JPH0621205A - Dielectric isolation substrate and semiconductor integrated circuit device - Google Patents

Dielectric isolation substrate and semiconductor integrated circuit device

Info

Publication number
JPH0621205A
JPH0621205A JP17429592A JP17429592A JPH0621205A JP H0621205 A JPH0621205 A JP H0621205A JP 17429592 A JP17429592 A JP 17429592A JP 17429592 A JP17429592 A JP 17429592A JP H0621205 A JPH0621205 A JP H0621205A
Authority
JP
Japan
Prior art keywords
layer
single crystal
sio
film
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17429592A
Other languages
Japanese (ja)
Inventor
Hironori Inoue
洋典 井上
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17429592A priority Critical patent/JPH0621205A/en
Publication of JPH0621205A publication Critical patent/JPH0621205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To solve the problem of the bonding defect of a semiconductor single- crystal wafer as a support body in conventional cases regarding the manufacturing method of a semiconductor integrated circuit device (power IC) having a dielectric isolation substrate and of a dielectric isolation substrate used to manufacture it. CONSTITUTION:A semiconductor integrated circuit device is formed of a dielectric isolation substrate having a structure composed of the following: a polycrystalline semiconductor layer 601 which buries a groove used to isolate a single-crystal island 3 forming an element; an SiO2 layer 7 which corrects and flattens uneven parts on the face of the polycrystalline layer and whose thickness is 20 to 2000nm; and a semiconductor single-crystal support body 5. Thereby, a perfect single-crystal wafer support body can be bonded firmly by the SiO2 layer having a definite thickness range, and the production yield of the semiconductor integrated circuit device is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は誘電体分離基板に係わ
り、特に支持体が単結晶シリコンで構成される誘電体分
離基板おびその製造方法、並びにこの誘電体分離基板を
用いた半導体集積回路装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric isolation substrate, and more particularly to a dielectric isolation substrate having a support made of single crystal silicon, a method of manufacturing the same, and a semiconductor integrated circuit device using the dielectric isolation substrate. It is about.

【0002】[0002]

【従来の技術】素子間の絶縁耐圧が数10V〜数100
Vと大きな高耐圧の集積回路装置(パワーIC)では、
集積化するそれぞれの素子を誘電体膜(例えばSiO2
膜 )のような絶縁膜で完全に分離する方法が採用さ
れ、その製造には通常の半導体単結晶ウエハを加工して
作製した誘電体分離基板が用いられる。
2. Description of the Related Art Withstand voltage between elements is several tens of volts to several hundreds.
V and a large high voltage integrated circuit device (power IC),
Each element to be integrated is connected to a dielectric film (eg, SiO 2
A method of completely separating with an insulating film such as a film) is used, and a dielectric isolation substrate manufactured by processing a normal semiconductor single crystal wafer is used for its production.

【0003】図2は誘電体分離基板及びパワーICの製
造工程の説明図(断面図及び斜視図)である。始めに、
単結晶シリコンウエハ301(例え直径5インチ、厚み
600μm)の主表面を酸化して、その全面にSiO2
膜15を形成し、ホトリソグラフ(ホトリソ)法でパタ
ーニングした後、エッチングなどの方法により予定の箇
所のSiO2膜15を開口する。次に、残されたSiO2
膜15をマスクとして、例えば水酸化カリウムとイソプ
ロピルアルコール混液を用いる異方性エッチングによっ
て、深さ約60μmの分離溝6を形成する(同図
(a))。前記マスクとして利用したSiO2膜15を
除去し、再びウエハ301の主表面を酸化し、全面に厚
さ約1.2μmの絶縁用のSiO2膜2を形成する(同
図(b))。その表面に、多結晶シリコン層602を高
温の気相成長法(CVD:形成温度約1200℃、形成
速度約5μm/min)により前記分離溝6を埋め、ウ
エハの厚みと同程度(約600μm)堆積させる(同図
(c))。堆積した多結晶シリコン層602表面の凹凸
(分離溝6が深いため形成される)を単結晶ウエハ30
1の下面を基準にして平滑にする(同図(d))。次
に、逆に凹凸をなくした多結晶シリコン層602の表面
側を基準として、単結晶ウエハ301の不要部分を研削
や研磨の方法で除去し、SiO2膜2によりそれぞれ分
離された単結晶島3を形成して誘電体分離基板101を
完成する(同図(e))。
FIG. 2 is an explanatory view (cross-sectional view and perspective view) of a manufacturing process of a dielectric isolation substrate and a power IC. At the beginning,
The main surface of a single crystal silicon wafer 301 (for example, a diameter of 5 inches and a thickness of 600 μm) is oxidized and the entire surface thereof is SiO 2
After forming the film 15 and patterning it by a photolithographic method, the SiO 2 film 15 at a predetermined position is opened by a method such as etching. Next, the remaining SiO 2
Using the film 15 as a mask, the separation groove 6 having a depth of about 60 μm is formed by anisotropic etching using, for example, a mixed solution of potassium hydroxide and isopropyl alcohol (FIG. 7A). The SiO 2 film 15 used as the mask is removed, the main surface of the wafer 301 is oxidized again, and an insulating SiO 2 film 2 having a thickness of about 1.2 μm is formed on the entire surface (FIG. 2B). A polycrystalline silicon layer 602 is formed on the surface thereof by a high temperature vapor phase growth method (CVD: formation temperature of about 1200 ° C., formation rate of about 5 μm / min) to fill the separation groove 6, and the same thickness as the wafer (about 600 μm). It is deposited ((c) in the same figure). Asperities on the surface of the deposited polycrystalline silicon layer 602 (formed because the separation groove 6 is deep) are formed on the single crystal wafer 30.
The lower surface of No. 1 is used as a reference for smoothing ((d) of the same figure). Next, on the contrary, the unnecessary portion of the single crystal wafer 301 is removed by a method of grinding or polishing with reference to the surface side of the polycrystalline silicon layer 602 having no unevenness, and the single crystal islands each separated by the SiO 2 film 2 are removed. 3 is formed to complete the dielectric isolation substrate 101 ((e) in the figure).

