JP2552936B2 - Dielectric isolation substrate and semiconductor integrated circuit device using the same - Google Patents

Dielectric isolation substrate and semiconductor integrated circuit device using the same

Info

Publication number
JP2552936B2
JP2552936B2 JP2063845A JP6384590A JP2552936B2 JP 2552936 B2 JP2552936 B2 JP 2552936B2 JP 2063845 A JP2063845 A JP 2063845A JP 6384590 A JP6384590 A JP 6384590A JP 2552936 B2 JP2552936 B2 JP 2552936B2
Authority
JP
Japan
Prior art keywords
polycrystalline
single crystal
semiconductor
layer
dielectric isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2063845A
Other languages
Japanese (ja)
Other versions
JPH03265153A (en
Inventor
洋典 井上
三千男 大上
三郎 小川
清 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2063845A priority Critical patent/JP2552936B2/en
Publication of JPH03265153A publication Critical patent/JPH03265153A/en
Priority to US07/963,258 priority patent/US5233216A/en
Application granted granted Critical
Publication of JP2552936B2 publication Critical patent/JP2552936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は誘電体分離基板に係り、特に、支持体が単結
晶シリコンで構成される誘電体分離基板およびこの誘電
体分離基板を用いた半導体集積回路装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric isolation substrate, and more particularly to a dielectric isolation substrate having a support made of single crystal silicon and a semiconductor using the dielectric isolation substrate. The present invention relates to an integrated circuit device.

(従来の技術) 素子間の絶縁耐圧が数10V〜数100Vといった高耐圧のL
SIでは、それぞれの素子を酸化膜(SiO2)のような誘電
体膜で完全に分離する必要があり、このような技術分野
では、いわゆる誘電体分離基板が広く用いられている。
(Prior art) High withstand voltage L such that the withstand voltage between elements is several 10V to several 100V.
In SI, it is necessary to completely separate each element with a dielectric film such as an oxide film (SiO 2 ), and so-called dielectric isolation substrates are widely used in such a technical field.

これまでの誘電体分離基板は、良く知られるように、
多結晶Siから成る支持体の表面に、誘電体膜を介して複
数の単結晶Si島を形成した複合構造のものが多かった
が、このような複合構造の誘電体分離基板では、単結晶
Siと多結晶Siとの熱膨脹率の違い等から、基板に反りや
歪みが発生してしまうという問題がある。
As is well known, the conventional dielectric isolation substrate is
In many cases, a composite structure in which a plurality of single crystal Si islands were formed on the surface of a support made of polycrystalline Si via a dielectric film was used.
There is a problem that the substrate is warped or distorted due to the difference in thermal expansion coefficient between Si and polycrystalline Si.

そこで、近年ではこれらの問題点を解決する誘電体分
離基板として、第2図に示したように支持体5を単結晶
Siで構成し、該支持体5と単結晶島となる単結晶ウエハ
とを誘電体膜を介して接合する構造(以下、接合構造と
いう)のものが用いられるようになっている。
Therefore, in recent years, as a dielectric isolation substrate that solves these problems, as shown in FIG.
A structure (hereinafter referred to as a bonding structure) which is made of Si and in which the support 5 and a single crystal wafer to be a single crystal island are bonded via a dielectric film has been used.

第2図において、半導体素子4は島状の単結晶Si領域
3内に形成され、該単結晶Si領域3は、単結晶Siから成
る支持体5の表面上に誘電体膜2で互いに絶縁された状
態で形成される。誘電体膜2で絶縁される各単結晶Si領
域3の隣接部分の分離溝6には多結晶Si601が形成され
ている。
In FIG. 2, a semiconductor element 4 is formed in an island-shaped single crystal Si region 3, and the single crystal Si region 3 is insulated from each other by a dielectric film 2 on the surface of a support 5 made of single crystal Si. It is formed in the open state. Polycrystalline Si 601 is formed in the isolation groove 6 in the adjacent portion of each single crystal Si region 3 insulated by the dielectric film 2.

以下、このような接合構造の誘電体分離基板の製造方
法を第3図を用いて説明する。
Hereinafter, a method for manufacturing a dielectric isolation substrate having such a junction structure will be described with reference to FIG.

