JP3488927B2 - Dielectric separation substrate and method of manufacturing the same - Google Patents

Dielectric separation substrate and method of manufacturing the same

Info

Publication number
JP3488927B2
JP3488927B2 JP29596292A JP29596292A JP3488927B2 JP 3488927 B2 JP3488927 B2 JP 3488927B2 JP 29596292 A JP29596292 A JP 29596292A JP 29596292 A JP29596292 A JP 29596292A JP 3488927 B2 JP3488927 B2 JP 3488927B2
Authority
JP
Japan
Prior art keywords
silicon
polycrystalline
single crystal
layer
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29596292A
Other languages
Japanese (ja)
Other versions
JPH06151572A (en
Inventor
洋典 井上
良孝 菅原
信一 栗田
雄一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29596292A priority Critical patent/JP3488927B2/en
Publication of JPH06151572A publication Critical patent/JPH06151572A/en
Application granted granted Critical
Publication of JP3488927B2 publication Critical patent/JP3488927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路素子を形
成するための誘電体分離基板に係り、特に支持体が半導
体ウエハを直接接合して形成される構造の誘電体分離基
板、及びその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric isolation substrate for forming a semiconductor integrated circuit device, and more particularly to a dielectric isolation substrate having a structure in which a support is directly bonded to a semiconductor wafer, and a method for manufacturing the same. Regarding

【0002】[0002]

【従来の技術】素子間の絶縁耐圧が数10V〜数100
Vと大きな高耐圧の集積回路装置(パワ−IC)では、
集積化するそれぞれの素子を誘電体膜(例えば酸化シリ
コン膜:SiO2膜)のような絶縁膜で完全に分離する
方法が採用され、その製造には通常の半導体単結晶ウエ
ハを加工して作製した誘電体分離基板が用いられる。
2. Description of the Related Art Withstand voltage between elements is several tens of volts to several hundreds.
V and a large high voltage integrated circuit device (power IC),
A method of completely separating each element to be integrated with an insulating film such as a dielectric film (for example, a silicon oxide film: SiO 2 film) is adopted, and a normal semiconductor single crystal wafer is processed to manufacture it. The dielectric isolation substrate is used.

【0003】図2は誘電体分離基板の製造工程を説明す
る断面図である。始めに、単結晶シリコンウエハ301
(例えば直径5インチ、厚み600μm)の主表面を酸
化してその全面にSiO2膜15を形成し、ホトリソグ
ラフ(ホトリソ)法でパタ−ニングした後、エッチング
などの方法により予定の箇所のSiO2膜15を開口す
る。次に、残されたSiO2膜をマスクとして、例えば
水酸化カリウムとイソプロピ−ルアルコ−ル混液を用い
る異方性エッチングによって、深さ約60μmの分離溝
6を形成する〔同図(a)〕。次に前記マスクとして利
用したSiO2膜15を除去し、再び単結晶シリコンウ
エハ301の主表面を酸化し、全面に厚さ約1.2μm
の絶縁用のSiO2膜2を形成する〔同図(b)〕。そ
の表面に多結晶シリコン602を高温の気相成長法(C
VD:形成温度は約1200℃、形成速度は約5μm/
min)により前記分離溝6を埋め、シリコンウエハ3
01の厚みと同程度(約600μm)堆積させる〔同図
(c)〕。堆積した多結晶シリコン602表面の大きな
凹凸(約数10μm:分離溝6が深いため形成される)
を単結晶ウエハ1の下面を基準にして平滑にする〔同図
(d)〕。次に、逆に凹凸をなくした多結晶シリコン6
02の表面側を基準として単結晶シリコンウエハ301
の不要部分を研削や研磨の方法で除去し、SiO2膜2
によりそれぞれ分離された単結晶島3を形成して誘電体
分離基板1を完成する〔同図(e)〕。
FIG. 2 is a sectional view for explaining the manufacturing process of the dielectric isolation substrate. First, a single crystal silicon wafer 301
The main surface having a diameter of 5 inches and a thickness of 600 μm, for example, is oxidized to form a SiO 2 film 15 on the entire surface, patterning is performed by a photolithography method, and then a predetermined portion of SiO 2 is etched by a method such as etching. 2 Open the film 15. Next, using the remaining SiO 2 film as a mask, the isolation groove 6 having a depth of about 60 μm is formed by anisotropic etching using, for example, a mixed solution of potassium hydroxide and isopropyl alcohol [FIG. . Next, the SiO 2 film 15 used as the mask is removed, the main surface of the single crystal silicon wafer 301 is oxidized again, and the entire surface has a thickness of about 1.2 μm.
The SiO 2 film 2 for insulation is formed [(b) in the figure]. Polycrystalline silicon 602 is formed on the surface by high temperature vapor phase epitaxy (C
VD: forming temperature is about 1200 ° C., forming rate is about 5 μm /
(min) to fill the separation groove 6 with the silicon wafer 3
The same thickness as that of No. 01 (about 600 μm) is deposited [FIG. Large irregularities on the surface of the deposited polycrystalline silicon 602 (about several tens of μm: formed because the separation groove 6 is deep)
Is smoothed with the lower surface of the single crystal wafer 1 as a reference [FIG. Next, conversely, the polycrystalline silicon 6 with no irregularities
02 with reference to the front surface side of the single crystal silicon wafer 301
Unnecessary parts of the SiO 2 film 2 by grinding or polishing.
Thus, the single crystal islands 3 separated by each are formed to complete the dielectric isolation substrate 1 [FIG.