【0004】このようにして作製した誘電体分離基板1
01を、通常のLSIの製造に用いるシリコン単結晶ウ
エハと同様に扱い、半導体素子製造プロセスにより単結
晶分離島3に所望の半導体素子の形成、および金属薄膜
による各素子間の配線を行い(図示せず)、基板中に多
数の(数100個)のペレット(例えば、数10〜数1
00mm2)を作成する(同図(f))。この場合、近
年パワーICにおける素子の高集積化(数100個)に
伴い加工寸法の微細化が進められており、誘電体分離基
板の初期湾曲及び工程中の湾曲変化は、小さい方ほどホ
トリソ工程でパターニングする場合の合わせ精度が向上
して素子の製造歩留まりを高めることができる。素子形
成を終えたウエハをペレット1個ずつにカットした後、
金属性の台(リードフレイム)に溶着して接続ピンに配
線し、樹脂で全体を保護して半導体集積回路装置(パワ
ーIC)を完成する(同図(g))。
Dielectric isolation substrate 1 produced in this way
01 is treated in the same manner as a silicon single crystal wafer used for manufacturing an ordinary LSI, a desired semiconductor element is formed on the single crystal isolation island 3 by the semiconductor element manufacturing process, and wiring between elements is performed by a metal thin film (see FIG. (Not shown), a large number (several hundreds) of pellets (for example, several tens to several 1) in the substrate
00 mm 2 ) is created ((f) in the same figure). In this case, in recent years, as the integration of devices in power ICs has increased (several hundreds), the processing size has been miniaturized, and the smaller the initial curvature of the dielectric isolation substrate and the change in curvature during the process, the smaller the photolithography process. The alignment accuracy in the case of patterning can be improved and the manufacturing yield of the device can be increased. After cutting the wafer after element formation into pellets one by one,
The semiconductor integrated circuit device (power IC) is completed by welding to a metal base (lead frame), wiring to the connection pins, and protecting the whole with resin (FIG. 9 (g)).

【0005】よく知られるように、これまでの誘電体分
離基板は前述図2(e)に示した多結晶シリコン層60
2からなる支持体の表面に、半導体素子を形成するため
の複数の単結晶シリコン島3を誘電体膜2を介して形成
した複合構造のものが多い。このような複合構造の誘電
体分離基板では、分離島3部分の単結晶シリコンと支持
体部分の多結晶シリコン602層との熱膨張係数の違い
から基板に反り(湾曲)や歪みが発生すること、素子形
成の熱処理で多結晶の粒径が変化し湾曲が大きく変わる
などの問題があった。そこで、これらの問題点を解決す
る誘電体分離基板として、例えば特開昭53ー3359
0号公報、特開昭63ー62252号公報及び特開平3
ー265153号公報等に記載され、図3にその断面基
本構造を示すように、支持体を単結晶シリコンで構成
し、該支持体と単結晶島となる単結晶シリコンウエハを
SiO2膜を介して接合する構造(以下、接合構造とい
う)ものが用いられるようになっている。
As is well known, the conventional dielectric isolation substrate is the polycrystalline silicon layer 60 shown in FIG. 2 (e).
Many of them have a composite structure in which a plurality of single crystal silicon islands 3 for forming a semiconductor element are formed on the surface of a support made of 2 via a dielectric film 2. In such a dielectric isolation substrate having a composite structure, the substrate may be warped (curved) or distorted due to the difference in thermal expansion coefficient between the single crystal silicon in the isolation island 3 portion and the polycrystalline silicon 602 layer in the support portion. However, there was a problem that the grain size of the polycrystal was changed by the heat treatment for forming the element and the curvature was greatly changed. Therefore, as a dielectric isolation substrate for solving these problems, for example, Japanese Patent Laid-Open No. 53-3359.
No. 0, JP-A-63-62252, and JP-A-3.
No. 265153, etc., and the basic structure of the cross section is shown in FIG. 3, the support is made of single crystal silicon, and the single crystal silicon wafer to be the support and the single crystal island is provided with a SiO 2 film interposed therebetween. A structure in which they are joined together (hereinafter referred to as a joining structure) has been used.

【0006】図3において、半導体素子4は島状の単結
晶シリコン領域3内に形成され、該単結晶島3は、単結
晶シリコンからなる支持体5の表面上に誘電体膜2で互
いに絶縁された状態で形成される。誘電体膜2で絶縁さ
れる各単結晶シリコン島領域3の隣接部分の分離溝6に
は多結晶シリコン601が形成され、該単結晶島3は互
いに連結される。多結晶シリコン601の厚みは分離溝
6が埋まる最少の厚みとすればよい。分離溝6の多結晶
シリコン601で連結された単結晶島3はSiO2膜7
を介し単結晶シリコン支持体5と接合される。
In FIG. 3, a semiconductor element 4 is formed in an island-shaped single crystal silicon region 3, and the single crystal island 3 is insulated from each other by a dielectric film 2 on a surface of a support 5 made of single crystal silicon. It is formed in the formed state. Polycrystalline silicon 601 is formed in the isolation trench 6 adjacent to each single crystal silicon island region 3 insulated by the dielectric film 2, and the single crystal islands 3 are connected to each other. The thickness of polycrystalline silicon 601 may be set to the minimum thickness at which isolation trench 6 is filled. The single crystal island 3 connected by the polycrystalline silicon 601 in the separation groove 6 is the SiO 2 film 7.
It is bonded to the single crystal silicon support 5 through.

【0007】以下、このような接合構造の誘電体離基板
の製造方法を図4に示す断面図を用いて説明する。始め
に、単結晶シリコンウエハ301の主表面に約60μm
の分離溝6を形成した後その全面に厚さ約1.2μmの
絶縁用のSiO2膜2を形成し、分離溝6が完全に埋ま
るまで多結晶シリコン層601を約100μm堆積する
(同図(a))。ここまでの工程は多結晶シリコンの堆積
量が従来法に比べて少ないこと以外は前述図2の工程と
同一である。次いで、分離溝6の直上部分に形成される
堆積多結晶シリコン層601の大きな凹みを機械的な切
削(研削)等で除き、更に物理的研磨と化学的なエッチ
ングを合わせ持つメカノケミカル研磨法によって微小な
凹凸を除去して平滑面とする(同図(b))。表面にS
iO2膜7を形成した支持体5とする単結晶シリコンウ
エハを用意し、その表面と前記多結晶シリコン層601
の研磨面を適宜の方法で貼り合わせ、さらに高温の熱処
理を加えて2枚のウエハを接合する(同図(c))。な
お、上記した2枚の半導体ウエハを接合する方法に関し
ては、例えば特開昭62ー27040号公報に記載され
る方法等がある。最後に、前述図2と同様に、単結晶シ
リコンウエハ301の不要部分を研磨によって除去して
単結晶分離島3を形成して誘電体分離基板1を完成する
(同図(d))。この後のパワーIC作製工程は、前述
図2に示した工程と同一である。
Hereinafter, a method of manufacturing a dielectric separated substrate having such a junction structure will be described with reference to the sectional view shown in FIG. First, about 60 μm on the main surface of the single crystal silicon wafer 301.
After forming the isolation trench 6 of 1., an insulating SiO 2 film 2 having a thickness of about 1.2 μm is formed on the entire surface, and a polycrystalline silicon layer 601 is deposited to a thickness of about 100 μm until the isolation trench 6 is completely filled. (a)). The steps up to this point are the same as the steps shown in FIG. 2 except that the amount of polycrystalline silicon deposited is smaller than in the conventional method. Then, a large recess of the deposited polycrystalline silicon layer 601 formed immediately above the separation groove 6 is removed by mechanical cutting (grinding) or the like, and further, by a mechanochemical polishing method having both physical polishing and chemical etching. The fine irregularities are removed to form a smooth surface (FIG. 2 (b)). S on the surface
A single crystal silicon wafer serving as the support 5 on which the iO 2 film 7 is formed is prepared, and its surface and the polycrystalline silicon layer 601 are prepared.
The polished surfaces of 1 are bonded together by an appropriate method, and a high temperature heat treatment is applied to bond the two wafers (FIG. 7C). As a method for joining the above-mentioned two semiconductor wafers, for example, there is a method described in JP-A-62-27040. Finally, as in the case of FIG. 2, the unnecessary portion of the single crystal silicon wafer 301 is removed by polishing to form the single crystal isolation island 3 to complete the dielectric isolation substrate 1 (FIG. 2D). The subsequent power IC manufacturing process is the same as the process shown in FIG.