初めに、単結晶Siウエハ301の主表面を酸化して、そ
の全面にSiO215を形成した後、該SiO2の予定の箇所を開
口し、該SiO215をマスクとして、例えば水酸化カリウム
とイソプロピルアルコール混合液を用いる異方性エッチ
ングによって深さ約60μmの分離溝6を形成する[同図
(a)]。
First, the main surface of the single crystal Si wafer 301 is oxidized to form SiO 2 15 on the entire surface thereof, then a predetermined portion of the SiO 2 is opened, and the SiO 2 15 is used as a mask, for example, potassium hydroxide. Isolation groove 6 having a depth of about 60 μm is formed by anisotropic etching using a mixed solution of isopropyl alcohol and isopropyl alcohol [FIG.

次いで、前記マスクとして利用したSiO215を除去し、
再びウエハ301の主表面を酸化して、その全面に厚さ1.2
μmの絶縁用酸化膜2を形成した後[同図(b)]、そ
の表面に気相成長(CVD;形成温度:〜1200℃、形成速
度:〜5μm/min)によって、少なくとも前記分離溝6
が完全に埋まるまで多結晶Si601を約100μm堆積させる
[同図(c)]。
Then, the SiO 2 15 used as the mask is removed,
The main surface of the wafer 301 is oxidized again, and the entire surface of the wafer 301 has a thickness of 1.2.
After forming the insulating oxide film 2 having a thickness of [μm] [(b) in the figure], at least the separation groove 6 is formed on the surface by vapor phase growth (CVD; formation temperature: up to 1200 ° C., formation rate: up to 5 μm / min).
Polycrystalline Si601 is deposited to a thickness of about 100 μm until it is completely filled [Fig. (C)].

次いで、不要部分の多結晶Si601を機械的な切削およ
びメカノケミカル研磨法によるエッチングによって除去
し、分離溝6部分に堆積された多結晶Si601の高さを酸
化膜2の表面とほぼ合わせる[同図(d)]。
Then, the polycrystalline Si 601 in the unnecessary portion is removed by mechanical cutting and etching by the mechanochemical polishing method, and the height of the polycrystalline Si 601 deposited in the separation groove 6 portion is almost matched with the surface of the oxide film 2 [FIG. (D)].

次いで、支持体となる単結晶Siウエハ5を用意し、そ
の表面および前記研磨面を適宜の方法で張り合わせ、さ
らに高温の熱処理を加えて2枚のウエハを接合する[同
図(e)]。
Then, a single crystal Si wafer 5 to be a support is prepared, the surface and the polished surface are bonded together by an appropriate method, and further high temperature heat treatment is applied to bond the two wafers [(e) in the figure].

なお、上記した2枚の半導体ウエハを接合して誘電体
分離基板を製造する方法に関しては、例えば特公昭62−
27040号公報に記載されている。
For the method of manufacturing the dielectric isolation substrate by bonding the two semiconductor wafers described above, see, for example, Japanese Patent Publication No.
It is described in Japanese Patent No. 27040.

最後に、単結晶ウエハ301の不要部分を研磨によって
除去して単結晶Si分離島3を形成して誘電体分離基板を
完成する[同図(f)]。その後、該分離島3の表面に
所望の半導体素子を形成した後に各素子間を配線して半
導体集積回路装置を完成する[図示せず]。
Finally, the unnecessary portion of the single crystal wafer 301 is removed by polishing to form the single crystal Si separation island 3 to complete the dielectric separation substrate [FIG. After that, after forming a desired semiconductor element on the surface of the isolation island 3, wiring is provided between the elements to complete a semiconductor integrated circuit device [not shown].

(発明が解決しようとする課題) 上記した従来技術では、不要となる多結晶Si601の研
磨工程における平滑化技術についての配慮が不足してい
るために、ウエハを接合する場合に要求される約100Å
以下の平滑度を有する研磨面を得ることが困難であり、
接合不良が発生し易いという問題があった。
(Problems to be Solved by the Invention) In the above-described conventional technology, since the consideration of the smoothing technology in the polishing step of unnecessary polycrystalline Si601 is insufficient, about 100Å required when bonding wafers is required.
It is difficult to obtain a polished surface having the following smoothness,
There has been a problem that poor bonding is likely to occur.

そこで、発明者等が接合不良の原因を調査したとこ
ろ、分離溝6内での多結晶Si601の成長方向に原因があ
ることを突き止めた。
Then, the inventors investigated the cause of the defective bonding, and found that the cause was the growth direction of the polycrystalline Si 601 in the separation groove 6.

以下に、平滑な研磨面が得られない主な原因を、従来
技術による多結晶Si601の研磨方法を示しながら詳細に
説明する。
The main reasons why a smooth polished surface cannot be obtained will be described in detail below while showing a conventional method for polishing polycrystalline Si601.