【0004】このようにして作製した誘電体分離基板1
を、通常のLSIの製造に用いるシリコン単結晶ウエハ
と同様に扱い、半導体素子製造プロセスにより単結晶分
離島3に所望の半導体素子の形成、および金属薄膜によ
る各素子間の配線を行い半導体集積回路素子を作製する
(図示せず)。
Dielectric isolation substrate 1 produced in this way
Are treated in the same manner as a silicon single crystal wafer used for manufacturing an ordinary LSI, and a desired semiconductor element is formed on the single crystal isolation island 3 by a semiconductor element manufacturing process, and wiring between each element is performed by a metal thin film. A device is manufactured (not shown).

【0005】よく知られるように、これまでの誘電体分
離基板は多結晶シリコンからなる支持体の表面に、半導
体素子を形成するための複数の単結晶シリコン島を誘電
体膜を介して形成した複合構造〔図2(e)参照〕のも
のが多い。このような複合構造の誘電体分離基板では、
分離島3部分の単結晶シリコンと支持体部分の多結晶シ
リコンとの熱膨張係数の違いから基板に反り(湾曲)や
歪みが発生する、素子形成の熱処理で結晶粒が再成長し
て多結晶層が変化し湾曲が大きく変わるなどの欠点があ
る。このため、素子をパタ−ニングするホトリソ工程の
合わせ精度が低下し、製品歩留まりが悪くなるという問
題があった。
As is well known, in the conventional dielectric isolation substrate, a plurality of single crystal silicon islands for forming a semiconductor element are formed on the surface of a support made of polycrystalline silicon via a dielectric film. Many have a composite structure [see FIG. 2 (e)]. In such a composite structure dielectric isolation substrate,
The substrate is warped (curved) or distorted due to the difference in thermal expansion coefficient between the single-crystal silicon of the isolation island 3 and the polycrystal silicon of the support member. There are drawbacks such as changes in layers and large changes in curvature. Therefore, there is a problem in that the alignment accuracy of the photolithography process for patterning the device is lowered and the product yield is deteriorated.

【0006】そこで、これらの問題点を解決する誘電体
分離基板として、例えば特開平3−265153号公報
等に記載され、図3にその断面基本構造を示すように、
支持体を単結晶シリコンウエハで構成し、該支持体ウエ
ハと単結晶島となる単結晶シリコンウエハ接合する構造
(以下、接合構造という)のものが用いられるようにな
っている。図3において、半導体素子4は島状の単結晶
シリコン領域3内に形成され、該単結晶島3は、単結晶
シリコンウエハからなる支持体5の表面上に誘電体膜2
で互いに絶縁された状態で形成される。誘電体膜2で絶
縁される各単結晶シリコン島領域3の隣接部分の分離溝
6には多結晶シリコン601が形成され、該単結晶島3
は互いに連結される。多結晶シリコン601の厚みは分
離溝6が埋まる最少の厚みとすればよい。多結晶シリコ
ン601で連結された単結晶島3は多結晶シリコン60
1表面を平滑にするために別に堆積された第2の多結晶
シリコン薄層7を介し単結晶シリコンの支持体5と接合
される。
Therefore, as a dielectric isolation substrate that solves these problems, it is described in, for example, Japanese Patent Laid-Open No. 3-265153, and its basic sectional structure is shown in FIG.
A structure in which a support is composed of a single crystal silicon wafer and a single crystal silicon wafer that becomes a single crystal island is bonded to the support wafer (hereinafter referred to as a bonding structure) has been used. In FIG. 3, a semiconductor element 4 is formed in an island-shaped single crystal silicon region 3, and the single crystal island 3 is formed on a surface of a support 5 made of a single crystal silicon wafer.
Are insulated from each other. Polycrystalline silicon 601 is formed in the isolation trench 6 in the adjacent portion of each single crystal silicon island region 3 insulated by the dielectric film 2.
Are connected to each other. The thickness of polycrystalline silicon 601 may be set to the minimum thickness at which isolation trench 6 is filled. The single crystal islands 3 connected by the polycrystalline silicon 601 are polycrystalline silicon 60.
1) It is bonded to a support 5 of single crystal silicon through a second thin layer of polycrystalline silicon 7 separately deposited for smoothing the surface.