【0008】[0008]

【発明が解決しようとする課題】上記従来例は、接合界
面に形成されるSiO2膜7の膜厚についての配慮が不
足しているため、支持体ウエハ5の接合が不完全になり
易いという問題があった。完全なウエハ接合が達成され
ない場合は接合力が弱く、このような半導体単結晶分離
島に素子を形成して作製したパワーICは、素子の動
作、否動作で生ずる熱サイクルによって分離島が支持体
から移動したり剥離したりし、素子間を接続する配線の
断線トラブルなどの不良が発生する。
In the above-mentioned conventional example, since the thickness of the SiO 2 film 7 formed at the bonding interface is insufficiently considered, the bonding of the support wafer 5 is likely to be incomplete. There was a problem. If perfect wafer bonding is not achieved, the bonding force will be weak. In a power IC manufactured by forming an element on such a semiconductor single crystal isolation island, the isolation island is supported by a thermal cycle generated by the operation or non-operation of the element. It may be moved or peeled off, and a defect such as a disconnection trouble of a wiring connecting elements may occur.

【0009】また、上記従来例の誘電体分離基板は湾曲
が発生し易く(数100μm)、微細加工を行う(加工
寸法およそ3μm以下)ホトリソ工程で要求される数1
0μm程度以下の低湾曲基板を得ることが困難という別
の問題もある。
Further, the conventional dielectric isolation substrate is liable to be bent (several hundred μm), and is subjected to microfabrication (processing dimension is about 3 μm or less), which is required by the photolithography process of the number 1
Another problem is that it is difficult to obtain a substrate with a low curvature of about 0 μm or less.

【0010】実験により、本発明者らは支持体ウエハ5
の接合不良が発生する主な原因が、深い分離溝の影響で
生じる多結晶層研磨面の微小な凹凸や、熱膨張率の違い
から接合界面のSiO2膜と分離溝を埋める多結晶シリ
コンとの間に生ずる残留応力によると推定されること、
また、基板湾曲を数10μm以下にし難い原因は接合界
面に形成されている誘電体膜と支持体との熱膨張率の違
いによって反りが生じるためであることを突き止めた。
According to experiments, the present inventors found that the support wafer 5
The main cause of the bonding failure is the minute unevenness on the polished surface of the polycrystalline layer caused by the effect of the deep separation groove, and the difference in thermal expansion coefficient between the SiO 2 film at the bonding interface and the polycrystalline silicon filling the separation groove. Is estimated to be due to residual stress that occurs during
It was also found that the reason why it is difficult to reduce the substrate curvature to several tens of μm or less is that a warp occurs due to the difference in the coefficient of thermal expansion between the dielectric film formed at the bonding interface and the support.

【0011】本発明の目的は、以上に述べた問題点を解
決してウエハ接合が完全で、かつ湾曲が小さな誘電体分
離基板およびその製造方法、並びに該誘電体分離基板を
用いた断線などのトラブルがなく信頼性の高いパワーI
Cを提供するにある。
An object of the present invention is to solve the above-mentioned problems and to complete a wafer bonding and to provide a small curvature in a dielectric isolation substrate, a manufacturing method thereof, and a disconnection using the dielectric isolation substrate. Power I with no trouble and high reliability
To provide C.

【0012】[0012]

【課題を解決するための手段】前記の問題点を解決して
完全なウエハ接合を実現するために、本発明は、半導体
単結晶支持体と、前記半導体単結晶支持体の主表面に形
成された緩衝層と、前記緩衝層に隣接する多結晶シリコ
ン層と、前記多結晶シリコン層の表面に複数個形成さ
れ、誘電体膜によって相互に、且つ前記多結晶シリコン
と絶縁された半導体単結晶分離島とを具備し、前記緩衝
層が、厚みが略20〜2000nmのシリコン酸化膜
(SiO2)層であることを特徴とする誘電体分離基板
である。
SUMMARY OF THE INVENTION In order to solve the above problems and realize perfect wafer bonding, the present invention provides a semiconductor single crystal support and a main surface of the semiconductor single crystal support. Buffer layer, a polycrystalline silicon layer adjacent to the buffer layer, and a plurality of semiconductor single crystal components formed on the surface of the polycrystalline silicon layer and insulated from each other by the dielectric film. A dielectric isolation substrate comprising: a remote island, wherein the buffer layer is a silicon oxide film (SiO 2 ) layer having a thickness of approximately 20 to 2000 nm.

【0013】また本発明は、一方の主表面に分離溝を有
する半導体単結晶ウエハの該一方の主表面に誘電体膜を
形成する工程と、少なくとも前記分離溝が埋まるまで、
前記誘電体膜上に多結晶シリコン層を形成する工程と、
前記多結晶シリコン層を略平滑化する工程と、厚みが略
20〜2000nmのシリコン酸化膜(SiO2)層か
ら成る緩衝層が形成された半導体単結晶支持体を前記多
結晶シリコン層の前記平滑面に接合する工程と、前記半
導体単結晶ウエハの他方の主表面を研磨し該半導体単結
晶ウエハを前記誘電体膜により複数に分離された半導体
単結晶島にする工程とを有する誘電体分離基板の製造方
法である。ここで、シリコン酸化膜(SiO2)層から
成る緩衝層は、前記半導体単結晶支持体を酸化して形成
するのがよい。
The present invention also provides a step of forming a dielectric film on one main surface of a semiconductor single crystal wafer having a separation groove on one main surface, and at least until the separation groove is filled.
Forming a polycrystalline silicon layer on the dielectric film;
A step of substantially smoothing the polycrystalline silicon layer, and a step of smoothing the polycrystalline silicon layer with a semiconductor single crystal support having a buffer layer formed of a silicon oxide film (SiO 2 ) layer having a thickness of approximately 20 to 2000 nm. A dielectric isolation substrate having a step of bonding to a surface and a step of polishing the other main surface of the semiconductor single crystal wafer into semiconductor single crystal islands separated into a plurality of semiconductor single crystal wafers by the dielectric film. Is a manufacturing method. Here, the buffer layer made of a silicon oxide film (SiO 2 ) layer is preferably formed by oxidizing the semiconductor single crystal support.

