to adjust a relative position between the shaft and the center of the spherical seat of the first spherical seat; A sample stage for an electron microscope, comprising: a second spherical seat for changing an angle of attachment to a microscope body and a position of the rotation axis; and a second adjustment function for adjusting an angle.
【請求項2】 請求項1記載の電子顕微鏡用試料ステー
ジにおいて、試料ホルダを該回転軸方向に微動させるた
め、該回転部材上に固定され一方で中間部材を介すか直
接に試料ホルダに接触することで、該回転部材と該試料
ホルダの相対位置を調整できる微動機構を備えたことを
特徴とした電子顕微鏡用試料ステージ。
2. The sample stage for an electron microscope according to claim 1, wherein the sample holder is finely moved in the direction of the rotation axis, and is fixed on the rotating member while being in direct contact with the sample holder via an intermediate member. A sample stage for an electron microscope, comprising a fine movement mechanism capable of adjusting a relative position between the rotating member and the sample holder.
【請求項3】 請求項1記載の微動機構において、該試
料ホルダは該回転部材上に電気的に並進運動を生み出す
装置とばね機構ではさまれ固定されており、該ばね機構
は重りを有し、該重りによる重力は中間部材を介して該
ばねに加算される構造を持つことで、重力方向に対する
ばね機構の方向によりばね力が可変であることを特徴と
した電子顕微鏡用試料ステージ。
3. The fine movement mechanism according to claim 1, wherein the sample holder is fixed by a spring mechanism and a device for generating an electric translational movement on the rotating member, and the spring mechanism has a weight. A sample stage for an electron microscope, characterized in that a gravity caused by the weight is added to the spring via an intermediate member, so that a spring force is variable depending on a direction of a spring mechanism with respect to a direction of gravity.
JP2000131050A 2000-04-28 2000-04-28 Sample stage for electron microscope Pending JP2001312989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000131050A JP2001312989A (en) 2000-04-28 2000-04-28 Sample stage for electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000131050A JP2001312989A (en) 2000-04-28 2000-04-28 Sample stage for electron microscope

Publications (1)

Publication Number Publication Date
JP2001312989A true JP2001312989A (en) 2001-11-09

Family

ID=18640024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000131050A Pending JP2001312989A (en) 2000-04-28 2000-04-28 Sample stage for electron microscope

Country Status (1)

Country Link
JP (1) JP2001312989A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2056332A1 (en) 2007-10-29 2009-05-06 Hitachi High-Technologies Corporation Displacement correction of a sample stage for an eucentric rotation in a charged particle microscope
KR101307061B1 (en) * 2011-11-15 2013-09-11 (주)포스코엠텍 Binding Apparatus
CN104637765A (en) * 2015-02-15 2015-05-20 北京工业大学 Biaxial-tilting sample carrier for transmission electron microscope
KR102060350B1 (en) 2018-10-31 2019-12-30 한국기계연구원 Parallel goniometer for electromicroscopy
US11164717B2 (en) 2018-03-23 2021-11-02 Hitachi High-Tech Corporation Electron microscope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2056332A1 (en) 2007-10-29 2009-05-06 Hitachi High-Technologies Corporation Displacement correction of a sample stage for an eucentric rotation in a charged particle microscope
US7863564B2 (en) 2007-10-29 2011-01-04 Hitachi High-Technologies Corporation Electric charged particle beam microscope and microscopy
KR101307061B1 (en) * 2011-11-15 2013-09-11 (주)포스코엠텍 Binding Apparatus
CN104637765A (en) * 2015-02-15 2015-05-20 北京工业大学 Biaxial-tilting sample carrier for transmission electron microscope
US11164717B2 (en) 2018-03-23 2021-11-02 Hitachi High-Tech Corporation Electron microscope
DE112018006293B4 (en) 2018-03-23 2023-01-19 Hitachi High-Tech Corporation electron microscope
KR102060350B1 (en) 2018-10-31 2019-12-30 한국기계연구원 Parallel goniometer for electromicroscopy

Similar Documents

Publication Publication Date Title
US8618479B2 (en) Magnifying observation apparatus
US8148700B2 (en) Speciman holder and speciman holder movement device
US8089053B1 (en) Dynamically tilting specimen holder for stereo and tomographic imaging in a transmission electron microscope using a combination of micro electro mechanical systems (MEMS) and piezoelectric transducers (PZTs)
JP2009099568A (en) Electric manipulator for positioning specimen on transmission electron microscope
JP6054728B2 (en) Sample positioning device and charged particle beam device
JPH06208000A (en) Molecular beam optical device
WO2014030425A1 (en) Electron microscope and sample movement device
JP2001312989A (en) Sample stage for electron microscope
JP4436942B2 (en) Micromanipulation device for fine work and microprobe for fine work
US3702399A (en) Specimen stage for an electron microscope
JPH08124508A (en) Sample holding device for electron microscope
JPH08106873A (en) Electron microscope device
JP2018190628A (en) Sample holder unit and sample observation apparatus
JPH11185686A (en) Sample holder, sample holding member fitting holder, and sample holding member
JPS6054151A (en) Sample-moving device for electron ray device
JP2001338599A (en) Charged particle beam device
JP2001256912A (en) Sample holder and sample mover using the same as well as electron microscope
JP2965186B2 (en) Sample equipment such as electron microscope
JPH07262955A (en) Biaxial tilting specimen holder
CN111566775B (en) Electron microscope
JP2691077B2 (en) Sample changer for electron microscope
JPH02239560A (en) Specimen device of electron microscope and the like
JP3702685B2 (en) Charged particle beam equipment
WO2023127083A1 (en) Charged particle beam device
JP2009070604A (en) Sample support stage for observing three-dimensional structure, protractor and three-dimensional structure observing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040604