【0007】以下、このような接合構造の誘電体分離基
板の製造方法を図4に示す断面図を用いて説明する。始
めに、単結晶シリコンウエハ301(例えば直径5イン
チ、厚み600μm)の主表面に約60μmの分離溝6
を形成した後、その全面に厚さ約1.2μmの絶縁用の
SiO2膜2を形成し、分離溝6が完全に埋まるまで多
結晶シリコン601を約100μm堆積する〔同図
(a)〕。ここまでの工程は多結晶シリコンの堆積量が
従来法に比べて少ないこと以外は前述図2の工程と同一
である。次いで、分離溝6直上部分に形成される堆積多
結晶シリコン601の大きな凹みを機械的な切削(研
削)等で除き、更に物理的研磨と化学的なエッチング作
用を合わせ持つメカノケミカル研磨法によって微小な凹
凸を除去して平滑面とする〔同図(b)〕。この場合図
5(a)に示すように、 分離溝6領域には結晶粒の衝突する界面16が存在す
る、 結晶の成長方向に直交する平面で結晶の面方位が同一
になり易い(配向) ために分離溝6と単結晶島3底部
では逆に面方位が異り、分離溝6領域で は化学的なエ
ッチング速度が他の部分に比べて大きくなる、 などから、研摩面には分離溝6領域が島底部に比べおよ
そ20nm低い凹凸ができる〔図5(b)〕。
A method of manufacturing a dielectric isolation substrate having such a junction structure will be described below with reference to the sectional view shown in FIG. First, the separation groove 6 of about 60 μm is formed on the main surface of a single crystal silicon wafer 301 (for example, diameter 5 inches, thickness 600 μm).
After the formation, the insulating SiO 2 film 2 having a thickness of about 1.2 μm is formed on the entire surface, and polycrystalline silicon 601 is deposited to a thickness of about 100 μm until the isolation trench 6 is completely filled [(a) in the figure]. . The steps up to this point are the same as the steps shown in FIG. 2 except that the amount of polycrystalline silicon deposited is smaller than in the conventional method. Next, the large depressions of the deposited polycrystalline silicon 601 formed directly above the separation groove 6 are removed by mechanical cutting (grinding) or the like, and then finely divided by a mechanochemical polishing method that combines physical polishing and chemical etching. The rough surface is removed to form a smooth surface [FIG. In this case, as shown in FIG. 5 (a), there is an interface 16 where crystal grains collide in the separation groove 6 region. The plane orientation of the crystal tends to be the same in the plane orthogonal to the crystal growth direction (orientation). Therefore, the separation groove 6 and the bottom of the single crystal island 3 have different surface orientations, and the chemical etching rate in the separation groove 6 region is higher than that in the other portions. The 6 regions have irregularities that are about 20 nm lower than the island bottom [FIG. 5 (b)].

【0008】次に、形成速度は遅い(約1μm /min 以
下)が1度に多数のウエハの処理が可能で量産性の良い
ホットウオ−ル方式CVD法で、多結晶シリコン601
の研磨面にさらに第2の多結晶シリコン薄層7を約5μ
m形成する。この後、形成した多結晶シリコン薄層7の
表面をメカノケミカル研磨し、ウエハ接合が可能な平滑
性の高い面を得る。この場合、堆積前の表面には極端に
大きな凹凸がない、低温で堆積され微細な結晶粒となる
などから第2の多結晶シリコン薄層7の結晶粒は均質
で、メカノケミカル研磨でウエハ接合が可能な平滑性の
高い面(表面粗さ20nm以下)を容易に得ることがで
きる。
Next, although the formation rate is slow (about 1 μm / min or less), it is possible to process a large number of wafers at a time and the mass productivity is good, and the hot-wall CVD method is used to form polycrystalline silicon 601.
A second thin layer of polycrystalline silicon 7 is further applied to the polished surface of
m form. After that, the surface of the formed polycrystalline silicon thin layer 7 is mechanochemically polished to obtain a highly smooth surface capable of wafer bonding. In this case, since the surface before deposition has no extremely large irregularities and is deposited at a low temperature to form fine crystal grains, the crystal grains of the second thin polycrystalline silicon layer 7 are homogeneous and wafer bonding is performed by mechanochemical polishing. It is possible to easily obtain a surface having high smoothness (surface roughness of 20 nm or less).

【0009】支持体ウエハ5とする単結晶シリコンウエ
ハを用意し、その表面および前記研磨面を適宜の方法で
貼り合わせ、さらに高温の熱処理を加えて2枚のウエハ
を接合する〔同図(c)〕。なお、上記した2枚の半導
体ウエハを接合する方法に関しては、例えば特開昭62
−27040号公報に記載される方法等がある。最後
に、前述図2と同様に、単結晶シリコンウエハ301の
不要部分を研磨によって除去して単結晶分離島3を形成
して誘電体分離基板1を完成する〔同図(d)〕。
A single crystal silicon wafer to be used as the support wafer 5 is prepared, the surface and the polished surface are bonded together by an appropriate method, and further heat treatment at high temperature is applied to bond the two wafers [FIG. )]. A method for joining the two semiconductor wafers described above is disclosed in, for example, Japanese Patent Laid-Open No. 62-62.
No. 27040, for example. Finally, as in the case of FIG. 2, the unnecessary portion of the single crystal silicon wafer 301 is removed by polishing to form the single crystal isolation island 3 to complete the dielectric isolation substrate 1 (FIG. 2 (d)).

【0010】[0010]

【発明が解決しようとする課題】上記従来例は、接合界
面に形成される第2の多結晶シリコン薄層7の接合熱処
理時における変質についての配慮が不足しているため支
持体ウエハ5の接合が不完全になり易いという問題があ
った。詳細は不明であるが本発明者らは実験により、支
持体ウエハ5の接合不良が発生するのは以下のような原
因と推定された。低温のCVD法で形成した第2の多結
晶シリコン薄層7は粒径が小さく、かつ大量のガスが含
まれており、このような多結晶シリコン層が接合時に高
温の熱処理を受けると結晶粒が再成長して体積収縮し、
できた空隙に結晶中のガスが脱離、凝集して微小のボイ
ドが形成されるものと考えられる。ガスの発生源として
は、貼り合わせる2つの面に吸着している水分等のガス
も考えられる。このような微小ボイドは通常10〜30
nm程度の凹部で形成され、この部分が未接合領域とし
て残ることが分かった。
In the above-mentioned conventional example, since the consideration of the alteration of the second thin polycrystalline silicon layer 7 formed at the bonding interface during the bonding heat treatment is insufficient, the support wafer 5 is bonded. However, there was a problem that it was likely to be incomplete. Although details are unknown, the inventors of the present invention have experimentally estimated that defective bonding of the support wafer 5 is caused as follows. The second thin polycrystalline silicon layer 7 formed by the low temperature CVD method has a small grain size and contains a large amount of gas. Regrows and shrinks in volume,
It is considered that the gas in the crystal is desorbed and agglomerated in the created void to form a minute void. As a gas generation source, a gas such as moisture adsorbed on the two surfaces to be bonded can be considered. Such microvoids are usually 10-30
It was found that the recess was formed with a recess of about nm, and this portion remained as an unbonded region.

【0011】本発明の目的は、以上に述べた問題点を解
決し、完全な支持体ウエハ接合が達成された誘電体分離
基板およびその製造方法を提供するにある。
An object of the present invention is to solve the above-mentioned problems and to provide a dielectric isolation substrate in which complete support wafer bonding is achieved and a manufacturing method thereof.

【0012】[0012]

【課題を解決するための手段】前記の問題点を解決して
完全なウエハ接合を実現するために、本発明は、接合型
の誘電体分離基板において、一方の表面に素子を形成す
るため、相互に電気的に絶縁し、かつ、分離溝に半導体
多結晶層を埋めて互いに連結した複数個の半導体単結晶
分離島の他方の面と、支持体ウエハとを多結晶シリコン
薄層を介して直接接合する場合において、前記支持体ウ
エハの表面に酸化膜を形成して接合した。
SUMMARY OF THE INVENTION In order to solve the above problems and realize perfect wafer bonding, the present invention forms a device on one surface of a junction type dielectric isolation substrate. The other surface of the plurality of semiconductor single crystal isolation islands electrically insulated from each other and having the semiconductor polycrystal layer buried in the isolation trench and connected to each other, and the support wafer are provided with the polycrystalline silicon thin layer interposed therebetween. In the case of direct bonding, an oxide film was formed on the surface of the support wafer and bonded.

【0013】 すなわち本発明は、一方の側に半導体素
子などの電気素子を形成するための相互に電気的に絶縁
された複数個のシリコン単結晶の島領域と、前記単結晶
島領域を他方の側で連結する第1のシリコン多結晶層
と、前記第1のシリコン多結晶層の他方の側に隣接する
1000℃以下の低温のCVD法で形成されて結晶粒が
前記第1のシリコン多結晶層の結晶粒よりも微細である
第2のシリコン多結晶薄層と、前記第2のシリコン多結
晶薄層の他方の側に隣接する支持体を備えた誘電体分離
基板において、表面に膜厚が35nm以上の酸化シリコ
ン膜を形成した前記支持体を前記第2のシリコン多結晶
薄層の他方の側に熱処理により接合することにより、
記第2のシリコン多結晶薄層と前記支持体との間に酸化
シリコン膜が形成されているものである。
That is, according to the present invention, a plurality of silicon single crystal island regions electrically insulated from each other for forming an electric element such as a semiconductor element on one side and the single crystal island region on the other side. a first polycrystalline silicon layer for connecting the side, adjacent to the other side of the first polycrystalline silicon layer
The crystal grains formed by the low temperature CVD method of 1000 ° C or less
A second silicon polycrystalline thin layer having finer crystal grains than the first silicon polycrystalline thin layer, and a support adjacent to the other side of the second silicon polycrystalline thin layer. In a dielectric isolation substrate, a silicon oxide film with a thickness of 35 nm or more is formed on the surface.
The support on which the silicon film is formed, the second silicon polycrystal
By bonding to the other side of the thin layer by heat treatment , oxidation between the second silicon polycrystalline thin layer and the support is carried out.
A silicon film is formed.