【0014】また本発明は、一方の主表面に分離溝を有
する半導体単結晶ウエハの該一方の主表面に誘電体膜を
形成する工程と、少なくとも前記分離溝が埋まるまで、
前記誘電体膜上に多結晶シリコン層を形成する工程と、
前記多結晶シリコン層を略平滑化する工程と、前記多結
晶シリコン層の略平滑表面にシリコン酸化膜(Si
2)層から成る緩衝層を形成した後、その表面を研磨
して厚みが略20〜2000nmの範囲で平滑にする工
程と、半導体単結晶支持体を前記平滑化された緩衝層表
面に接合する工程と、前記半導体単結晶ウエハの他方の
主表面を研磨し該半導体単結晶ウエハを前記誘電体膜に
より複数に分離された半導体単結晶島にする工程とを有
する誘電体分離基板の製造方法である。ここで、シリコ
ン酸化膜(SiO2)層から成る緩衝層は、前記多結晶
シリコン層を酸化して形成するのがよい。
Further, according to the present invention, a step of forming a dielectric film on one main surface of a semiconductor single crystal wafer having a separation groove on one main surface, and at least until the separation groove is filled,
Forming a polycrystalline silicon layer on the dielectric film;
A step of substantially smoothing the polycrystalline silicon layer, and a step of forming a silicon oxide film (Si) on the substantially smooth surface of the polycrystalline silicon layer.
A step of forming a buffer layer composed of an O 2 ) layer and polishing the surface to make the surface smooth in a range of about 20 to 2000 nm; and bonding the semiconductor single crystal support to the smoothed buffer layer surface. And a step of polishing the other main surface of the semiconductor single crystal wafer to form the semiconductor single crystal wafer into semiconductor single crystal islands separated into a plurality of semiconductor single crystal wafers by the dielectric film. Is. Here, the buffer layer formed of a silicon oxide film (SiO 2 ) layer is preferably formed by oxidizing the polycrystalline silicon layer.

【0015】また本発明は、金属の台と、この台上に設
けられたペレットと、このペレットに形成された素子と
接続ピンとを導通する配線と、前記各部材を保護する樹
脂とを備えた半導体集積回路装置あって、前記ペレット
は前記の誘電体分基板で形成されたことを特徴とする半
導体集積回路装置である。
Further, the present invention comprises a metal base, a pellet provided on the base, wiring for connecting the element formed on the pellet and the connection pin, and a resin for protecting each member. A semiconductor integrated circuit device, wherein the pellets are formed of the dielectric component substrate.

【0016】[0016]

【作用】上記した構成によれば、分離溝を多結晶半導体
層で埋め研磨し略平滑とされた接合面の微小な凹凸が、
十分な量のSiO2膜の高温熱処理中における流動化に
より平滑面となるので強固な接合が得られ、また、最小
量のSiO2膜で接合が達成されることから実質的に湾
曲や歪のない支持体接合が可能になる。
According to the above-mentioned structure, minute irregularities on the bonding surface, which are substantially smoothed by filling the separation groove with the polycrystalline semiconductor layer and polishing,
Fluidization of a sufficient amount of the SiO 2 film during the high temperature heat treatment provides a smooth surface so that a strong bond can be obtained. In addition, since bonding can be achieved with a minimum amount of the SiO 2 film, there is substantially no bending or distortion. No support bonding is possible.

【0017】さらに、完全な支持体接合が可能になると
その接合強度が十分大きいことから、この接合型誘電体
分離基板を用いたパワーICは、素子の動作、否動作で
生ずる熱サイクルによる配線断線トラブルなどの不良発
生はなくなる。
Further, since the joint strength is sufficiently large when the complete support can be joined, a power IC using this junction-type dielectric isolation substrate has a wiring disconnection due to a thermal cycle caused by the operation or non-operation of the element. Problems such as troubles will disappear.

【0018】[0018]

【実施例】次に、本発明の実施例を図1に示した断面図
にしたがって説明する。この場合半導体材料としてシリ
コン(Si)を採用した。まず、直径5インチ、厚み6
00μmのシリコンの単結晶ウエハ301を用意する。
このウエハを酸化し,形成したSiO2膜(図2(a)参
照)をマスクとし、例えば水酸化カリウムとイソプロピ
ールアルコール混液を用いる異方性エッチングを行な
い、約60μmの分離溝6を堀り、単結晶島となる領域
3を形成する。残ったSiO2膜を除去した後、再度酸
化し、約1.2μmの絶縁用のSiO2膜2を形成する。
次いで、CVD法によって多結晶シリコン層601を分
離溝6が埋まるまで約100μm形成する(同図
(a))。この後、多結晶シリコン601層を機械的な
切削で分離溝6による大きな凹みをなくし、さらにメカ
ノケミカル研磨法よって微小な凹凸をなくし平坦にする
(同図(b))。表面にSiO2膜7を約20nmから
2000nmの範囲で形成した支持体5とする単結晶シ
リコンウエハを用意し、その表面と前記多結晶シリコン
層601の研磨面を適宜の方法で貼り合わせ、さらに高
温の熱処理を加えて2枚のウエハを接合する(同図
(c))。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to the sectional view shown in FIG. In this case, silicon (Si) was used as the semiconductor material. First, diameter 5 inches, thickness 6
A silicon single crystal wafer 301 of 00 μm is prepared.
Using this SiO 2 film (see FIG. 2 (a)) formed by oxidizing this wafer as a mask, anisotropic etching is performed using, for example, a mixed solution of potassium hydroxide and isopropyl alcohol, and the separation groove 6 of about 60 μm is dug. , A region 3 which becomes a single crystal island is formed. After removing the remaining SiO 2 film, it is oxidized again to form an insulating SiO 2 film 2 of about 1.2 μm.
Then, a polycrystalline silicon layer 601 is formed by CVD to a thickness of about 100 μm until the isolation trench 6 is filled (FIG. 8A). After that, the polycrystalline silicon 601 layer is mechanically cut to eliminate large depressions due to the separation grooves 6, and is further flattened by the mechanochemical polishing method to eliminate fine irregularities (FIG. 2B). A single crystal silicon wafer having a SiO 2 film 7 in the range of about 20 nm to 2000 nm as a support 5 is prepared, and the surface and the polished surface of the polycrystalline silicon layer 601 are bonded together by an appropriate method. A high temperature heat treatment is applied to bond the two wafers (FIG. 7C).

【0019】図5は前述の高温熱処理を加え接合したウ
エハに発生する未接合部分(ボイド)のウエハ内面積率
と、支持体に形成したSiO2膜7の膜厚の関係を調べ
た結果である。ボイドの発生をなくすためには少なくと
も20nm以上のSiO2膜7を支持体5に形成するこ
とが必要である。これは以下のような理由によると推定
される。
FIG. 5 is a result of examining the relationship between the in-wafer area ratio of the unbonded portion (void) generated in the bonded wafer by the above-mentioned high temperature heat treatment and the film thickness of the SiO 2 film 7 formed on the support. is there. In order to eliminate the generation of voids, it is necessary to form the SiO 2 film 7 having a thickness of at least 20 nm on the support 5. It is estimated that this is due to the following reasons.

【0020】支持体ウエハ5を接合する面は、分離溝6
が完全に埋まるまで多結晶シリコン601を堆積し、ま
ず機械的な切削方法(研削)により分離溝6の影響で形
成される大きな凹みを平坦にした後、この面に残る微小
な凹凸を物理的な研磨と化学的なエッチング作用を合わ
せ持ったメカノケミカル研磨法で研磨してより高精度に
平滑にした面である(図4参照)。しかしながら図6
(a)に示すように、分離溝6領域には結晶粒の衝突
する界面16が存在すること、結晶の成長方向に直交
する平面の結晶面方位は同一になり易く(配向)、分離
溝6と単結 晶島3底部では面方位が異なること、など
から分離溝6領域では化学的なエッチング速度が他の部
分に比べて大きくなり、この結果、接合面には分離溝6
領域が島底部に比べおよそ20nm低い凹凸ができる
(図6(b))。
The surface on which the support wafer 5 is bonded is separated by the separation groove 6.
Polycrystalline silicon 601 is deposited until it is completely filled up. First, a large recess formed by the influence of the separation groove 6 is made flat by a mechanical cutting method (grinding), and then the minute unevenness remaining on this surface is physically removed. The surface is smoothed with higher precision by the mechanochemical polishing method that has both high polishing and chemical etching effects (see FIG. 4). However, FIG.
As shown in (a), the interface 16 where the crystal grains collide exists in the separation groove 6 region, and the crystal plane orientations of the planes orthogonal to the crystal growth direction tend to be the same (orientation). Since the surface orientation is different at the bottom of the single crystal island 3 and the like, the chemical etching rate in the region of the separation groove 6 is higher than that of other portions, and as a result, the separation groove 6 is formed on the bonding surface.
Irregularities are formed in the region that is about 20 nm lower than the bottom of the island (FIG. 6B).

【0021】図5の結果は、およそ20nmもの凹凸を
有する面に支持体ウエハ5を完全接合するには、高温の
熱処理で流動して少なくとも接合面に残る凹凸を埋める
量のSiO2層7が必要であることを示している。
The results shown in FIG. 5 indicate that in order to completely bond the support wafer 5 to the surface having irregularities of about 20 nm, an amount of SiO 2 layer 7 which flows by high temperature heat treatment and fills at least the irregularities remaining on the bonding surface. It indicates that it is necessary.

【0022】一方、SiO2層7の厚みを必要以上厚く
することは以下の点で限界がある。
On the other hand, increasing the thickness of the SiO 2 layer 7 more than necessary is limited in the following points.

【0023】誘電体分離基板は、図2(e)の断面説明
図に示すように単結晶島3を絶縁分離するためのSiO
2層2が表面近傍にのみ数μm形成されていることか
ら、膨張率がSiO2に比べ大きい支持体ウエハ5(単
結晶シリコン)が収縮し基板の表面側を凸とする方向に
湾曲する。また、素子を形成する工程において素子のパ
ターニングのために比較的厚いSiO2層が単結晶島3
表面に形成され、このSiO2層によってさらに表面側
を凸とする方向に湾曲する。支持体5に形成されるSi
2層7も基板断面位置において表面近傍となり、基板
の湾曲を同一方向に増大するように作用する。このよう
な原因で発生する基板湾曲が大きい場合は微細な素子の
ホトリソ加工の妨げとなる。
The dielectric isolation substrate is made of SiO for insulating and isolating the single crystal islands 3 as shown in the sectional view of FIG. 2 (e).
Since the two layers 2 are formed only in the vicinity of the surface by several μm, the support wafer 5 (single crystal silicon) having a larger expansion coefficient than that of SiO 2 contracts and bends in a direction in which the surface side of the substrate is convex. Further, in the process of forming the element, a relatively thick SiO 2 layer is formed on the single crystal island 3 for patterning the element.
It is formed on the surface and is further curved by the SiO 2 layer in a direction in which the surface side is convex. Si formed on the support 5
The O 2 layer 7 is also near the surface at the substrate cross-section position, and acts to increase the curvature of the substrate in the same direction. If the curvature of the substrate caused by such a cause is large, it hinders the photolithographic processing of fine elements.

【0024】図7は接合型誘電体分離基板の接合界面S
iO2層厚みとホトリソ工程における不良率との関係を
実験的に調べたものである。高い製品歩留まりを得るた
めには接合界面SiO2層の厚みをおよそ2000nm
以下とし基板の湾曲をできるだけ小さくする必要がある
ことが分かった。
FIG. 7 shows the junction interface S of the junction type dielectric isolation substrate.
The relationship between the iO 2 layer thickness and the defect rate in the photolithography process was experimentally investigated. In order to obtain a high product yield, the thickness of the bonding interface SiO 2 layer should be approximately 2000 nm.
It has been found that it is necessary to reduce the curvature of the substrate as follows.

【0025】SiO2層7の厚みを厚くする場合、更に
別の点で問題が発生する。図8中の線(20)は−70
℃/+150℃のヒートサイクル試験における不良(配
線断線)率を接合界面SiO2層7との関係を示したも
のである。SiO2の厚みを必要以上に厚くなると不良
率が増大する。これは、膨張率が金属Siに比べて1桁
以上小さいSiO2で分離島底側と接合界面側から挟ま
れた多結晶層に601には大きな歪が残留するが、接合
界面SiO2層7が厚い場合は残留応力がより大きくな
りヒートサイクル試験の熱衝撃によって接合面の破壊が
起きるためと考えられる。図8中の線(30)は、高温
信頼性試験における素子の特性不良率と接合界面SiO
2層7との関係を調べた結果である。この場合も接合界
面SiO2層7の厚みが厚い場合ほど特性不良が増大す
る。これは、素子が動作中に発生する熱は図2(g)に
示した金属台を通して放熱されるが、SiO2の熱伝導
率はSiに比べて小さいため素子下部のSiO2層の厚
みが大きいほど放熱割合は小さくなり、素子特性が低下
すると推定される。以上の実験から、パワーICを高い
歩留まりで得るためには、線(20)と(30)で合成
される図8中の線(40)に示すように、接合界面Si
2層7の厚みをおよそ2000nm以下とする必要が
あることが分かる。
When the thickness of the SiO 2 layer 7 is increased, another problem occurs. The line (20) in FIG. 8 is -70.
The relationship between the defect (wiring disconnection) rate in the heat cycle test of ° C / + 150 ° C and the bonding interface SiO 2 layer 7 is shown. If the thickness of SiO 2 becomes thicker than necessary, the defect rate increases. This is because although a large strain remains in the polycrystal layer 601 sandwiched from the isolation island bottom side and the joint interface side by SiO 2 whose expansion coefficient is smaller than that of metallic Si by one digit or more, the joint interface SiO 2 layer 7 It is considered that when the thickness is thick, the residual stress becomes larger and the joint surface is broken by the thermal shock of the heat cycle test. The line (30) in FIG. 8 indicates the characteristic defect rate of the element and the bonding interface SiO in the high temperature reliability test.
It is the result of examining the relationship with the second layer 7. In this case as well, the thicker the bonding interface SiO 2 layer 7 is, the more defective the characteristics are. This is because the heat generated during the operation of the element is radiated through the metal base shown in FIG. 2 (g), but since the thermal conductivity of SiO 2 is smaller than that of Si, the thickness of the SiO 2 layer below the element is small. It is presumed that the larger the ratio, the smaller the heat dissipation rate, and the lower the device characteristics. From the above experiment, in order to obtain the power IC with a high yield, as shown by the line (40) in FIG. 8 synthesized by the lines (20) and (30), the bonding interface Si
It is understood that the thickness of the O 2 layer 7 needs to be about 2000 nm or less.

【0026】支持体ウエハをSiO2膜を介して直接接
合する場合において、SiO2膜の厚み範囲の最適化が
必要な他の理由として以下の点がある。多結晶シリコン
601の凹みを切削などの方法でなくし、さらに研磨に
より平坦にした後、SiO2膜7を介して支持体5と接
合する方法として、多結晶シリコン601と支持体5と
の間に電圧を印加して接合する方法(アノディックボン
ディング法)がある。この場合、SiO2膜7の厚みが
薄いと多結晶シリコンと支持体間で短絡状態になる。ま
た、厚いとSiO2膜の抵抗が増大し接合界面に必要な
電圧が印加されなくなる。実験の結果、SiO2膜7の
厚みが20nmから2000nmの範囲とした場合最も
強度の強い接合が達成されることが分かった。
[0026] In case of bonding a support wafer directly through the SiO 2 film, the following points as reasons optimization other required thickness range of the SiO 2 film. As a method of removing the recess of the polycrystalline silicon 601 by a method such as cutting and flattening it by polishing, and then joining it to the support 5 through the SiO 2 film 7, there is a method between the polycrystalline silicon 601 and the support 5. There is a method of applying a voltage for bonding (anodic bonding method). In this case, if the thickness of the SiO 2 film 7 is thin, a short circuit will occur between the polycrystalline silicon and the support. On the other hand, if it is thick, the resistance of the SiO 2 film increases and the voltage required at the bonding interface cannot be applied. As a result of the experiment, it was found that the strongest bonding was achieved when the thickness of the SiO 2 film 7 was in the range of 20 nm to 2000 nm.

【0027】最後に、支持体5とする単結晶シリコンウ
エハを接合したウエハの単結晶シリコン301の不要部
分を研磨によって除去し、単結晶分離島3を形成して図
1(d)に示すような誘電体分離基板1を完成する。そ
の後、該分離島3に通常の半導体製造プロセスにより所
望の素子を形成した後に各素子間を配線して図2(f)
に示すペレットを完成する。
Finally, the unnecessary portion of the single crystal silicon 301 of the wafer to which the single crystal silicon wafer to be the support 5 is bonded is removed by polishing to form the single crystal separation island 3 as shown in FIG. 1 (d). The dielectric isolation substrate 1 is completed. After that, desired elements are formed on the isolation island 3 by a normal semiconductor manufacturing process, and then wiring is performed between the respective elements to form the wiring shown in FIG.
The pellet shown in is completed.

【0028】次に、本発明の他の実施例を図9に従って
説明する。単結晶ウエハを用意し、これに分離溝6を掘
り、この面に絶縁用のSiO2膜2を形成した後、多結
晶シリコン601で溝6を埋め、研磨により平坦にする
(同図(a))。ここまでの工程は前述図1の実施例と
同じである。次に、この面に高温(およそ700℃以
上)の水蒸気雰囲気で行う酸化処理、または気相化学反
応(CVD)法によりSi02層7を形成する(同図
(b))。この場合Si02層7は、分離溝6領域と島
底部とのメカノケミカル研磨の研磨速度の違いで生じる
およそ20nmの接合面の凹凸以上の厚み形成する。前
述実施例と同様の理由によりSi02層7の厚みの上限
は2000nm以下の範囲で選択する。
Next, another embodiment of the present invention will be described with reference to FIG. A single crystal wafer is prepared, a separation groove 6 is dug in this, an insulating SiO 2 film 2 is formed on this surface, the groove 6 is filled with polycrystalline silicon 601, and is flattened by polishing (see FIG. )). The steps up to this point are the same as those in the embodiment shown in FIG. Next, a SiO 2 layer 7 is formed on this surface by an oxidation treatment performed in a high temperature (about 700 ° C. or higher) steam atmosphere or a vapor phase chemical reaction (CVD) method (FIG. 2B). In this case, the SiO 2 layer 7 is formed to have a thickness equal to or larger than the unevenness of the bonding surface of about 20 nm caused by the difference in the polishing rate of the mechanochemical polishing between the isolation groove 6 region and the island bottom. For the same reason as in the above-mentioned embodiment, the upper limit of the thickness of the SiO 2 layer 7 is selected within the range of 2000 nm or less.

【0029】この後、形成したSi02層7表面に残る
凹凸をメカノケミカル研磨を行ない接合面を平滑にす
る。Si02層7は結晶粒界のない均質な非晶質である
ため、完全接合が達成できる平滑面が容易に得られる。
次いで、この面に支持体5となる単結晶ウエハを接合す
る(同図(c))。この場合、支持体5の表面にはSi
2層がなくても一方の接合面が平滑であることから、
完全な支持体接合を容易に達成することができる。ま
た、Si02層を有する支持体ウエハを用いても完全な
接合達成されることは当然である。この場合Si02
の厚みの上限は2000nm以下の範囲となるように支
持体ウエハのSi02層厚みを調節する。この後、前記
実施例と同様に、単結晶島3の分離のための研磨を行な
い誘電体分離基板1を完成する(同図(d))。
Thereafter, the irregularities remaining on the surface of the formed SiO 2 layer 7 are subjected to mechanochemical polishing to smooth the joint surface. Since the SiO 2 layer 7 is a homogeneous amorphous material having no grain boundaries, a smooth surface capable of achieving perfect bonding can be easily obtained.
Then, a single crystal wafer to be the support 5 is bonded to this surface (FIG. 7C). In this case, the surface of the support 5 is Si
0 2 layers even without because one bonding surface is smooth,
A perfect support bond can easily be achieved. In addition, it is natural that perfect bonding can be achieved even by using a support wafer having a SiO 2 layer. In this case the upper limit of the thickness of the Si0 2 layer regulates Si0 2 layer thickness of the support wafer so that the range of 2000 nm. After that, polishing is performed for separating the single crystal islands 3 to complete the dielectric isolation substrate 1 in the same manner as in the above-described embodiment (FIG. 3D).

【0030】本実施例においては、支持体として湾曲の
発生が小さい半導体単結晶ウエハを用いる場合を例とし
て説明した。半導体単結晶ウエハ、石英、シリコンカー
バイト等の半導体プロセスで汚染発生が小さく、かつ湾
曲の発生を対策した部材を用いた場合においても、本実
施例と同様の効果を得る。
In this embodiment, the case has been described as an example where a semiconductor single crystal wafer having a small curvature is used as the support. Even when a member such as a semiconductor single crystal wafer, quartz, or silicon carbide that causes less contamination in the semiconductor process and has a countermeasure against the occurrence of bending is used, the same effect as that of the present embodiment can be obtained.

【0031】以上に述べた実施例によれば、最適量のS
i02層によって多結晶層研磨面の凹凸が解消され、接
合界面の残留応力が実質的に小さく強固に支持体が接合
された誘電体分離基板を容易に得ることができる。
According to the embodiment described above, the optimum amount of S
The i0 2 layer eliminates the irregularities on the polished surface of the polycrystalline layer, and the residual stress at the bonding interface is substantially small, so that the support can be easily bonded to obtain a dielectric isolation substrate.

【0032】[0032]

【発明の効果】本発明によれば、接合構造の誘電体分離
基板における支持体ウエハの接合が完全に達成されるこ
とから、信頼性の高い誘電体分離基板を提供できるよう
になる。また、このような構成の誘電体分離基板を用い
ることにより集積度の高く、かつ信頼性の高いパワーI
Cを提供できるようになる。
As described above, according to the present invention, the bonding of the support wafer in the dielectric isolation substrate having the bonding structure is completely achieved, so that it is possible to provide a highly reliable dielectric isolation substrate. Further, by using the dielectric isolation substrate having such a structure, the power I having high integration and high reliability can be obtained.
C can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(d)は本発明の一実施例である誘電
体分離基板の製造方法を工程順に説明するための断面図
である。
1A to 1D are cross-sectional views for explaining a method of manufacturing a dielectric isolation substrate according to an embodiment of the present invention in the order of steps.

【図2】(a)〜(g)は従来の誘電体分離基板及び集
積回路装置の製造方法を工程順に説明するための断面図
及び斜視図である。
2A to 2G are cross-sectional views and perspective views for explaining a conventional method for manufacturing a dielectric isolation substrate and an integrated circuit device in the order of steps.

【図3】従来の接合構造の誘電体分離基板を説明するた
めの断面図である。
FIG. 3 is a cross-sectional view illustrating a conventional dielectric isolation substrate having a junction structure.

【図4】(a)〜(d)は従来の誘電体分離基板の製造
方法を工程順に説明するための断面図である。
4A to 4D are cross-sectional views for explaining a conventional method for manufacturing a dielectric isolation substrate in the order of steps.

【図5】ウエハ内の未接合部面積とSi02層厚みの関
係を説明するための図である。
FIG. 5 is a diagram for explaining the relationship between the unbonded area in the wafer and the thickness of the SiO 2 layer.

【図6】(a)〜(b)は誘電体分離基板の分離溝にお
ける多結晶層の結晶構造を説明するための断面図であ
る。
6 (a) and 6 (b) are cross-sectional views for explaining a crystal structure of a polycrystalline layer in a separation groove of a dielectric separation substrate.

【図7】ホトリソ工程における不良率とSi02層厚み
の関係を説明するための図である。
FIG. 7 is a diagram for explaining the relationship between the defect rate and the SiO 2 layer thickness in the photolithography process.

【図8】ヒ−トサイクル試験及び高温信頼性試験におけ
る不良率とSi02層厚みの関係を説明するための図で
ある。
FIG. 8 is a diagram for explaining a relationship between a defective rate and a SiO 2 layer thickness in a heat cycle test and a high temperature reliability test.

【図9】本発明の他の実施例である誘電体分離基板の製
造方法を工程順に説明するための断面図である。
FIG. 9 is a cross-sectional view for explaining a method of manufacturing a dielectric isolation substrate according to another embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

1 誘電体分離基板 2 誘電体膜 3 半導体単結晶分離島 301 単結晶シリコンウエハ 4 半導体素子 5 半導体単結晶支持体 6 分離溝 601 多結晶半導体層 602 多結晶シリコン層 603 第2の多結晶シリコン層 7 Si02層(緩衝層)1 Dielectric Separation Substrate 2 Dielectric Film 3 Semiconductor Single Crystal Separation Island 301 Single Crystal Silicon Wafer 4 Semiconductor Element 5 Semiconductor Single Crystal Support 6 Separation Groove 601 Polycrystalline Semiconductor Layer 602 Polycrystalline Silicon Layer 603 Second Polycrystalline Silicon Layer 7 Si0 2 layer (buffer layer)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 支持体と、 前記支持体の主表面上に形成された緩衝層と、 前記緩衝層に隣接する多結晶シリコン層と、 前記多結晶シリコン層に複数個形成され、誘電体膜によ
って相互に、且つ前記多結晶シリコンと絶縁された半導
体単結晶分離島とを具備し、 前記緩衝層が、厚みが略20〜2000nmのシリコン
酸化膜(SiO2)層であることを特徴とする誘電体分
離基板。
1. A support, a buffer layer formed on a main surface of the support, a polycrystalline silicon layer adjacent to the buffer layer, a plurality of polycrystalline silicon layers, and a dielectric film. And a semiconductor single crystal isolation island insulated from the polycrystalline silicon, and the buffer layer is a silicon oxide film (SiO 2 ) layer having a thickness of about 20 to 2000 nm. Dielectric isolation substrate.
【請求項2】 一方の主表面に分離溝を有する半導体単
結晶ウエハの該一方の主表面に誘電体膜を形成する工程
と、 少なくとも前記分離溝が埋まるまで、前記誘電体膜上に
多結晶シリコン層を形成する工程と、 前記多結晶シリコン層を略平滑化する工程と、 厚みが略20〜2000nmのシリコン酸化膜(SiO
2)層から成る緩衝層が形成された支持体を前記多結晶
シリコン層の前記平滑面に接合する工程と、 前記半導体単結晶ウエハの他方の主表面を研磨し該半導
体単結晶ウエハを前記誘電体膜により複数に分離された
半導体単結晶島にする工程とを有する誘電体分離基板の
製造方法。
2. A step of forming a dielectric film on one main surface of a semiconductor single crystal wafer having a separation groove on one main surface, and a polycrystalline film on the dielectric film at least until the separation groove is filled. A step of forming a silicon layer, a step of substantially smoothing the polycrystalline silicon layer, and a silicon oxide film (SiO 2) having a thickness of about 20 to 2000 nm.
2 ) bonding a support having a buffer layer consisting of a layer to the smooth surface of the polycrystalline silicon layer; polishing the other main surface of the semiconductor single crystal wafer to form the semiconductor single crystal wafer with the dielectric layer. And a step of forming a semiconductor single crystal island separated into a plurality of pieces by a body film.
【請求項3】 請求項2に記載の誘電体分離基板の製造
方法において、シリコン酸化膜(SiO2)層から成る
緩衝層は、前記支持体を酸化して形成することを特徴と
する誘電体分離基板の製造方法。
3. The dielectric isolation substrate manufacturing method according to claim 2, wherein the buffer layer made of a silicon oxide film (SiO 2 ) layer is formed by oxidizing the support. Method for manufacturing separation substrate.
【請求項4】 一方の主表面に分離溝を有する半導体単
結晶ウエハの該一方の主表面に誘電体膜を形成する工程
と、 少なくとも前記分離溝が埋まるまで、前記誘電体膜上に
多結晶シリコン層を形成する工程と、 前記多結晶シリコン層を略平滑化する工程と、 前記多結晶シリコン層の略平滑表面にシリコン酸化膜
(SiO2)層から成る緩衝層を形成した後、その表面
を研磨して厚みが略20〜2000nmの範囲で平滑に
する工程と、 支持体を前記平滑化された緩衝層表面に接合する工程
と、 前記半導体単結晶ウエハの他方の主表面を研磨し該半導
体単結晶ウエハを前記誘電体膜により複数に分離された
半導体単結晶島にする工程と、を有する誘電体分離基板
の製造方法。
4. A step of forming a dielectric film on one main surface of a semiconductor single crystal wafer having a separation groove on one main surface, and a polycrystalline film on the dielectric film at least until the separation groove is filled. A step of forming a silicon layer, a step of substantially smoothing the polycrystalline silicon layer, and a step of forming a buffer layer composed of a silicon oxide film (SiO 2 ) layer on a substantially smooth surface of the polycrystalline silicon layer, and then the surface thereof To smooth the surface in a thickness range of about 20 to 2000 nm, to bond the support to the smoothed buffer layer surface, and to polish the other main surface of the semiconductor single crystal wafer by polishing. And a step of forming a semiconductor single crystal wafer into semiconductor single crystal islands separated by the dielectric film into a plurality of semiconductor single crystal islands.
【請求項5】 請求項4に記載の誘電体分離基板の製
造方法において、シリコン酸化膜(SiO2)層から成
る緩衝層は、前記多結晶シリコン層を酸化して形成する
ことを特徴とする誘電体分離基板の製造方法。
5. The method for manufacturing a dielectric isolation substrate according to claim 4, wherein the buffer layer made of a silicon oxide film (SiO 2 ) layer is formed by oxidizing the polycrystalline silicon layer. Manufacturing method of dielectric isolation substrate.
【請求項6】 金属の台と、この台上に設けられたペレ
ットと、このペレットに形成された素子と接続ピンとを
導通する配線と、前記各部材を保護するパッケージとを
備えた半導体集積回路装置あって、前記ペレットは請求
項1に記載の誘電体分基板で形成されたことを特徴とす
る半導体集積回路装置。
6. A semiconductor integrated circuit comprising a metal base, a pellet provided on the base, a wiring for electrically connecting an element formed on the pellet and a connection pin, and a package for protecting each member. A semiconductor integrated circuit device, wherein the pellet is formed of the dielectric component substrate according to claim 1.
JP17429592A 1992-07-01 1992-07-01 Dielectric isolation substrate and semiconductor integrated circuit device Pending JPH0621205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17429592A JPH0621205A (en) 1992-07-01 1992-07-01 Dielectric isolation substrate and semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17429592A JPH0621205A (en) 1992-07-01 1992-07-01 Dielectric isolation substrate and semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0621205A true JPH0621205A (en) 1994-01-28

Family

ID=15976175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17429592A Pending JPH0621205A (en) 1992-07-01 1992-07-01 Dielectric isolation substrate and semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0621205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686364A (en) * 1994-09-19 1997-11-11 Shin-Etsu Handotai Co., Ltd. Method for producing substrate to achieve semiconductor integrated circuits
JP2010093204A (en) * 2008-10-10 2010-04-22 Hitachi Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686364A (en) * 1994-09-19 1997-11-11 Shin-Etsu Handotai Co., Ltd. Method for producing substrate to achieve semiconductor integrated circuits
JP2010093204A (en) * 2008-10-10 2010-04-22 Hitachi Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
TWI490978B (en) 3d ic method and device
JPH0580133B2 (en)
EP2406820A1 (en) A method of fabricating a multilayer structure with circuit layer transfer
JPH07263541A (en) Dielectric separation substrate and manufacture thereof
JPH0312775B2 (en)
CN112397394B (en) Semiconductor structure and manufacturing method thereof
US5686364A (en) Method for producing substrate to achieve semiconductor integrated circuits
JPH0621205A (en) Dielectric isolation substrate and semiconductor integrated circuit device
KR100721625B1 (en) Mems package and method of manufacturing the same
JP2552936B2 (en) Dielectric isolation substrate and semiconductor integrated circuit device using the same
JP2754295B2 (en) Semiconductor substrate
JP3488927B2 (en) Dielectric separation substrate and method of manufacturing the same
JP3099446B2 (en) Semiconductor substrate having dielectric isolation region
JP2678218B2 (en) Bonded substrate and manufacturing method thereof
JP2857456B2 (en) Method for manufacturing semiconductor film
JP2927280B2 (en) Method for manufacturing SOI substrate
JP3061021B2 (en) Partial SOI substrate and manufacturing method thereof
JPH04199632A (en) Soi wafer and manufacture thereof
JP2866263B2 (en) Semiconductor substrate manufacturing method
JPH06215993A (en) Composite semiconductor substrate and manufacture thereof
JPS6362252A (en) Manufacture of dielectric isolation substrate
JP2866262B2 (en) Semiconductor substrate manufacturing method
JPH07112007B2 (en) Dielectric isolation substrate and manufacturing method thereof
JP3390660B2 (en) Manufacturing method of dielectric isolation substrate
JPH1070054A (en) Manufacture of junction wafer