多結晶Si601を研磨する場合、初めに、多結晶Si601が
不均一に成膜されることによる凹凸や分離溝6部分に発
生する約10μmの凹凸をなくすために、機械的研磨方法
(物理的な研磨)によって多結晶Si601を分離島3の底
直上約5μmまで切削し、この後、機械的な研磨のため
に残る数100Å〜数1000Åの微小な凹凸をメカノケミカ
ル研磨法で研磨して、完全なウエハ接合に必要な約100
Å以下の鏡面を作る。
When polishing the polycrystalline Si601, first, a mechanical polishing method (physical polishing method is used to remove irregularities due to uneven deposition of the polycrystalline Si601 and irregularities of about 10 μm generated in the separation groove 6 portion). The polycrystalline Si601 is cut to about 5 μm just above the bottom of the separation island 3 by polishing), and then the minute irregularities of several hundred Å to several thousand Å left for mechanical polishing are polished by the mechanochemical polishing method to complete About 100 required for proper wafer bonding
Å Make the following mirror surface.

ところが、結晶の成長は面に垂直な方向に生じること
から、分離溝6内の多結晶Si601には、第4図に示した
ように2つの方向から成長した多結晶Si601が衝突する
界面16が形成される。
However, since the crystal growth occurs in the direction perpendicular to the plane, the interface 16 where the polycrystalline Si601 grown in two directions collides with the polycrystalline Si601 in the separation groove 6 as shown in FIG. It is formed.

界面16が形成される部分では、メカノケミカル研磨速
度が非常に大きいため、分離溝6領域では分離島3の底
部に比べて研磨が速く進行し、分離島3底部の多結晶Si
601が無くなるまで研磨が進行したときは、分離溝6領
域は分離島3底部に比べて数100Å低い凹形状となっ
て、完全なウエハ接合に要求される、凹凸が100Å以下
の平滑な面を得ることができない。
Since the mechanochemical polishing rate is very high at the portion where the interface 16 is formed, the polishing proceeds faster in the region of the separation groove 6 than at the bottom of the separation island 3, and the polycrystalline Si at the bottom of the separation island 3 is formed.
When polishing progresses until 601 disappears, the separation groove 6 area has a concave shape that is several hundred Å lower than the bottom of the separation island 3 and forms a smooth surface with 100 Å or less unevenness required for complete wafer bonding. Can't get

メカノケミカル研磨などのように、化学的な研磨作用
のある研磨方法の研磨速度は、通常、結晶の粒径、面方
位、成長方向などの影響を受け易く、研磨面の全面が単
結晶である場合や非晶質である場合、あるいは結晶粒径
が非常に小さく結晶の面方位や成長方向などが無視で
き、非晶質層と等価な多結晶層である場合などを除き、
研磨によって100Å以下の平滑度を得ることは非常に困
難であることは良く知られている。
The polishing rate of a polishing method having a chemical polishing action, such as mechanochemical polishing, is usually easily affected by the crystal grain size, plane orientation, growth direction, etc., and the entire polished surface is a single crystal. Except when the case is amorphous, or when the crystal grain size is very small and the crystal plane orientation and growth direction can be ignored, and the case is a polycrystalline layer equivalent to the amorphous layer.
It is well known that it is very difficult to obtain a smoothness of 100Å or less by polishing.

また、上記したような接合不良のために完全なウエハ
接合が達成されないと、その接合力が弱くなるために、
各分離島3に半導体素子を形成して半導体集積回路装置
を構成しようとすると、半導体素子を形成する際の熱処
理や、形成された半導体素子の作動中に発生する熱によ
る歪で分離島3が支持体5から剥離したり移動したりし
てしまう。
In addition, if perfect wafer bonding is not achieved due to the above-mentioned bonding failure, the bonding force becomes weak,
When a semiconductor element is formed on each of the isolation islands 3 to form a semiconductor integrated circuit device, the isolation islands 3 will be distorted by heat treatment during the formation of the semiconductor elements or distortion due to heat generated during the operation of the formed semiconductor elements. It peels off or moves from the support 5.

この結果、各素子間を接続する配線に断線が生じ、半
導体集積回路装置としての信頼性が低くなってしまうと
いう問題があった。
As a result, there is a problem in that the wiring connecting the respective elements is broken and the reliability of the semiconductor integrated circuit device is lowered.

本発明の目的は、以上に述べた問題点を解決し、完全
なウエハ接合を可能にする誘電体分離基板および該誘電
体分離基板を用いた半導体集積回路装置を提供すること
である。
An object of the present invention is to solve the above-mentioned problems and to provide a dielectric isolation substrate that enables complete wafer bonding and a semiconductor integrated circuit device using the dielectric isolation substrate.

(課題を解決するための手段) 前記の問題点を解決して完全なウエハ接合を実現する
ために、本発明は、接合構造の誘電体分離基板におい
て、一方の主表面に分離溝を有する単結晶半導体ウエハ
の該一方の主表面に誘電体膜を形成し、その上に多結晶
Siを形成した後、前記多結晶Siを研磨して略平滑化し、
その上に緩衝層を形成する。その後、該緩衝層を研磨し
て平滑化し、そこに単結晶支持体を接合するようにし
た。
(Means for Solving the Problems) In order to solve the above problems and realize complete wafer bonding, the present invention provides a dielectric isolation substrate having a junction structure, in which one main surface has an isolation groove. A dielectric film is formed on the one main surface of the crystalline semiconductor wafer, and a polycrystalline film is formed on the dielectric film.
After forming Si, the polycrystalline Si is polished to be substantially smooth,
A buffer layer is formed on it. Then, the buffer layer was polished and smoothed, and the single crystal support was bonded thereto.

そして、このようにして形成された誘電体分離基板の
各分離島に半導体素子を形成して半導体集積回路装置を
構成するようにした。
Then, a semiconductor element is formed on each isolation island of the dielectric isolation substrate thus formed to form a semiconductor integrated circuit device.

(作用) 上記した構成によれば、分離溝による深い凹部が多結
晶Siによって比較的浅い凹部となるので、緩衝層には該
分離溝による界面が発生しない。したがって、該緩衝層
を研磨すれば、極めて平滑な接合面が得られ、完全なウ
エハ接合が可能になる。
(Operation) According to the above-described configuration, the deep recess formed by the separation groove becomes a relatively shallow recess formed by the polycrystalline Si, and therefore the interface due to the separation groove does not occur in the buffer layer. Therefore, if the buffer layer is polished, an extremely smooth bonding surface can be obtained, and perfect wafer bonding can be achieved.

さらに、完全なウエハ接合が可能になるとその接合力
が十分に強くなるので、各分離島に半導体素子を形成す
るための熱処理を加えても、分離島が支持体から剥離し
たり移動したりしてしまうといったことがなくなる。
Further, since the bonding force becomes sufficiently strong when complete wafer bonding becomes possible, even if a heat treatment for forming a semiconductor element is applied to each isolation island, the isolation island may peel off or move from the support. It will not be lost.

(実施例) 以下に、図面を参照して本発明を詳細に説明する。第
1図は本発明の一実施例である誘電体分離基板の製造方
法を説明するための断面図である。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view for explaining a method of manufacturing a dielectric isolation substrate which is an embodiment of the present invention.

同図において、初めに4インチ径、厚み500μmの単
結晶Siウエハ301の主表面に、前記した従来技術と同様
の方法で分離溝6、誘電体膜2を形成した後、多結晶Si
601を100μmの膜厚で形成する[同図(a)]。
In the figure, first, the separation groove 6 and the dielectric film 2 are formed on the main surface of a single crystal Si wafer 301 having a diameter of 4 inches and a thickness of 500 μm by the same method as the above-mentioned conventional technique, and then the polycrystalline Si is formed.
601 is formed with a film thickness of 100 μm [FIG.

次いで、前記と同様にして多結晶Si601の表面を機械
的に切削し、分離溝6による約数10μmの大きな凹凸を
無くした後、さらにメカノケミカル研磨を行って多結晶
Si601の表面を平滑化する[同図(b)]。
Then, the surface of the polycrystalline Si601 was mechanically cut in the same manner as described above to remove large irregularities of about several tens of μm due to the separation groove 6, and then mechanochemical polishing was performed to perform polycrystalline cutting.
The surface of Si601 is smoothed [(b) in the figure].

なお、後に単結晶領域3に半導体素子を形成する場合
の熱処理において、多結晶Si601の収縮や膨脹によって
生じるウエハの湾曲をできるだけ少なくするため、多結
晶Si601は単結晶3の直前(〜10μm)まで研磨するこ
とが望ましい。
In the heat treatment for forming a semiconductor element in the single crystal region 3 later, in order to reduce the curvature of the wafer caused by the contraction or expansion of the polycrystalline Si 601 as much as possible, the polycrystalline Si 601 is formed just before the single crystal 3 (up to 10 μm). It is desirable to polish.

なお、本実施例では、後に該研磨した多結晶Si601の
表面にさらに多結晶Siを形成するので、該多結晶Si601
の表面には数100Å程度の凹凸があっても差し支えな
い。したがって、製造工程を簡略化して所要時間を短縮
するのであれば、機械的な切削だけで、その後のメカノ
ケミカル研磨は省略しても良い。
In this example, since polycrystalline Si is further formed on the surface of the polished polycrystalline Si601 later, the polycrystalline Si601
There is no problem even if there are irregularities of several hundred Å on the surface of. Therefore, if the manufacturing process is simplified and the required time is shortened, only mechanical cutting may be performed and the subsequent mechanochemical polishing may be omitted.

次に、多結晶Si601の表面に残る微小な凹凸を吸収す
るための緩衝膜となる多結晶Si層7を、多結晶シリコン
601の表面に密着するように、通常のCVD法によって約5
μmの膜厚で形成する[同図(c)]。この場合、形成
する膜厚が多結晶Si601の膜厚に比べて数10分の1であ
ることから、成膜速度は遅いが1度に多数のウエハを処
理することができ、製造コストを低減することが可能な
ホットウォール方式のCVDを採用しても良い。
Next, the polycrystalline Si layer 7 serving as a buffer film for absorbing the minute unevenness remaining on the surface of the polycrystalline Si601 is formed by the polycrystalline silicon.
Approximately 5 by the normal CVD method so that it adheres to the surface of 601.
It is formed with a film thickness of μm [(c) in the same figure]. In this case, the film thickness to be formed is several tenths of the film thickness of the polycrystalline Si601. Therefore, although the film formation rate is slow, many wafers can be processed at one time, which reduces the manufacturing cost. It is also possible to adopt a hot wall type CVD which can be performed.

この多結晶Si層7は、前記分離溝6のような深い凹部
が無い、比較的平滑な表面を有する多結晶Si601の表面
に成長するので、その成長方向は一定となる。したがっ
て、多結晶Si層7には前記第4図に示したような界面は
発生しない。
The polycrystalline Si layer 7 grows on the surface of the polycrystalline Si 601 having a relatively smooth surface without the deep recesses such as the separation groove 6, and therefore the growth direction is constant. Therefore, the interface shown in FIG. 4 does not occur in the polycrystalline Si layer 7.

次いで、多結晶Si層7の表面を、メカノケミカル法に
よって約3μm研磨して平滑化する。このとき、該多結
晶Si層7には界面が無いので、100Å以下の平滑な研磨
面を容易に得ることができる。
Next, the surface of the polycrystalline Si layer 7 is polished by about 3 μm and smoothed by a mechanochemical method. At this time, since the polycrystalline Si layer 7 has no interface, a smooth polished surface of 100 Å or less can be easily obtained.

次いで、支持体となる3インチ径で厚みが500μmの
単結晶ウエハ5を、前記と同様の接合方法によって接合
し[同図(d)]、単結晶301の不要部分を研磨除去し
て誘電体分離基板1を完成する[同図(e)]。
Then, a single crystal wafer 5 having a diameter of 3 inches and a thickness of 500 μm to be a support is bonded by the same bonding method as described above (FIG. 7 (d)), and unnecessary portions of the single crystal 301 are removed by polishing to remove the dielectric material. The separation substrate 1 is completed [(e) in the figure].

最後に、通常のLSIプロセスによって各単結晶島3に
半導体素子を形成すると共に各素子間に配線を施して半
導体集積回路装置を完成する。
Finally, a semiconductor element is formed on each single crystal island 3 by a normal LSI process and wiring is provided between the elements to complete a semiconductor integrated circuit device.

本実施例によれば、分離溝6による深い凹部が多結晶
Si601によって比較的浅い凹部となるので、緩衝層であ
る多結晶Si層7には該分離溝6による界面が発生しな
い。
According to the present embodiment, the deep recess formed by the isolation trench 6 is polycrystalline.
Since Si601 forms a relatively shallow recess, no interface is formed in the polycrystalline Si layer 7, which is the buffer layer, by the separation groove 6.

この結果、支持体5との接合面となる多結晶Si層7の
表面は極めて平滑に研磨することができるようになるの
で完全なウエハ結合が可能となり、信頼性の高い誘電体
分離基板を提供できるようになる。
As a result, the surface of the polycrystalline Si layer 7, which is the bonding surface with the support 5, can be polished extremely smoothly, so that perfect wafer bonding is possible and a highly reliable dielectric isolation substrate is provided. become able to.

なお、前記ホットウォール方式のCVDによれば低温で
の成膜が可能となるので、通常のCVDによる場合に比べ
て結晶粒を小さくすることができる。すなわち、前記多
結晶Si層7を前記ホットウォール方式のCVDを採用して
形成すれば、その結晶粒子径の大きさを、該多結晶Si層
7に接触する前記多結晶Si層601の、該接触部近傍の結
晶粒子径より小さくすることができる。
Since the hot wall type CVD enables film formation at a low temperature, the crystal grains can be made smaller than in the case of the ordinary CVD. That is, when the polycrystalline Si layer 7 is formed by adopting the CVD of the hot wall method, the size of the crystal grain diameter of the polycrystalline Si layer 601 which is in contact with the polycrystalline Si layer 601 is It can be made smaller than the crystal grain size in the vicinity of the contact portion.

その結果、メカノケミカル研磨による平滑程度を非晶
質の場合と同等にできるので、前記多結晶Si層7を前記
ホートウォール方式のCVDを採用して形成するようにす
れば、さらに接合面が平滑化され、より完全な接合が可
能になる。
As a result, the smoothness obtained by the mechanochemical polishing can be made equal to that of the amorphous case. Therefore, if the polycrystalline Si layer 7 is formed by adopting the CVD of the hot wall method, the joint surface becomes smoother. And more complete bonding is possible.

第5図は本発明の他の実施例の製造方法を説明するた
めの断面図であり、第1図と同一または同等部分には同
一の符号を付した。
FIG. 5 is a cross-sectional view for explaining a manufacturing method of another embodiment of the present invention, and the same or equivalent parts as in FIG. 1 are designated by the same reference numerals.

同図において、単結晶301の表面に分離溝6、誘電体
膜2を形成した後、多結晶Si601を100μmの膜厚で形成
し、さらにその表面を研磨して平滑化する[同図
(a)]までの工程は、前記と同様なのでその説明は省
略する。
In the figure, after the separation groove 6 and the dielectric film 2 are formed on the surface of the single crystal 301, polycrystalline Si601 is formed with a film thickness of 100 μm, and the surface is polished and smoothed [see the same figure (a )], The description is omitted because it is similar to the above.

多結晶Si601を平滑化した後、CVD法によってその表面
に非晶質であるアモルファスSi層8を約3μmの膜厚で
形成する[同図(b)]。
After smoothing the polycrystalline Si601, an amorphous Si layer 8 having an amorphous thickness of about 3 .mu.m is formed on the surface thereof by the CVD method [FIG.

次いで、メカノケミカル研磨によって該アモルファス
Si層8を約1μm研磨し、その表面を平滑化する。この
とき、多結晶Si601の表面に大きな凹部がなく、さらに
はアモルファスSi層が結晶粒界等の無い均質な非晶質で
あることから、該アモルファスSi層8には第4図に示し
ような界面が無い。したがって、メカノケミカル研磨に
よって極めて容易に100Å以下の平滑面が得られる。
Then, the amorphous is subjected to mechanochemical polishing.
The Si layer 8 is polished by about 1 μm to smooth its surface. At this time, since there is no large concave portion on the surface of the polycrystalline Si601 and the amorphous Si layer is a homogeneous amorphous material having no crystal grain boundaries, the amorphous Si layer 8 has a structure as shown in FIG. There is no interface. Therefore, a smooth surface of 100 Å or less can be obtained very easily by mechanochemical polishing.

その後、前記と同様にして支持体5を接合[同図
(c)]し、単結晶301の不要部分を研磨除去して誘電
体分離基板1を完成する[同図(d)]。
Then, in the same manner as above, the support 5 is bonded [(c) in the figure], and unnecessary portions of the single crystal 301 are removed by polishing to complete the dielectric isolation substrate 1 [(d) in the figure].

最後に、通常のLSIプロセスによって各単結晶島3に
半導体素子を形成すると共に各素子間に配線を施して半
導体集積回路装置を完成する。
Finally, a semiconductor element is formed on each single crystal island 3 by a normal LSI process and wiring is provided between the elements to complete a semiconductor integrated circuit device.

本実施例によれば、緩衝層が非晶質となるのでメカノ
ケミカル研磨による平滑程度が前記実施例の場合に比べ
てさらに向上し、より完全な接合が可能になる。
According to the present embodiment, since the buffer layer becomes amorphous, the smoothness by mechanochemical polishing is further improved as compared with the case of the above embodiments, and more complete bonding is possible.

なお、上記した各実施例では、緩衝層が多結晶Siまた
はアモルファスSiといった半導体層であったが、SiO2膜
のような絶縁膜であっても良い。このようなSiO2膜は、
多結晶Si601の表面を酸化することによって容易に形成
できる。
Although the buffer layer is a semiconductor layer such as polycrystalline Si or amorphous Si in each of the above-described embodiments, it may be an insulating film such as a SiO2 film. Such SiO2 film is
It can be easily formed by oxidizing the surface of polycrystalline Si601.

また、上記した実施例では、いずれも緩衝層がSi含有
物であるものとして説明したが、本発明はこれのみに限
定されるものではなく、ゲルマニウム等の他の任意の物
質を主要物質とする層あるいは膜であっても同様の効果
が得られる。
In addition, in the above-mentioned examples, the buffer layer is described as a Si-containing material, but the present invention is not limited to this, and any other substance such as germanium is a main substance. The same effect can be obtained with a layer or a film.

(発明の効果) 以上の説明から明らかなように、本発明によれば、支
持体との接合面を極めて平滑に研磨することができるよ
うになるので完全なウエハ結合が可能となり、信頼性の
高い誘電体分離基板を提供できるようになる。
(Effects of the Invention) As is apparent from the above description, according to the present invention, since the bonding surface with the support can be polished extremely smoothly, perfect wafer bonding is possible and reliability is improved. It becomes possible to provide a high dielectric isolation substrate.

そして、このような構成の誘電体分離基板の単結晶島
に半導体素子を形成すれば、信頼性の高い半導体集積回
路装置を提供できるようになる。
By forming a semiconductor element on the single crystal island of the dielectric isolation substrate having such a structure, it becomes possible to provide a highly reliable semiconductor integrated circuit device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例である誘電体分離基板の製造
方法を説明するための断面図、第2図は接合構造の誘電
体分離基板の断面図、第3図は従来の接合構造の誘電体
分離基板の製造方法を説明するための断面図、第4図は
界面が形成された分離溝の断面図、第5図は本発明の他
の実施例の製造方法を説明するための断面図である。 2……誘電体膜、3……単結晶Si領域、4……半導体素
子、5……支持体、6……分離溝、7……多結晶Si層、
8……アモルファスSi層、15……SiO2、301……単結晶S
iウエハ、601……多結晶Si
FIG. 1 is a sectional view for explaining a method of manufacturing a dielectric isolation substrate according to an embodiment of the present invention, FIG. 2 is a sectional view of a dielectric isolation substrate having a junction structure, and FIG. 3 is a conventional junction structure. 4 is a cross-sectional view for explaining a method for manufacturing the dielectric isolation substrate of FIG. 4, FIG. 4 is a cross-sectional view for a separation groove having an interface formed therein, and FIG. 5 is a view for explaining a manufacturing method according to another embodiment of the present invention. FIG. 2 ... Dielectric film, 3 ... Single crystal Si region, 4 ... Semiconductor element, 5 ... Support, 6 ... Separation groove, 7 ... Polycrystalline Si layer,
8 …… Amorphous Si layer, 15 …… SiO 2 , 301 …… Single crystal S
i-wafer, 601 ... Polycrystalline Si

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佃 清 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (56)参考文献 特開 昭63−205926(JP,A) 特開 昭53−33590(JP,A) 特開 昭63−62252(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Tsukuda 3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Factory (56) References JP-A-63-205926 (JP, A) Special Features Kai Sho 53-33590 (JP, A) JP-A 63-62252 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単結晶支持体と、 前記単結晶支持体の主表面に接合された多結晶半導体緩
衝層と、 前記多結晶半導体緩衝層の上に積層された多結晶半導体
層と、 前記多結晶半導体層の表面に複数個形成され、誘電体膜
によって相互に、かつ前記多結晶半導体と絶縁された単
結晶半導体島とを具備し、 前記多結晶半導体緩衝層の結晶粒子径は、当該多結晶半
導体緩衝層に接触する前記多結晶半導体層の、当該接触
部近傍の結晶粒子径より小さいことを特徴とする誘電体
分離基板。
1. A single crystal support, a polycrystalline semiconductor buffer layer bonded to the main surface of the single crystal support, a polycrystalline semiconductor layer laminated on the polycrystalline semiconductor buffer layer, and A plurality of single crystal semiconductor islands are formed on the surface of the crystalline semiconductor layer and are mutually insulated by a dielectric film and insulated from the polycrystalline semiconductor, and the crystal grain size of the polycrystalline semiconductor buffer layer is A dielectric isolation substrate having a diameter smaller than that of a crystal grain in the vicinity of the contact portion of the polycrystalline semiconductor layer in contact with the crystalline semiconductor buffer layer.
【請求項2】特許請求の範囲第1項記載の誘電体分離基
板の各単結晶半導体島に、半導体素子を形成したことを
特徴とする半導体集積回路装置。
2. A semiconductor integrated circuit device having a semiconductor element formed on each of the single crystal semiconductor islands of the dielectric isolation substrate according to claim 1.
JP2063845A 1990-02-28 1990-03-14 Dielectric isolation substrate and semiconductor integrated circuit device using the same Expired - Fee Related JP2552936B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2063845A JP2552936B2 (en) 1990-03-14 1990-03-14 Dielectric isolation substrate and semiconductor integrated circuit device using the same
US07/963,258 US5233216A (en) 1990-02-28 1992-10-19 Dielectric isolated substrate and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063845A JP2552936B2 (en) 1990-03-14 1990-03-14 Dielectric isolation substrate and semiconductor integrated circuit device using the same

Publications (2)

Publication Number Publication Date
JPH03265153A JPH03265153A (en) 1991-11-26
JP2552936B2 true JP2552936B2 (en) 1996-11-13

Family

ID=13241078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063845A Expired - Fee Related JP2552936B2 (en) 1990-02-28 1990-03-14 Dielectric isolation substrate and semiconductor integrated circuit device using the same

Country Status (1)

Country Link
JP (1) JP2552936B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766417B2 (en) * 1992-02-10 1998-06-18 三菱マテリアル株式会社 Manufacturing method of bonded dielectric separation wafer
JPH05226463A (en) * 1992-02-10 1993-09-03 Mitsubishi Materials Corp Manufacture of joined dielectric isolation wafer
JP2770681B2 (en) * 1992-11-12 1998-07-02 株式会社デンソー Semiconductor substrate manufacturing method
JPH07263541A (en) * 1994-03-24 1995-10-13 Nec Corp Dielectric separation substrate and manufacture thereof
JPH0888272A (en) * 1994-09-19 1996-04-02 Shin Etsu Handotai Co Ltd Manufacture of substrate for semiconductor integrated circuit
FR2810448B1 (en) * 2000-06-16 2003-09-19 Soitec Silicon On Insulator PROCESS FOR PRODUCING SUBSTRATES AND SUBSTRATES OBTAINED BY THIS PROCESS

Also Published As

Publication number Publication date
JPH03265153A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
JP2685819B2 (en) Dielectric isolated semiconductor substrate and manufacturing method thereof
JP3114643B2 (en) Semiconductor substrate structure and manufacturing method
US5459104A (en) Process for production of semiconductor substrate
JPH07263541A (en) Dielectric separation substrate and manufacture thereof
JP2552936B2 (en) Dielectric isolation substrate and semiconductor integrated circuit device using the same
JPH0682753B2 (en) Method for manufacturing semiconductor device
US5686364A (en) Method for producing substrate to achieve semiconductor integrated circuits
JP2699359B2 (en) Semiconductor substrate manufacturing method
JPS6155252B2 (en)
JPH05226305A (en) Manufacture of laminated wafer
JP2754295B2 (en) Semiconductor substrate
JPH0613593A (en) Semiconductor substrate
JP2766417B2 (en) Manufacturing method of bonded dielectric separation wafer
JP3488927B2 (en) Dielectric separation substrate and method of manufacturing the same
JP2002057309A (en) Method of forming soi substrate
JPH07112007B2 (en) Dielectric isolation substrate and manufacturing method thereof
JPH04181755A (en) Dielectric isolation substrate and its manufacture
JP2927280B2 (en) Method for manufacturing SOI substrate
JP3518083B2 (en) Substrate manufacturing method
JP3296270B2 (en) Semiconductor device and manufacturing method thereof
JP3016512B2 (en) Method for manufacturing dielectric-separated semiconductor substrate
JPS6362252A (en) Manufacture of dielectric isolation substrate
JP2866263B2 (en) Semiconductor substrate manufacturing method
JP2778114B2 (en) Semiconductor substrate manufacturing method
JPH1126573A (en) Manufacture of dielectric isolation substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees