JP3702685B2 - Charged particle beam equipment - Google Patents

Charged particle beam equipment Download PDF

Info

Publication number
JP3702685B2
JP3702685B2 JP00009799A JP9799A JP3702685B2 JP 3702685 B2 JP3702685 B2 JP 3702685B2 JP 00009799 A JP00009799 A JP 00009799A JP 9799 A JP9799 A JP 9799A JP 3702685 B2 JP3702685 B2 JP 3702685B2
Authority
JP
Japan
Prior art keywords
sample
axis
charged particle
particle beam
sample holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00009799A
Other languages
Japanese (ja)
Other versions
JP2000200577A5 (en
JP2000200577A (en
Inventor
昌弘 赤津
貢 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP00009799A priority Critical patent/JP3702685B2/en
Publication of JP2000200577A publication Critical patent/JP2000200577A/en
Publication of JP2000200577A5 publication Critical patent/JP2000200577A5/ja
Application granted granted Critical
Publication of JP3702685B2 publication Critical patent/JP3702685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は荷電粒子線装置用のサイドエントリー試料ステージに関わり、特にユーセントリック試料ステージを有する荷電粒子線装置に関する。
【0002】
【従来の技術】
従来の荷電粒子線装置に用いられているユーセントリックタイプのサイドエントリー試料ステージについて、図7から図10を用いて説明する。
【0003】
上磁極1a,下磁極1bより構成される対物レンズの側面に試料ステージが設けられている。この試料ステージは鏡体3の側壁に取り付けられる。電子線2の光軸(Z軸)と直交するX軸が回転中心となるように、側壁に固定された支持筒4の内側にベアリング9を介して保持筒5が回転可能に取り付けられる。
【0004】
保持筒5内には試料ホールダ7を挿入可能な傾斜筒6を取り付ける。この傾斜筒6は支点の中心がX軸上にある球体軸受6aを有し、回転可能に取り付けられる。傾斜筒6は、保持筒5に取り付けられZ方向に移動させるつまみ10とピン11,ばね12よりZ方向に支持される。またY方向は、保持筒5に取り付けられY方向に移動させる駆動機17とピン18,ばね19により支持される。
【0005】
保持筒5の外側には駆動機16が取り付けられ、保持筒5を回転できるように接続される。試料ホールダ7には、光軸とホールダ軸が一致する部分に試料搭載部7aが設けられ、試料8が搭載される。
【0006】
X軸上で傾斜筒6と対向する位置にはX軸方向の駆動機15と駆動棒14が取り付けられ、遊動体13を介して試料ホールダ7に接続されている。遊動体13は試料ホールダ7および駆動棒14との接合部がピポットとピポット軸受け構造となっていて、回転可能になっている。
【0007】
ステージを駆動する各駆動機は、ステージコントローラによって制御される。
ステージコントローラには試料のX軸,Y軸,(Z軸),傾斜角度の移動限界値を登録または検出する手段を有し、移動限界の範囲内で駆動機を制御する。
【0008】
このような構成の装置において、試料ホールダ7は対物レンズがある鏡体内部が真空であるために鏡体内部に引込まれ、常に遊動体13を駆動機15の方向に押しているため、駆動機15により駆動棒14をX軸方向へ動かせば、遊動体
13を介して試料ホールダ7をX軸方向に移動させることができる。これで試料8をX軸方向に移動できる。
【0009】
また駆動機17により傾斜筒6をY軸方向に動かせば、試料ホールダ7は球体軸受6aを支点としY軸方向へ回転するので、試料8はY方向に移動できる。同様につまみ10で傾斜筒6をZ軸方向に動かせば、試料ホールダ7は球体軸受
6aを支点としZ方向へ回転するので、試料8はZ軸方向の移動ができる。さらに駆動機16で保持筒5を回転させれば、保持筒5は傾斜筒6を保持したままX軸まわりに回転するので、図10のように試料8は傾斜できる。これらの移動機構により、試料8の観察面は、常にX軸,Y軸,Z軸の原点に位置するように制御される。
【0010】
【発明が解決しようとする課題】
半導体技術の進歩に伴い、電子線を細く絞って分解能の高い試料像を得ることのできるインレンズ方式の走査形電子顕微鏡のニーズが高まってきた。特に対物レンズの上磁極と下磁極の間に試料を配置するインレンズ方式の走査形電子顕微鏡では、観察する試料のサイズも大きく制限され、数ミリ角の試料を作らなければならない。
【0011】
この試料の作成手順を、図11を用いて説明する。ウェハー25から試料27(長さL,幅H)を作成するには、まず幅Hに切断して短冊上のウェハー26とし、次に長さLに切断する。しかし、この作業は手作業で行われるため、数ミリ角に切出すことは容易ではない。図9および図10に示すように、断面観察を行うためには幅Hをわずか3〜4ミリ程度に切出す必要があり、非常に難しい作業となっていた。このため、より大きな試料を搭載できるような装置が望まれている。
【0012】
その一方で、荷電粒子線装置には試料像の高分解能化が求められる。この分解能を上げる方法の一つに、試料観察面を上磁極下面に近づける方法がある。
【0013】
しかし、従来のユーセントリックタイプのサイドエントリー試料ステージでこれらの課題を解決しようとした場合、図12のように、試料観察面8aのみをホールダ7の軸より上側にする方法があるが、試料の傾斜中心はX軸上にあるため、図13のように傾斜した場合に試料観察面8aが大きくずれてしまい、ステージの位置制御が非常に複雑になる。一方、分解能を上げる方法として、図14のように、試料ホールダ7を上磁極1aに近づける方法もあるが、図15のように、試料搭載部7aの部材が上磁極1aと干渉してしまうために、傾斜角Θが小さくなってしまう。
【0014】
本発明は上記課題を解決し、特に試料を配置する空間が大きく制限される傾斜機能を備えたサイドエントリー式の試料ホールダを採用する荷電粒子線装置において、より大きな試料を扱うことを可能ならしめると共に分解能の高い試料像を得るのに好適な荷電粒子線装置の提供を目的とするものである。
【0015】
【課題を解決するための手段】
上記問題を解決するために、本発明では荷電粒子源と、該荷電粒子源から発生する荷電粒子線を収束するための対物レンズを内在する荷電粒子線鏡体を備えた荷電粒子線装置において、前記荷電粒子線鏡体の側部から挿入され、前記荷電粒子線に照射される試料を支持する試料ホールダと、該挿入される試料ホールダの挿入開口を有すると共に、前記試料ホールダを前記荷電粒子線に対して傾斜する傾斜機構を有する試料ホールダ支持筒を備え、前記試料ホールダの挿入開口は前記試料ホールダ支持筒の傾斜中心に対し、前記荷電粒子線の照射方向に偏心して設けられることを特徴とする荷電粒子線装置を提供する。
【0016】
このような荷電粒子線装置の提供により、大きな傾斜角を保ちつつ、大きな試料片を対象とする観察を行うことができ、更に分解能の高い試料像を得ることができる。
【0017】
【発明の実施の形態】
試料ステージ内に挿入された試料ホールダは、X軸方向に摺動し、また球体軸受けを支点にY軸,Z軸方向の回転運動をし、さらに、保持筒の回転軸よりZ軸方向に偏心した状態で回転運動する。このため試料はX軸,Y軸,Z軸方向に移動し、X軸を中心として傾斜する。
【0018】
また、入力値よりX軸,Y軸,(Z軸),傾斜角度の移動範囲が見出され、試料の移動範囲が制限される。
【0019】
以下本発明の実施例を、図1〜図6により説明する。図7から図15と同一番号の物は同一構成要素を示すものである。
【0020】
図1はサイドエントリー試料ステージのX−Z断面図である。図2および図3は試料搭載部の詳細断面図である。保持筒5内に、試料ホールダ挿入穴をZ軸方向に偏心させた傾斜筒6を配置する。傾斜筒6には、支点の中心が保持筒5の回転軸(図中X軸)上にある球体軸受6aを設けて、鏡体3に取り付ける。試料8を搭載した試料ホールダ7は傾斜筒6に挿入され、遊動体13に連結される。
【0021】
試料ホールダ7に設けられる試料保持部は図示のように光軸に沿って凹状に形成される。この凹部の幅は例えば半導体ウェハーの厚さより大きくしておくと良い。これは先に示した断面観察のために切り出した試料片を差し込んで観察するためである。
【0022】
本発明実施例装置では、この凹部の底部と保持筒5の回転軸との間の距離を長くすることができる。即ち従来の技術に比べ、試料片を大きく切り出すことができるので、微細な加工を必要とせず観察用試料の作成が容易になる。
【0023】
また本発明実施例装置では対物レンズの上磁極1aと下磁極1bの間に試料が配置される所謂インレンズ式の対物レンズを採用しており、試料ホールダを挿入する空間も極めて限られたものとなるが、この限られた空間を試料片の配置のために有効に利用することができる。
【0024】
ここで、X軸方向の駆動機15で駆動棒14を動かせば、試料ホールダ7はX軸方向に摺動運動するので、試料8はX軸方向に移動する。Y軸方向の駆動機
17で傾斜筒6をY軸方向に動かせば、試料ホールダ7は球体軸受6aを支点にY軸方向に回転運動するので、試料8はY軸方向に移動する。Z軸方向のつまみ10で傾斜筒6をZ軸方向に動かせば、試料ホールダ7は球体軸受6aを支点にZ軸方向に回転運動するので、試料8はZ軸方向に移動する。保持筒5に設けられた駆動機16で保持筒5を回転させれば、傾斜筒6を保持した状態でX軸まわりに回転する。
【0025】
このとき図2および図3に示すように、試料ホールダ7はZ軸方向の偏心量Eを保持したままX軸まわりに回転するので、試料8がX軸まわりに傾斜することになる。試料8は傾斜中心であるX軸が観察面の基準面となるように試料ホールダ7に搭載され、観察面がX軸,Y軸,Z軸の原点に位置するように制御される。
【0026】
図4もサイドエントリー試料ステージのX−Z断面図である。保持筒5を鏡体3に回転可能に取り付け、傾斜筒6の球体軸受6aを保持筒5に取り付ける。球体軸受6aの回転中心は、保持筒5の回転軸に対しZ軸方向に偏心させる。X軸,Y軸,Z軸方向の移動機構は図1と同じである。本例も図1と同じように、試料はX軸,Y軸,Z軸方向の移動が可能で、保持筒5を駆動機16で回転させると、Z軸方向の偏心量Eを保持したまま傾斜筒6がX軸まわりに回転するので、試料8はX軸まわりに傾斜する。
【0027】
なお、本例の中で駆動機とはアクチエータやモーター等の位置制御可能な機器を示すが、ねじ式のつまみを用いれば手動での移動が可能になる。
【0028】
また、Z軸の駆動にはつまみを用いているが、駆動機を用いても構わない。さらに、Z軸方向は上磁極1aと下磁極1bの間にあり移動量が微量であるため、移動機構を省略する場合もある。
【0029】
図5は図1から図4の試料ステージの制御系統図である。操作者が所望の使用範囲を入力装置21より入力し、この入力値を処理装置22で登録および処理する。処理装置22で処理された入力情報や、移動範囲の位置情報は表示装置20に表示する。また処理装置22で得られた移動範囲は、ステージコントローラ
23に送られ、ステージの駆動機24の動作限界値として設定され、この範囲内でX軸,Y軸,(Z軸),傾斜の位置を制御する。
【0030】
図6は移動範囲導出処理フローを示す。操作者は入力装置より、使用する傾斜角度の範囲(最大値)を入力する(処理601)。次に入力値より、X軸,Y軸,(Z軸),傾斜角度について試料8の移動範囲を求める(処理602)。移動範囲は試料ホールダ7の試料搭載部7aおよび試料8が、上磁極1a,下磁極
1bや他の部品と干渉しない範囲となる。これは、試料ホールダ7が他の部品と干渉する部分について、試料ホールダ7および試料8の形状から得られる関係式を処理装置に登録しておき、関係式に入力値を代入することで計算できる。また処理を簡略する場合には、入力値に対して複数の定数を登録しておき、これを参照するようにしてもよい。あるいは、入力値に対して関係式と定数を登録しておき、これを参照するようにしてもよい。求められた移動範囲は、入力値と共に処理装置に登録する(処理603)。次に入力値と移動範囲を表示装置に表示する(処理604)。さらにステージコントローラに移動範囲の限界値として設定する(処理605)。
【0031】
なお、処理603から処理605は順序が入れ替わっても同じである。また、処理601において搭載する試料の高さを入力するようにしてもよい。さらに処理601において、使用する傾斜角度と試料の高さを入力するようにしてもよい。いずれも計算式や定数を登録しておくことで、移動範囲を求めることができる。
【0032】
【発明の効果】
ユーセントリック傾斜軸中心に対して試料ホールダ軸が偏心するので、試料の傾斜中心が試料ホールダ軸よりも偏心量だけ高くなる。試料の観察(搭載)基準面は偏心のないユーセントリック試料ステージよりも高くなるので、試料ホールダ半径より大きな(高さのある)断面試料を搭載できるようになり、観察面を上磁極下面に近づけた状態でも大きな傾斜角が得られるようになる。
【0033】
また、使用する試料傾斜角度や試料高さが入力でき、この入力値に対してステージの移動範囲が制限されるので、用途に応じて最適な試料移動範囲が得られる。
【図面の簡単な説明】
【図1】ユーセントリック試料ステージ(X−Z断面)。
【図2】試料搭載部詳細断面(Y−Z断面)。
【図3】試料搭載部詳細断面(傾斜時,Y−Z断面)。
【図4】ユーセントリック試料ステージ(X−Z断面)。
【図5】ユーセントリック試料ステージの制御系統図。
【図6】移動範囲導出処理フロー。
【図7】ユーセントリック試料ステージ(X−Z断面)。
【図8】ユーセントリック試料ステージ(X−Y断面)。
【図9】試料搭載部詳細断面(Y−Z断面)。
【図10】試料搭載部詳細断面(傾斜時,Y−Z断面)。
【図11】試料製作手順。
【図12】試料搭載部詳細断面(Y−Z断面)。
【図13】試料搭載部詳細断面(傾斜時,Y−Z断面)。
【図14】試料搭載部詳細断面(Y−Z断面)。
【図15】試料搭載部詳細断面(傾斜時,Y−Z断面)。
【符号の説明】
1a…上磁極、1b…下磁極、2…電子線、3…鏡体、4…支持筒、5…保持筒、6…傾斜筒、6a…球体軸受、7…試料ホールダ、7a…試料搭載部、8…試料、8a…試料観察面、9…ベアリング、10…つまみ、11,18…ピン、12,19…ばね、13…遊動体、14,15,16,17…駆動機、20…表示装置、21…入力装置、22…処理装置、23…ステージコントローラ、24…ステージの駆動機、25…ウェハー、26…幅Hで切出したウェハー、27…長さLで切断したウェハー。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a side entry sample stage for a charged particle beam apparatus, and more particularly to a charged particle beam apparatus having a eucentric sample stage.
[0002]
[Prior art]
A eucentric side entry sample stage used in a conventional charged particle beam apparatus will be described with reference to FIGS.
[0003]
A sample stage is provided on the side surface of the objective lens composed of the upper magnetic pole 1a and the lower magnetic pole 1b. This sample stage is attached to the side wall of the mirror body 3. The holding cylinder 5 is rotatably mounted via a bearing 9 inside the support cylinder 4 fixed to the side wall so that the X axis orthogonal to the optical axis (Z axis) of the electron beam 2 is the center of rotation.
[0004]
An inclined cylinder 6 into which a sample holder 7 can be inserted is attached in the holding cylinder 5. The inclined cylinder 6 has a spherical bearing 6a having a fulcrum center on the X axis, and is attached rotatably. The inclined cylinder 6 is supported in the Z direction by a knob 10 attached to the holding cylinder 5 and moved in the Z direction, a pin 11 and a spring 12. The Y direction is supported by a driving machine 17 attached to the holding cylinder 5 and moved in the Y direction, a pin 18 and a spring 19.
[0005]
A driving machine 16 is attached to the outside of the holding cylinder 5 and connected so that the holding cylinder 5 can be rotated. The sample holder 7 is provided with a sample mounting portion 7a where the optical axis and the holder axis coincide with each other, and the sample 8 is mounted thereon.
[0006]
A drive unit 15 and a drive rod 14 in the X-axis direction are attached to a position facing the inclined cylinder 6 on the X-axis, and are connected to the sample holder 7 via the movable body 13. The floating body 13 has a pivot and pivot bearing structure at the joint between the sample holder 7 and the drive rod 14 and is rotatable.
[0007]
Each drive unit that drives the stage is controlled by a stage controller.
The stage controller has means for registering or detecting the movement limit values of the X-axis, Y-axis, (Z-axis), and tilt angle of the sample, and controls the drive device within the movement limit range.
[0008]
In the apparatus having such a configuration, the sample holder 7 is drawn into the inside of the mirror body because the inside of the body with the objective lens is vacuum, and always pushes the floating body 13 in the direction of the driving machine 15. Thus, the sample holder 7 can be moved in the X-axis direction via the movable body 13 by moving the drive rod 14 in the X-axis direction. Thus, the sample 8 can be moved in the X-axis direction.
[0009]
Further, if the tilting cylinder 6 is moved in the Y-axis direction by the driving machine 17, the sample holder 7 rotates in the Y-axis direction with the spherical bearing 6a as a fulcrum, so that the sample 8 can move in the Y-direction. Similarly, if the tilt cylinder 6 is moved in the Z-axis direction with the knob 10, the sample holder 7 rotates in the Z direction with the spherical bearing 6a as a fulcrum, so that the sample 8 can move in the Z-axis direction. Further, if the holding cylinder 5 is rotated by the driving machine 16, the holding cylinder 5 rotates around the X axis while holding the inclined cylinder 6, so that the sample 8 can be inclined as shown in FIG. By these moving mechanisms, the observation surface of the sample 8 is controlled so that it is always located at the origin of the X, Y, and Z axes.
[0010]
[Problems to be solved by the invention]
With advances in semiconductor technology, there has been a growing need for an in-lens scanning electron microscope that can narrow the electron beam and obtain a sample image with high resolution. In particular, in an in-lens scanning electron microscope in which a sample is disposed between an upper magnetic pole and a lower magnetic pole of an objective lens, the size of the sample to be observed is greatly limited, and a sample of several millimeters square must be made.
[0011]
The procedure for preparing this sample will be described with reference to FIG. In order to create the sample 27 (length L, width H) from the wafer 25, first the wafer 26 is cut into a width H and then cut into a length L. However, since this operation is performed manually, it is not easy to cut out into several millimeters. As shown in FIGS. 9 and 10, in order to perform cross-sectional observation, it is necessary to cut the width H to about 3 to 4 mm, which is a very difficult operation. For this reason, an apparatus capable of mounting a larger sample is desired.
[0012]
On the other hand, high-resolution sample images are required for charged particle beam devices. One method for increasing the resolution is to bring the sample observation surface closer to the upper magnetic pole lower surface.
[0013]
However, when trying to solve these problems with a conventional eucentric side-entry sample stage, there is a method in which only the sample observation surface 8a is positioned above the axis of the holder 7 as shown in FIG. Since the tilt center is on the X axis, when tilted as shown in FIG. 13, the sample observation surface 8a is greatly displaced, and the position control of the stage becomes very complicated. On the other hand, as a method of increasing the resolution, there is a method of bringing the sample holder 7 close to the upper magnetic pole 1a as shown in FIG. 14, but the member of the sample mounting portion 7a interferes with the upper magnetic pole 1a as shown in FIG. In addition, the inclination angle Θ becomes small.
[0014]
The present invention solves the above-described problems, and in particular makes it possible to handle a larger sample in a charged particle beam apparatus that employs a side entry type sample holder having an inclination function that greatly restricts a space for arranging the sample. It is another object of the present invention to provide a charged particle beam apparatus suitable for obtaining a sample image with high resolution.
[0015]
[Means for Solving the Problems]
In order to solve the above problem, in the present invention, in a charged particle beam apparatus including a charged particle source and a charged particle beam mirror containing an objective lens for converging a charged particle beam generated from the charged particle source. A sample holder inserted from a side of the charged particle beam mirror and supporting a sample irradiated to the charged particle beam; an insertion opening for the sample holder to be inserted; and the sample holder for the charged particle beam A sample holder support cylinder having an inclination mechanism that is inclined with respect to the sample holder, and the insertion opening of the sample holder is provided eccentrically in the irradiation direction of the charged particle beam with respect to the inclination center of the sample holder support cylinder. Provided is a charged particle beam device.
[0016]
By providing such a charged particle beam apparatus, it is possible to observe a large sample piece while maintaining a large tilt angle, and to obtain a sample image with higher resolution.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The sample holder inserted into the sample stage slides in the X-axis direction, rotates in the Y-axis and Z-axis directions with a spherical bearing as a fulcrum, and is further eccentric in the Z-axis direction from the rotation axis of the holding cylinder. Rotating motion in the state. For this reason, the sample moves in the X-axis, Y-axis, and Z-axis directions and tilts around the X-axis.
[0018]
Further, the movement range of the X axis, Y axis, (Z axis), and tilt angle is found from the input value, and the movement range of the sample is limited.
[0019]
Embodiments of the present invention will be described below with reference to FIGS. 7 to 15 indicate the same components.
[0020]
FIG. 1 is an XZ sectional view of a side entry sample stage. 2 and 3 are detailed sectional views of the sample mounting portion. In the holding cylinder 5, an inclined cylinder 6 in which the sample holder insertion hole is eccentric in the Z-axis direction is disposed. The inclined cylinder 6 is provided with a spherical bearing 6 a having a fulcrum center on the rotation axis (X axis in the figure) of the holding cylinder 5 and is attached to the mirror body 3. The sample holder 7 on which the sample 8 is mounted is inserted into the inclined cylinder 6 and connected to the floating body 13.
[0021]
The sample holder provided in the sample holder 7 is formed in a concave shape along the optical axis as shown. The width of the recesses may set larger Ri thickness Saya semiconductor wafer, for example. This is because the sample piece cut out for the cross-sectional observation shown above is inserted and observed.
[0022]
In the embodiment device of the present invention, the distance between the bottom of the recess and the rotating shaft of the holding cylinder 5 can be increased. That is, as compared with the conventional technique, the sample piece can be cut out largely, so that the preparation of the observation sample is facilitated without requiring fine processing.
[0023]
Further, the apparatus according to the present invention employs a so-called in-lens type objective lens in which a sample is disposed between the upper magnetic pole 1a and the lower magnetic pole 1b of the objective lens, and the space for inserting the sample holder is extremely limited. However, this limited space can be used effectively for the arrangement of the sample pieces.
[0024]
Here, if the driving rod 14 is moved by the X-axis direction driving machine 15, the sample holder 7 slides in the X-axis direction, so that the sample 8 moves in the X-axis direction. If the tilting cylinder 6 is moved in the Y-axis direction by the Y-axis direction drive 17, the sample holder 7 rotates in the Y-axis direction with the spherical bearing 6 a as a fulcrum, so the sample 8 moves in the Y-axis direction. If the tilt cylinder 6 is moved in the Z-axis direction with the knob 10 in the Z-axis direction, the sample holder 7 rotates in the Z-axis direction with the spherical bearing 6a as a fulcrum, so the sample 8 moves in the Z-axis direction. If the holding cylinder 5 is rotated by the driving machine 16 provided in the holding cylinder 5, it rotates around the X axis while holding the inclined cylinder 6.
[0025]
At this time, as shown in FIGS. 2 and 3, since the sample holder 7 rotates around the X axis while maintaining the eccentricity E in the Z-axis direction, the sample 8 is inclined around the X-axis. The sample 8 is mounted on the sample holder 7 so that the X axis, which is the center of inclination, becomes the reference plane of the observation surface, and is controlled so that the observation surface is located at the origin of the X, Y, and Z axes.
[0026]
FIG. 4 is also an XZ sectional view of the side entry sample stage. The holding cylinder 5 is rotatably attached to the mirror body 3, and the spherical bearing 6 a of the inclined cylinder 6 is attached to the holding cylinder 5. The rotation center of the spherical bearing 6 a is decentered in the Z-axis direction with respect to the rotation axis of the holding cylinder 5. The movement mechanism in the X-axis, Y-axis, and Z-axis directions is the same as in FIG. In this example as well as in FIG. 1, the sample can be moved in the X-axis, Y-axis, and Z-axis directions. When the holding cylinder 5 is rotated by the drive unit 16, the eccentric amount E in the Z-axis direction is maintained. Since the inclined cylinder 6 rotates around the X axis, the sample 8 is inclined around the X axis.
[0027]
In this example, the drive means a device whose position can be controlled, such as an actuator or a motor, but if a screw-type knob is used, it can be moved manually.
[0028]
Further, although a knob is used for driving the Z-axis, a driving machine may be used. Further, since the Z-axis direction is between the upper magnetic pole 1a and the lower magnetic pole 1b and the movement amount is very small, the movement mechanism may be omitted.
[0029]
FIG. 5 is a control system diagram of the sample stage of FIGS. An operator inputs a desired use range from the input device 21, and the input value is registered and processed by the processing device 22. The input information processed by the processing device 22 and the position information of the movement range are displayed on the display device 20. The movement range obtained by the processing device 22 is sent to the stage controller 23 and set as the operation limit value of the stage drive unit 24. Within this range, the X axis, Y axis, (Z axis), and tilt positions To control.
[0030]
FIG. 6 shows a movement range deriving process flow. The operator inputs the range (maximum value) of the tilt angle to be used from the input device (process 601). Next, the movement range of the sample 8 is obtained from the input values with respect to the X axis, Y axis, (Z axis), and the tilt angle (process 602). The moving range is a range in which the sample mounting portion 7a and the sample 8 of the sample holder 7 do not interfere with the upper magnetic pole 1a, the lower magnetic pole 1b, and other components. This can be calculated by registering a relational expression obtained from the shape of the sample holder 7 and the specimen 8 in the processing apparatus for a portion where the sample holder 7 interferes with other parts and substituting an input value into the relational expression. . In order to simplify the processing, a plurality of constants may be registered for the input value and referred to. Alternatively, a relational expression and a constant may be registered for the input value and referred to. The obtained moving range is registered in the processing device together with the input value (processing 603). Next, the input value and the movement range are displayed on the display device (process 604). Further, the limit value of the moving range is set in the stage controller (process 605).
[0031]
Note that the processes 603 to 605 are the same even if the order is changed. Further, the height of the sample to be mounted in the process 601 may be input. Further, in the process 601, the tilt angle to be used and the height of the sample may be input. In any case, the movement range can be obtained by registering a calculation formula or a constant.
[0032]
【The invention's effect】
Since the sample holder axis is decentered with respect to the center of the eucentric tilt axis, the tilt center of the sample is higher than the sample holder axis by the amount of eccentricity. The specimen observation (mounting) reference plane is higher than the Eccentric specimen stage without eccentricity, so that it is possible to mount a cross-sectional specimen that is larger (height) than the specimen holder radius and bring the observation plane closer to the bottom surface of the top pole A large inclination angle can be obtained even in the state where the heat is applied.
[0033]
In addition, the sample tilt angle and the sample height to be used can be input, and the stage movement range is limited with respect to the input value, so that an optimum sample movement range can be obtained according to the application.
[Brief description of the drawings]
FIG. 1 is a eucentric sample stage (XZ cross section).
FIG. 2 is a detailed cross-sectional view (YZ cross section) of a sample mounting portion.
FIG. 3 is a detailed cross section of a sample mounting portion (when tilted, YZ cross section).
FIG. 4 is a eucentric sample stage (XZ cross section).
FIG. 5 is a control system diagram of a eucentric sample stage.
FIG. 6 is a movement range derivation processing flow.
FIG. 7 is a eucentric sample stage (XZ cross section).
FIG. 8 is a eucentric sample stage (XY cross section).
FIG. 9 is a detailed cross section (YZ cross section) of the sample mounting portion.
FIG. 10 is a detailed cross section of a sample mounting portion (when tilted, YZ cross section).
FIG. 11 shows a sample manufacturing procedure.
FIG. 12 is a detailed cross-sectional view (YZ cross section) of a sample mounting portion.
FIG. 13 is a detailed cross section of a sample mounting portion (when tilted, YZ cross section).
FIG. 14 is a detailed cross section of a sample mounting portion (YZ cross section).
FIG. 15 is a detailed cross section of the sample mounting portion (when tilted, YZ cross section).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a ... Upper magnetic pole, 1b ... Lower magnetic pole, 2 ... Electron beam, 3 ... Mirror body, 4 ... Support cylinder, 5 ... Holding cylinder, 6 ... Inclined cylinder, 6a ... Spherical bearing, 7 ... Sample holder, 7a ... Sample mounting part 8 ... sample, 8a ... sample observation surface, 9 ... bearing, 10 ... knob, 11, 18 ... pin, 12, 19 ... spring, 13 ... moving body, 14, 15, 16, 17 ... drive, 20 ... display Device: 21 ... Input device, 22 ... Processing device, 23 ... Stage controller, 24 ... Stage drive unit, 25 ... Wafer, 26 ... Wafer cut with width H, 27 ... Wafer cut with length L

Claims (1)

荷電粒子源と、該荷電粒子源から発生する荷電粒子線を収束するための対物レンズを内在する荷電粒子線鏡体を備えた荷電粒子線装置において、
前記荷電粒子線鏡体の側部から挿入され、前記荷電粒子線に照射される試料を支持する試料ホールダと、
該挿入される試料ホールダの挿入開口を有すると共に、前記試料ホールダを前記荷電粒子線に対して傾斜する傾斜機構を有する試料ホールダ支持筒を備え、
前記試料ホールダの挿入開口は前記試料ホールダ支持筒の傾斜中心に対し、前記荷電粒子線の照射方向に偏心して設けられることを特徴とする荷電粒子線装置。
In a charged particle beam apparatus comprising a charged particle beam mirror and a charged particle beam mirror containing an objective lens for converging a charged particle beam generated from the charged particle source,
A sample holder that is inserted from a side of the charged particle beam mirror and supports the sample irradiated to the charged particle beam;
A sample holder support cylinder having an insertion opening for the sample holder to be inserted and having a tilting mechanism for tilting the sample holder with respect to the charged particle beam;
The charged particle beam apparatus according to claim 1, wherein an insertion opening of the sample holder is provided eccentrically in an irradiation direction of the charged particle beam with respect to an inclined center of the sample holder support cylinder.
JP00009799A 1999-01-04 1999-01-04 Charged particle beam equipment Expired - Lifetime JP3702685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00009799A JP3702685B2 (en) 1999-01-04 1999-01-04 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00009799A JP3702685B2 (en) 1999-01-04 1999-01-04 Charged particle beam equipment

Publications (3)

Publication Number Publication Date
JP2000200577A JP2000200577A (en) 2000-07-18
JP2000200577A5 JP2000200577A5 (en) 2005-01-06
JP3702685B2 true JP3702685B2 (en) 2005-10-05

Family

ID=11464611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00009799A Expired - Lifetime JP3702685B2 (en) 1999-01-04 1999-01-04 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP3702685B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709801B2 (en) * 2012-06-06 2015-04-30 株式会社日立ハイテクノロジーズ Specimen holder and observation specimen fixing method
JP6421041B2 (en) 2015-01-13 2018-11-07 株式会社日立ハイテクノロジーズ Charged particle beam equipment

Also Published As

Publication number Publication date
JP2000200577A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
CN108666195B (en) Charged particle beam device
EP1517355B1 (en) Apparatus and method for preparing samples
JP2011216465A (en) Compound charged particle beam device and sample processing observation method
KR20130077884A (en) Ion milling device
JP2004093353A (en) Sample preparation device
KR100890001B1 (en) Stage unit of SEM
JP3702685B2 (en) Charged particle beam equipment
JP7160868B2 (en) Ion milling device and sample preparation method
JP2001338599A (en) Charged particle beam device
KR101539738B1 (en) Scanning Electron Microscope
JP3149798B2 (en) Platen support drive mechanism for ion implanter
CN110476220A (en) Charged particle beam apparatus
JP7257549B2 (en) Diffractometer for charged particle crystallography
CN114975047A (en) Sample processing device and sample processing method
JPH04308638A (en) Sample driving device for electron microscope
JP2002150984A (en) Sample holder
JP2017182923A (en) Specimen holder and focused ion beam device
JP2001312989A (en) Sample stage for electron microscope
JP2002319365A (en) Stage, and device for preparing fib sample
JP2001256912A (en) Sample holder and sample mover using the same as well as electron microscope
JP2000149847A (en) Sample stage
JPS60230345A (en) Sample base device for scanning electron microscope
JPH11149897A (en) Sample device in charged particle beam apparatus
JPS60130042A (en) Fine adjustment for large shaped sample
JPH11162386A (en) Charged particle beam apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

EXPY Cancellation because of completion of term