【0014】 また本発明は、シリコン単結晶ウエハの
一方の側に分離溝を形成する工程と、前記分離溝が形成
された単結晶ウエハ表面に絶縁膜を形成する工程と、前
記絶縁膜面に第1のシリコン多結晶層を形成し平坦にす
る工程と、第2のシリコン多結晶薄層を、該第2のシリ
コン多結晶薄層の結晶粒を前記第1のシリコン多結晶層
の結晶粒よりも微細にする1000℃以下の低温のCV
D法により前記第1のシリコン多結晶表面に形成し平滑
研磨する工程と、前記第2のシリコン多結晶平滑面に
表面に膜厚35nm以上の酸化シリコン膜を形成した支
持体を熱処理により接合する工程と、前記単結晶ウエハ
の他方の側を分離溝の一方の端まで研磨しシリコン単結
晶島領域を形成する工程とを有することを特徴とする誘
電体分離基板の製造方法である。
Further, according to the present invention, a step of forming an isolation groove on one side of a silicon single crystal wafer, a step of forming an insulating film on the surface of the single crystal wafer on which the isolation groove is formed, and a step of forming an insulating film on the insulating film surface. Forming a first silicon polycrystal layer and flattening it, and forming a second silicon polycrystal thin layer in the second silicon polycrystal layer .
The crystal grains of the polycrystalline thin layer are made into the first silicon polycrystalline layer.
CV of 1000 ° C or less to make finer than the crystal grains of
Forming a smooth surface on the first polycrystalline silicon surface by the D method, and smoothing the second polycrystalline silicon surface ,
A step of joining a support having a silicon oxide film having a film thickness of 35 nm or more formed on the surface by heat treatment, and a step of polishing the other side of the single crystal wafer to one end of the separation groove to form a silicon single crystal island region A method of manufacturing a dielectric isolation substrate, comprising:

【0015】[0015]

【作用】接合熱処理によって第2の多結晶シリコン薄層
の結晶粒が変質し微小のボイドが形成されても、支持体
ウエハの表面に形成された酸化膜が高温の接合熱処理中
に流動して微小ボイドを埋め、この結果支持体ウエハの
完全な接合が達成される。
[Effect] Even if the crystal grains of the second polycrystalline silicon thin layer are altered by the bonding heat treatment and minute voids are formed, the oxide film formed on the surface of the support wafer flows during the high temperature bonding heat treatment. The microvoids are filled up, so that a complete bond of the carrier wafer is achieved.

【0016】[0016]

【実施例】次に、本発明の一実施例を図1(断面図)に
したがって説明する。この場合半導体材料としてシリコ
ン(Si)を、また、支持体ウエハとしては単結晶シリ
コンウエハを採用した。
EXAMPLE An example of the present invention will be described below with reference to FIG. 1 (cross-sectional view). In this case, silicon (Si) was used as the semiconductor material, and a single crystal silicon wafer was used as the support wafer.

【0017】まず、直径5インチ、厚み600μmのシ
リコンの単結晶ウエハ301を用意する。このウエハを
酸化し、形成したSiO2膜をマスクとし、例えば水酸
化カリュウムとイソプロピ−ルアルコ−ル混液を用いる
異方性エッチングを行ない、約60μmの分離溝6を堀
り単結晶島となる領域3を形成する。そしてSiO2
を除去した後再度酸化し、約1.2μmの絶縁用のSi
2膜2を形成する。次いで、高温のCVD法(形成温
度:約1200℃、形成速度:約5μm/min)により多
結晶シリコン601を分離溝6が埋まるまで約100μ
m形成する〔同図(a)〕。
First, a silicon single crystal wafer 301 having a diameter of 5 inches and a thickness of 600 μm is prepared. This wafer is oxidized, and the formed SiO 2 film is used as a mask to perform anisotropic etching using, for example, a mixed solution of potassium hydroxide and isopropyl alcohol to form a single crystal island by digging a separation groove 6 of about 60 μm. 3 is formed. Then, after removing the SiO 2 film, the film is oxidized again to obtain about 1.2 μm of insulating Si.
The O 2 film 2 is formed. Then, by a high temperature CVD method (formation temperature: about 1200 ° C., formation rate: about 5 μm / min), the polycrystalline silicon 601 is filled with about 100 μ until the separation groove 6 is filled.
m is formed [(a) in the figure].

【0018】この後、多結晶Si601を研磨して分離
溝6による数10μmの大きな凹凸を無くし平坦にする
〔同図(b)〕。また、仕上げ研磨のメカノケミカル研
磨で数10nmの凹凸が発生しても良い。この場合、あ
との単結晶3領域に半導体素子4を形成する場合の熱処
理において、多結晶シリコン層の収縮や膨張によって生
ずるウエハの湾曲をできるだけ少なくするため、多結晶
シリコン層601は単結晶シリコン層301の直前まで
研磨する。より研磨面の平坦性を高め、かつ研磨時間を
短縮するには結晶粒や分離溝による成長形態の違いなど
の影響を受けない研削法などの機械的な研磨法がよい。
この場合研削面の粗さは、後の第2の多結晶シリコン薄
層の研磨が可能な程度まで大きくなっても良い。
After that, the polycrystalline Si 601 is polished to flatten it by eliminating large irregularities of several tens of μm due to the separation groove 6 [FIG. Further, unevenness of several tens of nm may occur in the mechanochemical polishing of the final polishing. In this case, in the subsequent heat treatment for forming the semiconductor element 4 in the single crystal 3 region, the polycrystalline silicon layer 601 is formed of the single crystal silicon layer in order to reduce the curvature of the wafer caused by the contraction and expansion of the polycrystalline silicon layer. Polish until just before 301. In order to further improve the flatness of the polished surface and shorten the polishing time, a mechanical polishing method such as a grinding method that is not affected by the difference in growth morphology due to crystal grains or separation grooves is preferable.
In this case, the roughness of the ground surface may be so large that the second thin polycrystalline silicon layer can be polished later.

【0019】次いで、多結晶シリコン層601表面に形
成温度が1000℃以下の低温のCVD法で再び多結晶
シリコン薄層7を約5μm形成する。次いで、多結晶シ
リコン薄層7表面をメカノケミカル法により約3μm研
磨し、多結晶シリコン601の研磨時に生じた数10n
mの凹凸がそのまま成長表面に残っているのを無くす。
この場合、多結晶シリコン薄層7が均質層であることか
ら、20nm以下の平滑な研磨面を容易に得ることがで
きる〔同図(c)〕。以上の工程は従来法の工程と同一
である。
Then, the polycrystalline silicon thin layer 7 is formed again on the surface of the polycrystalline silicon layer 601 by the low temperature CVD method at a forming temperature of 1000 ° C. or less by about 5 μm. Then, the surface of the polycrystalline silicon thin layer 7 is polished to about 3 μm by a mechanochemical method, and the surface of the polycrystalline silicon 601 is polished to several tens of nanometers.
It eliminates that the unevenness of m remains on the growth surface as it is.
In this case, since the polycrystalline silicon thin layer 7 is a homogeneous layer, it is possible to easily obtain a smooth polished surface of 20 nm or less [FIG. The above steps are the same as those of the conventional method.

【0020】次に、支持体5とする5インチ径で表面に
SiO2膜8を形成した厚み約600μmの単結晶ウエ
ハを用意し、前述した従来法と同様のウエハ接合方法に
より多結晶シリコン層7面に接合する〔同図(d)〕。
図6は前述の高温熱処理を加えて接合したウエハに発生
する未接合部分(ボイド)のウエハ内における面積率
と、支持体ウエハに形成したSiO2膜8の膜厚の関係
を調べた結果である。ボイドの発生をなくすためには少
なくとも20nm以上のSiO2膜8を支持体ウエハに
形成することが必要である。これは、前述した低温形成
した第2の多結晶シリコン層の結晶粒が高温の熱処理で
体積収縮してできる略30nmの凹部をSiO2層8の
流動により埋めるには、必要で十分な量のSiO2が必
要であることを示している。
Next, a single crystal wafer having a diameter of 5 inches and a SiO 2 film 8 formed on the surface thereof and having a thickness of about 600 μm is prepared as a support 5, and a polycrystalline silicon layer is formed by the wafer bonding method similar to the conventional method described above. Bonded to the 7th surface [(d) of the same figure].
FIG. 6 is a result of examining the relationship between the area ratio in the wafer of the unbonded portion (void) generated in the wafer bonded by the above-mentioned high temperature heat treatment and the film thickness of the SiO 2 film 8 formed on the support wafer. is there. In order to eliminate the generation of voids, it is necessary to form the SiO 2 film 8 having a thickness of at least 20 nm on the support wafer. This is necessary and sufficient amount to fill the concave portion of about 30 nm formed by the crystal grains of the second polycrystalline silicon layer formed at low temperature by volumetric shrinkage by the high temperature heat treatment with the flow of the SiO 2 layer 8. It indicates that SiO 2 is required.

【0021】最後に、支持体とする単結晶シリコンウエ
ハ5を接合したウエハの単結晶シリコン301の不要部
分を研磨によって除去し、単結晶分離島3を形成して図
1(e)に示すような誘電体分離基板1を完成する〔同
図(e)〕。
Finally, an unnecessary portion of the single crystal silicon 301 of the wafer to which the single crystal silicon wafer 5 serving as the support is bonded is removed by polishing to form the single crystal separation island 3 as shown in FIG. 1 (e). The dielectric isolation substrate 1 is completed [(e) in the figure].

【0022】以上の述べた実施例によれば、Si02
8によって第2の多結晶シリコン層7に形成される凹凸
が実質的に解消され、支持体ウエハが強固に接合された
誘電体分離基板を容易に得ることができる。
According to the embodiment [0022] The above-mentioned, unevenness formed on the second polycrystalline silicon layer 7 by Si0 2 layers 8 are substantially eliminated, the support wafer is firmly bonded dielectric separation The substrate can be easily obtained.

【0023】尚、本実施例において支持体として単結晶
シリコンウエハを用いたが、熱処理によって変質が無視
できるように予めより高温の加熱処理などを施した多結
晶シリコンや、シリコンカーバイド(SiC)、石英ガ
ラスなどの半導体プロセスの汚染源とならない他の材質
の支持体を用いても、酸化膜を形成して接合すれば同様
の効果が得られる。
Although a single crystal silicon wafer is used as the support in this embodiment, polycrystalline silicon or silicon carbide (SiC), which has been previously heat-treated at a higher temperature so that the alteration can be ignored by heat treatment, Even if a support made of other material such as quartz glass that does not become a pollution source in the semiconductor process is used, the same effect can be obtained by forming an oxide film and joining the support.

【0024】また、第2の多結晶シリコン層の表面にさ
らにSiO2層を堆積し、この面を平滑にしてSiO2
を形成しない支持体ウエハを接合しても同様の効果が得
られる。
The same effect can be obtained by further depositing a SiO 2 layer on the surface of the second polycrystalline silicon layer, and smoothing this surface to join a support wafer on which the SiO 2 layer is not formed.

【0025】[0025]

【発明の効果】本発明によれば、接合構造の誘電体分離
基板における支持体ウエハの接合が完全に達成されるこ
とから信頼性の高い誘電体分離基板を提供できるように
なる。
According to the present invention, since the bonding of the support wafer in the dielectric isolation substrate having the bonding structure is completely achieved, it is possible to provide a highly reliable dielectric isolation substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(e)は本発明の一実施例である誘電
体分離基板の製造方法を説明するための各工程の断面図
である。、
1A to 1E are cross-sectional views of respective steps for explaining a method for manufacturing a dielectric isolation substrate which is an embodiment of the present invention. ,

【図2】(a)〜(e)は従来の誘電体分離基板を説明
するための各製造工程の断面図である。
2 (a) to 2 (e) are cross-sectional views of respective manufacturing steps for explaining a conventional dielectric isolation substrate.

【図3】従来の接合構造の誘電体分離基板を説明するた
めの断面図である。
FIG. 3 is a cross-sectional view illustrating a conventional dielectric isolation substrate having a junction structure.

【図4】(a)〜(d)は従来の接合構造の誘電体分離
基板の製造方法を説明するための各工程の断面図であ
る。
4A to 4D are cross-sectional views of respective steps for explaining a method for manufacturing a conventional dielectric isolation substrate having a junction structure.

【図5】(a)及び(b)は誘電体分離基板の分離溝に
おける多結晶層の結晶構造を説明するための断面図であ
る。
5A and 5B are cross-sectional views for explaining a crystal structure of a polycrystalline layer in an isolation groove of a dielectric isolation substrate.

【図6】ウエハ内の未接合部面積と酸化膜(Si0
2層)の厚みとの関係を説明するための図である。
FIG. 6 shows an area of an unbonded portion in a wafer and an oxide film (Si0
It is a figure for explaining the relation with the thickness of ( 2 layers).

【符号の説明】[Explanation of symbols]

1 誘電体分離基板 2 誘電体膜 3 半導体単結晶分離島 4 半導体素子 5 半導体単結晶支持体 6 分離溝 601 多結晶半導体層 7 第2の多結晶半導体層 8 酸化膜(Si02層)1 Dielectric Isolation Substrate 2 Dielectric Film 3 Semiconductor Single Crystal Isolation Island 4 Semiconductor Element 5 Semiconductor Single Crystal Support 6 Isolation Groove 601 Polycrystalline Semiconductor Layer 7 Second Polycrystalline Semiconductor Layer 8 Oxide Film (SiO 2 Layer)

フロントページの続き (72)発明者 菅原 良孝 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 栗田 信一 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立工場内 (72)発明者 齋藤 雄一 千葉県野田市西三ケ尾金内314 三菱マ テリアルシリコン株式会社内 (56)参考文献 特開 平3−265153(JP,A) 特開 昭63−62252(JP,A)Continued front page    (72) Inventor Yoshitaka Sugawara               1-1-1 Omika-cho, Hitachi-shi, Ibaraki               Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor Shinichi Kurita               1-1-1 Omika-cho, Hitachi-shi, Ibaraki               Hitachi, Ltd. Hitachi factory (72) Inventor Yuichi Saito               314 Mitsubishi Ma, Nishimigaokinai, Noda City, Chiba Prefecture               Inside Terial Silicon Co., Ltd.                (56) Reference JP-A-3-265153 (JP, A)                 JP-A-63-62252 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一方の側に半導体素子などの電気素子を
形成するための相互に電気的に絶縁された複数個のシリ
コン単結晶の島領域と、前記単結晶島領域を他方の側で
連結する第1のシリコン多結晶層と、前記第1のシリコ
多結晶層の他方の側に隣接する1000℃以下の低温
のCVD法で形成されて結晶粒が前記第1のシリコン多
結晶層の結晶粒よりも微細である第2のシリコン多結晶
薄層と、前記第2のシリコン多結晶薄層の他方の側に隣
接する支持体を備えた誘電体分離基板において、表面に
膜厚が35nm以上の酸化シリコン膜を形成した前記支
持体を前記第2のシリコン多結晶薄層の他方の側に熱処
理により接合することで前記第2のシリコン多結晶薄層
と前記支持体との間に酸化シリコン膜が形成されている
ことを特徴とする誘電体分離基板。
1. A plurality of siliaries electrically insulated from each other for forming an electric device such as a semiconductor device on one side.
And the island region con single crystal, a first polycrystalline silicon layer for connecting said single crystal island regions on the other side, the first silicon
Adjacent to the other side of the emission polycrystalline layer 1000 ° C. or less of the cold
Is formed by the CVD method described above and the crystal grains are
A second polycrystalline silicon thin layer than the crystal grains of the crystal layer are fine, the dielectric isolation substrate having a support adjacent the other side of the second polycrystalline silicon thin layer, on the surface
The support in which a silicon oxide film having a film thickness of 35 nm or more is formed.
The carrier is heat treated on the other side of the second thin polycrystalline silicon layer.
A dielectric isolation substrate, characterized in that a silicon oxide film is formed between the second silicon polycrystal thin layer and the support by bonding them by reason .
【請求項2】 シリコン単結晶ウエハの一方の側に分離
溝を形成する工程と、前記分離溝が形成された単結晶ウ
エハ表面に絶縁膜を形成する工程と、前記絶縁膜面に第
1のシリコン多結晶層を形成し平坦にする工程と、第2
シリコン多結晶薄層を、該第2のシリコン多結晶薄層
の結晶粒を前記第1のシリコン多結晶層の結晶粒よりも
微細にする1000℃以下の低温のCVD法により前記
第1のシリコン多結晶表面に形成し平滑研磨する工程
と、前記第2のシリコン多結晶平滑面に、表面に膜厚3
5nm以上の酸化シリコン膜を形成した支持体を熱処理
により接合する工程と、前記単結晶ウエハの他方の側を
分離溝の一方の端まで研磨しシリコン単結晶島領域を形
成する工程とを有することを特徴とする誘電体分離基板
の製造方法。
2. A step of forming an isolation groove on one side of a silicon single crystal wafer, a step of forming an insulating film on the surface of the single crystal wafer on which the isolation groove is formed, and a first step on the surface of the insulating film. A step of forming and flattening a silicon polycrystalline layer, and a second step
The polycrystalline silicon thin layer, the silicon of the second polycrystalline thin layer
Than the crystal grains of the first silicon polycrystalline layer
A step of forming fine particles on the first silicon polycrystalline surface by a low temperature CVD method of 1000 ° C. or less and smooth polishing , and a film thickness of 3 on the surface of the second silicon polycrystalline smooth surface.
And a step of bonding a support having a silicon oxide film of 5 nm or more formed thereon by heat treatment, and a step of polishing the other side of the single crystal wafer to one end of a separation groove to form a silicon single crystal island region. A method for manufacturing a dielectric isolation substrate, comprising:
JP29596292A 1992-11-05 1992-11-05 Dielectric separation substrate and method of manufacturing the same Expired - Fee Related JP3488927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29596292A JP3488927B2 (en) 1992-11-05 1992-11-05 Dielectric separation substrate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29596292A JP3488927B2 (en) 1992-11-05 1992-11-05 Dielectric separation substrate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06151572A JPH06151572A (en) 1994-05-31
JP3488927B2 true JP3488927B2 (en) 2004-01-19

Family

ID=17827344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29596292A Expired - Fee Related JP3488927B2 (en) 1992-11-05 1992-11-05 Dielectric separation substrate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3488927B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263541A (en) * 1994-03-24 1995-10-13 Nec Corp Dielectric separation substrate and manufacture thereof
JPH10261706A (en) * 1997-03-18 1998-09-29 Oki Electric Ind Co Ltd Manufacturing method of dielectric separation substrate
KR100384343B1 (en) * 1998-06-26 2003-05-16 미쯔비시 마테리알 실리콘 가부시끼가이샤 Dielectric separation wafer and production method thereof

Also Published As

Publication number Publication date
JPH06151572A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
JP3900741B2 (en) Manufacturing method of SOI wafer
JP2004247610A (en) Manufacturing method of substrate
JPH07263541A (en) Dielectric separation substrate and manufacture thereof
JPH0312775B2 (en)
JP3488927B2 (en) Dielectric separation substrate and method of manufacturing the same
JPH0613456A (en) Manufacture of semiconductor device
JP2699359B2 (en) Semiconductor substrate manufacturing method
US5686364A (en) Method for producing substrate to achieve semiconductor integrated circuits
JP2552936B2 (en) Dielectric isolation substrate and semiconductor integrated circuit device using the same
JP2766417B2 (en) Manufacturing method of bonded dielectric separation wafer
JPH08236615A (en) Dielectrically isolated substrate and fabrication thereof
JP2002057309A (en) Method of forming soi substrate
JP2678218B2 (en) Bonded substrate and manufacturing method thereof
JPH0645313A (en) Manufacture of semiconductor device
JP3099446B2 (en) Semiconductor substrate having dielectric isolation region
JPS61144036A (en) Semiconductor device and manufacture thereof
JP2754295B2 (en) Semiconductor substrate
JPH06215993A (en) Composite semiconductor substrate and manufacture thereof
JP2866263B2 (en) Semiconductor substrate manufacturing method
JPS6362252A (en) Manufacture of dielectric isolation substrate
JPH07112007B2 (en) Dielectric isolation substrate and manufacturing method thereof
JP2000306993A (en) Production of multilayer substrate
JPH08340046A (en) Manufacture of semiconductor device
JP2002314051A (en) Manufacturing method of soi substrate
JPH0621205A (en) Dielectric isolation substrate and semiconductor integrated circuit device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees