JPH06208911A - Rare earth magnetic body, produciton thereof and rare earth bonded magnet - Google Patents

Rare earth magnetic body, produciton thereof and rare earth bonded magnet

Info

Publication number
JPH06208911A
JPH06208911A JP5001932A JP193293A JPH06208911A JP H06208911 A JPH06208911 A JP H06208911A JP 5001932 A JP5001932 A JP 5001932A JP 193293 A JP193293 A JP 193293A JP H06208911 A JPH06208911 A JP H06208911A
Authority
JP
Japan
Prior art keywords
rare earth
composition
magnetic material
earth magnetic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5001932A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Atsunori Kitazawa
淳憲 北澤
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5001932A priority Critical patent/JPH06208911A/en
Publication of JPH06208911A publication Critical patent/JPH06208911A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a rare earth magnetic body having high remanent magnetic flux density and coercive force irrespective of its isotropy easily by employing a basic composition of rare earth metal and transition metal wherein the composition is lower than the stoichiometric composition of intermetallic compound or rare earth metal and containing N with the crystal particle size being set at a specific value or below. CONSTITUTION:An alloy having basic composition of one or more than one kind of rare earth element and a transition metal of Fe containing Co and having stoichionmetric composition of intermetallic compound or a composition where the rare earth metal is lower than that and the crystal particle size is 50nm or less is heat treated in a gas containing N so that N intrudes into the alloy. Consequently, high remanent flux density and coercive force can be obtained easily irrespective of its isotropy and the cost is reduced because expensive rare earth metal is reduced. Furthermore, a thermally stable and reliable rare earth magnetic body and rare earth bonded magnet can be obtained because of its high rectangularity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類金属と遷移金属
群からなる希土類磁性体および希土類ボンド磁石に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnetic material composed of a rare earth metal and a transition metal group and a rare earth bonded magnet.

【0002】[0002]

【従来の技術】従来、R−TM−N系希土類ボンド磁石
に関しては、例えば特開平2−57663号公報,特開
平2−257603号公報など特許公報およびJ.Ma
gn.Magn.Mater.,87(1990)L2
51(引用文献1)やAppl.Phys.Lett.
56(1990),587(引用文献2)をはじめとす
る論文などに、Sm2Fe17x系として報告されてい
る。
2. Description of the Related Art Conventionally, R-TM-N-based rare earth bonded magnets have been disclosed in, for example, JP-A-2-57663, JP-A-2-257603 and J. Pat. Ma
gn. Magn. Mater. , 87 (1990) L2
51 (Cited document 1) and Appl. Phys. Lett.
56 (1990), 587 (cited document 2) and the like, and the like are reported as Sm 2 Fe 17 N x system.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
技術におけるR−TM−N系においては、以下の問題点
を有する。
However, the conventional R-TM-N system has the following problems.

【0004】(1)引用文献1記載のモノ結晶系のSm
2Fe17xは、磁気特性特に保磁力の粉末粒径依存性が
強く、1〜3μmと微粉末にしても実用の7kOe以上
のiHcを得ることは極めて困難である。
(1) Monocrystalline Sm described in the cited document 1
2 Fe 17 N x has a strong magnetic property, particularly the coercive force strongly depends on the powder particle size, and it is extremely difficult to obtain a practical iHc of 7 kOe or more even with a fine powder of 1 to 3 μm.

【0005】(2)引用文献2記載のナノ結晶系のSm
2Fe17xは、20kOe以上の高い保磁力が比較的容
易に得られ、粉末粒径依存性も弱いことからボンド磁石
に用いるには適しているが、等方性であるために残留磁
束密度が低く、ボンド磁石のエネルギー積も小さなもの
となってしまう。
(2) Sm of nanocrystal system described in cited document 2
2 Fe 17 N x is suitable for use as a bonded magnet because it can obtain a high coercive force of 20 kOe or more with relative ease and has a weak powder particle size dependency. The density is low, and the energy product of the bonded magnet is also small.

【0006】(3)希土類元素のなかでも高価なSmを
25重量%以上含むことから、磁性粉末の価格が高い。
(3) The magnetic powder is expensive because it contains 25% by weight or more of expensive Sm among rare earth elements.

【0007】そこで、本発明はこのような問題点を解決
するもので、その目的とするところは、実質的に等方性
であるにもかかわらず残留磁束密度が高く、保磁力も容
易に得られ、高価な希土類金属が少ないために低コスト
で、角形性がよいことから熱安定性など信頼性の高い希
土類磁性体、その製造方法および希土類ボンド磁石を提
供することにある。
Therefore, the present invention solves such a problem, and its object is to obtain a high residual magnetic flux density and easily obtain a coercive force even though it is substantially isotropic. Another object of the present invention is to provide a rare earth magnetic material having high reliability such as thermal stability because it has low cost due to a small amount of expensive rare earth metal and has good squareness, a method for producing the rare earth magnetic material, and a rare earth bonded magnet.

【0008】[0008]

【課題を解決するための手段】本発明の希土類磁性体
は、基本組成がRおよびTMからなり、組成が金属間化
合物の化学量論組成もしくは希土類金属がそれよりも少
なく、かつNを含んだ組成であり、結晶粒子径が50n
m以下であることを特徴とする。RとTMからなる金属
間化合物がR2TM17系もしくはRTM12系であり、お
のおのRが11原子%以下もしくは8原子%以下である
ことを特徴とする。磁気的に実質等方性であり、残留磁
束密度が8kG以上,保磁力が7kOe以上であること
を特徴とする。主相および主相よりもFeが多い組成を
有する粒界相が存在する微細構造を有することを特徴と
する。
The rare earth magnetic material of the present invention has a basic composition of R and TM, has a stoichiometric composition of an intermetallic compound or less rare earth metal, and contains N. Composition, crystal particle size is 50n
It is characterized by being m or less. The intermetallic compound consisting of R and TM is R 2 TM 17 system or RTM 12 system, and each R is 11 atomic% or less or 8 atomic% or less. It is magnetically substantially isotropic, and has a residual magnetic flux density of 8 kG or more and a coercive force of 7 kOe or more. It is characterized by having a fine structure in which a main phase and a grain boundary phase having a composition containing more Fe than the main phase exist.

【0009】本発明の希土類磁性体の製造方法は、基本
組成がRとTMからなり、金属間化合物の化学量論組成
もしくは希土類金属がそれよりも少ない組成を有し、結
晶粒子径が50nm以下である合金に、Nを含むガス中
で熱処理を施し、合金中に窒素を侵入させることを特徴
とする。メルトスパン法,メカニカルアロイング法,水
素処理法,ガスアトマイズ法を用いることを特徴とす
る。
In the method for producing a rare earth magnetic material of the present invention, the basic composition comprises R and TM, the stoichiometric composition of the intermetallic compound or the composition in which the rare earth metal is less than that, and the crystal grain size is 50 nm or less. It is characterized in that the alloy is heat-treated in a gas containing N to allow nitrogen to penetrate into the alloy. It is characterized by using the melt span method, mechanical alloying method, hydrogen treatment method, and gas atomizing method.

【0010】本発明の希土類ボンド磁石は、上記希土類
磁性体をバインダーで結合したことを特徴とする。
The rare earth bonded magnet of the present invention is characterized in that the above rare earth magnetic material is bonded with a binder.

【0011】[0011]

【作用】本発明の上記の構成によれば、R−TM−N系
において以下の効果を有する。
According to the above construction of the present invention, the following effects are obtained in the R-TM-N system.

【0012】(1)金属間化合物の化学量論組成もしく
は希土類金属がそれよりも少なくNを含む組成で、結晶
粒子径が50nm以下とすることにより、微細組織のた
めに高保磁力が得られるだけでなく、単磁区粒子の粒子
間交換相互作用によって、高い残留磁束密度が得られ
る。また、その微細構造は、主相のみで構成されるか、
主相よりもFeが多い組成を有する粒界相が主相の粒界
に存在している。
(1) Only a high coercive force can be obtained due to the fine structure by setting the crystal grain size to 50 nm or less in the stoichiometric composition of the intermetallic compound or the composition containing less rare earth metal and containing N. Instead, a high residual magnetic flux density can be obtained by the inter-particle exchange interaction of single domain particles. In addition, the fine structure is composed of only the main phase,
A grain boundary phase having a composition containing more Fe than the main phase exists at the grain boundaries of the main phase.

【0013】(2)金属間化合物の化学量論組成よりも
希土類が少ない組成範囲を採用しても、高い磁気特性が
得られる。
(2) Even if a composition range in which the rare earth is less than the stoichiometric composition of the intermetallic compound is adopted, high magnetic characteristics can be obtained.

【0014】(3)磁気的に実質等方性であることか
ら、成形時に配向用磁界の印加が不要であることから成
形コストが少なくてすみ、着磁の方向を考慮せずにすむ
などのメリットをもったまま、角形性が大幅に改善され
ることから、熱安定性など信頼性がよくなる。
(3) Since it is magnetically substantially isotropic, the application of an orientation magnetic field is unnecessary at the time of molding, the molding cost is low, and the direction of magnetization is not considered. Since the squareness is greatly improved while maintaining the merit, reliability such as thermal stability is improved.

【0015】S−Wモデルに従わない高残留磁化の磁性
材料に関しては、特開昭62−260039やIEEE
Trans.Mag.,MAG−25(1989)4
123などにR2Fe14B系に関して報告がある。前者
はSmCo5やSm2Co17の記述も見られ、結晶粒精製
剤としての改質元素としてはSi,Alなどが挙げられ
ているが、いずれにおいても本発明のR−TM−N系の
記述はなく、特に侵入型元素(本発明では窒素)につい
ては全く触れられていない。
Regarding a magnetic material having a high remanent magnetization which does not follow the SW model, Japanese Patent Laid-Open No. 62-260039 and IEEE.
Trans. Mag. , MAG-25 (1989) 4
123 and the like have reports on the R 2 Fe 14 B system. In the former, the description of SmCo 5 and Sm 2 Co 17 is also seen, and Si, Al and the like are mentioned as the modifying elements as the crystal grain refining agent, but in any case, the R-TM-N-based compound of the present invention is used. There is no description, and in particular, no mention is made of an interstitial element (nitrogen in the present invention).

【0016】R−TM−N系における微細な組織に関し
ては、引用文献2などに記述されているように、Sm2
Fe17x系のメカニアロイング法による等方性粉末が
知られているが、これらはいずれもαFeの抑制などの
目的から、Sm12.5Fe87.5x(≒Sm2Fe14x
など希土類金属(Sm)が多い組成となっており、金属
間化合物の化学量論組成およびそれよりも希土類金属が
少ない組成に関しては全く触れられていない。特に、微
細組織に関しては、多くの場合αFeおよび1−3相
(SmFe3)が存在しており、主相よりもFeが多い
組成を有する粒界相に関しての記述はない。
Regarding the fine structure in the R-TM-N system, as described in the cited document 2 etc., Sm 2
Isotropic powders of the Fe 17 N x- based mechania alloying method are known, but all of them are Sm 12.5 Fe 87.5 N x (≈Sm 2 Fe 14 N x ) for the purpose of suppressing αFe.
As described above, the composition has a large amount of rare earth metal (Sm), and the stoichiometric composition of the intermetallic compound and the composition having a smaller amount of rare earth metal than that are not mentioned at all. In particular, regarding the microstructure, αFe and the 1-3 phase (SmFe 3 ) are often present, and there is no description about the grain boundary phase having a composition in which Fe is larger than the main phase.

【0017】RとTMからなる金属間化合物のうち2−
17系としてはSm2Fe17が、1−12系としてはN
d(Fe,M)12、M=Ti,V,Moなどが挙げられ
るが、SmやNdを他の希土類金属で置換したり、Fe
をCo,Niなど他の遷移金属で置換することは可能で
あり、限定されるものではない。
Of the intermetallic compounds consisting of R and TM, 2-
Sm 2 Fe 17 is used as the 17 system and N is used as the 1-12 system.
d (Fe, M) 12 , M = Ti, V, Mo, etc., but Sm and Nd are replaced with other rare earth metals, and Fe
Can be replaced with other transition metals such as Co and Ni, but is not limited thereto.

【0018】[0018]

【実施例】以下、本発明について、実施例に基づいて詳
細に説明する。
EXAMPLES The present invention will be described in detail below based on examples.

【0019】(実施例1)Sm=24.1,Fe=75.
9重量% の組成(R=10.5原子%)となるように、
直径200mmの銅製の単ロールを用い30m/秒前後
でリボン状の合金を作成した。この合金をアルゴンガス
雰囲気中で900℃で1時間の均質化処理を施した後、
<150μmに粉砕し、窒素ガス中で550℃で6時間
の窒化処理を施した。これを本発明1とする。
(Example 1) Sm = 24.1, Fe = 75.
9% by weight composition (R = 10.5 atomic%)
A ribbon-shaped alloy was prepared at about 30 m / sec using a copper single roll having a diameter of 200 mm. After homogenizing this alloy at 900 ° C. for 1 hour in an argon gas atmosphere,
It was pulverized to <150 μm and subjected to nitriding treatment at 550 ° C. for 6 hours in nitrogen gas. This is referred to as Invention 1.

【0020】Sm=25.5,Fe=74.5重量% の
組成(R=12.5原子%)となるように、本発明1と
同様の方法を用い、窒化させた粉末を作成した。ただ
し、均質化処理は1000℃で6時間を要した。これを
比較例1とする。
Nitrified powder was prepared by the same method as in the first embodiment of the present invention so that the composition was Sm = 25.5, Fe = 74.5% by weight (R = 12.5 atomic%). However, the homogenization treatment required 6 hours at 1000 ° C. This is Comparative Example 1.

【0021】比較例1の微細組織がαFeおよび1−3
相が混在していたのに対し、本発明1では2−17の主
相のみが観察された。平均結晶粒径は本発明1が24n
m、比較例1が62nmだった。
The microstructure of Comparative Example 1 was αFe and 1-3.
While the phases were mixed, in the present invention 1, only the main phase 2-17 was observed. The average crystal grain size of the present invention 1 is 24n
m of Comparative Example 1 was 62 nm.

【0022】得られた磁性体の磁気特性をVSMを用い
測定した。得られた減磁曲線は純Ni薄帯を参考にした
反磁界補正を施し、各磁気特性値を算出した。また、同
じ磁性体(薄帯)を3通りの方向で測定し、磁気的にほ
ぼ等方性であることを確認している。
The magnetic characteristics of the obtained magnetic material were measured using VSM. The obtained demagnetization curve was subjected to demagnetizing field correction with reference to a pure Ni ribbon, and each magnetic characteristic value was calculated. Also, the same magnetic substance (thin band) was measured in three different directions, and it was confirmed that it was magnetically isotropic.

【0023】比較例1では飽和磁化が低く減磁曲線のえ
ぐれが著しく、Br=6.3kG,iHc=14.5kO
e,(BH)max= 7.4MGOeと低い値であったのに
対し、本発明1では化合物の飽和磁化(15.6〜16
kG)の半分以上のBrが得られ、角形性もよく、Br
=9.2kG,iHc= 9.7kOe,(BH)max=1
8.7MGOeと高い磁気特性値が得られた。
In Comparative Example 1, the saturation magnetization was low, and the demagnetization curve was markedly scooped out. Br = 6.3 kG, iHc = 14.5 kO
e, (BH) max = 7.4 MGOe, which was a low value, whereas in the present invention 1, the saturation magnetization of the compound (15.6 to 16) was obtained.
Br of more than half of kG) is obtained, and the squareness is also good.
= 9.2 kG, iHc = 9.7 kOe, (BH) max = 1
A high magnetic characteristic value of 8.7 MGOe was obtained.

【0024】(実施例2)Sm=21.5,Ce=1.
5,Fe=72.0,Co=5.0重量%およびSm=2
2.1,Fe=71.1,Co=4.8,Zr=1.5,A
l=0.5重量%の組成となるように、実施例1と同様
に合金を作成した。これを本発明2および本発明3とす
る。おのおのの合金の希土類成分は、10.5原子%お
よび9.5原子%である。
(Example 2) Sm = 21.5, Ce = 1.
5, Fe = 72.0, Co = 5.0 wt% and Sm = 2
2.1, Fe = 71.1, Co = 4.8, Zr = 1.5, A
An alloy was prepared in the same manner as in Example 1 so that the composition was 1 = 0.5% by weight. These are designated as Invention 2 and Invention 3. The rare earth components of each alloy are 10.5 atom% and 9.5 atom%.

【0025】本発明2および3の微細組織は、平均結晶
粒径がおのおの21および17nmであったが、TEM
を用いた詳細な観察により、非常に薄いが粒界相が観察
された。三重点のEDX分析の結果、主相よりもFeの
多い組成であることが分かった。
The microstructures of Inventions 2 and 3 had an average crystal grain size of 21 and 17 nm, respectively.
The grain boundary phase was observed though it was very thin by the detailed observation using. As a result of triple point EDX analysis, it was found that the composition had more Fe than the main phase.

【0026】本発明2の磁気特性を以下に示す。The magnetic characteristics of Invention 2 are shown below.

【0027】Br=9.5kG,iHc= 7.9kO
e,(BH)max=17.9MGOe 希土類が化学量論組成よりも低く、SmがCeで、Fe
がCoで置き換えられても、高い磁気特性が得られてい
る。
Br = 9.5 kG, iHc = 7.9 kO
e, (BH) max = 17.9MGOe Rare earth is lower than stoichiometric composition, Sm is Ce, Fe
Even if is replaced by Co, high magnetic characteristics are obtained.

【0028】また、本発明3ではZrの添加により、希
土類がかなり少ない組成でも十分に高い保磁力が得られ
ており、磁気特性も以下に示すように、非常に高い値と
なっている。
Further, in the present invention 3, by adding Zr, a sufficiently high coercive force is obtained even with a composition containing a considerably small amount of rare earth, and the magnetic characteristics are also extremely high values as shown below.

【0029】Br=9.8kG,iHc=10.5kO
e,(BH)max=19.4MGOe (実施例3)本発明1および3の磁性体を平均粒径が2
0〜30μmで適当な粒度分布を有する粉末になるよう
に粉砕し、2重量% のエポキシ樹脂と混合・混練し、
17kOeの磁場中で50kg/mm2で加圧成形し、
150℃で1時間のキュアー処理を施しボンド磁石とし
た。これを本発明4および本発明5とする。
Br = 9.8 kG, iHc = 10.5 kO
e, (BH) max = 19.4MGOe (Example 3) The magnetic particles of the inventions 1 and 3 had an average particle size of 2
Grind to a powder having an appropriate particle size distribution of 0 to 30 μm, mix and knead with 2% by weight of epoxy resin,
Pressure molding at 50 kg / mm 2 in a magnetic field of 17 kOe,
Curing treatment was performed at 150 ° C. for 1 hour to obtain a bonded magnet. These are designated as Invention 4 and Invention 5.

【0030】本発明4および5のボンド磁石の磁気特性
をおのおの以下に示すが、等方性のボンド磁石としては
これまでになく高い値が得られている。
The magnetic characteristics of the bonded magnets of the present inventions 4 and 5 are shown below, respectively, and as isotropic bonded magnets, a high value has been obtained as never before.

【0031】Br=8.1kG,iHc= 9.3kO
e,(BH)max=13.0MGOe Br=8.4kG,iHc=10.1kOe,(BH)max
=14.2MGOe (実施例4)Nd=16.1,Fe=62.5,Mo=2
1.4重量%の組成となるように、各元素の金属粉末
(<200〜300μm)をプラネタリーミルを用いア
ルゴンガス雰囲気中でメカニカルアロイング処理を施し
た。得られた粉末をアルゴンガス雰囲気中750℃×
0.5時間、窒素ガス雰囲気中で450℃×6時間の熱
処理を施した。この粉末を本発明6とする。
Br = 8.1 kG, iHc = 9.3 kO
e, (BH) max = 13.0 MGOe Br = 8.4 kG, iHc = 10.1 kOe, (BH) max
= 14.2 MGOe (Example 4) Nd = 16.1, Fe = 62.5, Mo = 2
Metal alloy powders (<200-300 μm) of each element were mechanically alloyed in an argon gas atmosphere so as to have a composition of 1.4% by weight. The obtained powder is 750 ° C. in an argon gas atmosphere.
Heat treatment was performed at 450 ° C. for 6 hours in a nitrogen gas atmosphere for 0.5 hours. This powder is designated as present invention 6.

【0032】また、Nd=15.8,Fe=55.9,C
o=22.0,Mo=5.9,Si=0.4重量%の組成
となるように、同様にメカニカルアロイング処理および
窒化処理を施した。これを本発明7とする。
Further, Nd = 15.8, Fe = 55.9, C
Similarly, mechanical alloying treatment and nitriding treatment were performed so that the composition was o = 22.0, Mo = 5.9, Si = 0.4% by weight. This is referred to as Invention 7.

【0033】本発明6および7の磁性粉末の磁気特性を
おのおの以下に示すが、本発明1〜5と同様に高い磁気
特性を示している。
The magnetic properties of the magnetic powders of the present inventions 6 and 7 are shown below, respectively, and show high magnetic properties as in the case of the present inventions 1 to 5.

【0034】Br=8.7kG,iHc= 9.2kO
e,(BH)max=15.3MGOe Br=8.4kG,iHc= 8.4kOe,(BH)max
=14.0MGOe また、本発明6および7の磁性粉末を用いたボンド磁石
の磁気特性もおのおの以下に示すが、高い磁気特性が得
られている。
Br = 8.7 kG, iHc = 9.2 kO
e, (BH) max = 15.3MGOe Br = 8.4kG, iHc = 8.4kOe, (BH) max
= 14.0 MGOe Further, the magnetic characteristics of the bonded magnets using the magnetic powders of the present inventions 6 and 7 are also shown below, but high magnetic characteristics are obtained.

【0035】Br=7.7kG,iHc= 9.0kO
e,(BH)max=11.9GOe Br=7.3kG,iHc= 8.3kOe,(BH)max
=10.7MGOe 以上本発明の効果を述べてきたが、例えば製造方法の例
としてメルトスパン法とメカニカルアロイング法を挙げ
て説明してきたが、ほかにアトマイズ法,水素処理法な
どによる粉末においても同様の効果を確認しており、本
発明は上記実施例に限定されるものではなく、本発明の
範囲を限定するのは特許請求の範囲のみである。
Br = 7.7 kG, iHc = 9.0 kO
e, (BH) max = 11.9GOe Br = 7.3kG, iHc = 8.3kOe, (BH) max
= 10.7 MGOe The effects of the present invention have been described above. For example, although the melt span method and the mechanical alloying method have been described as an example of the manufacturing method, the same applies to the powders by the atomizing method, the hydrogen treatment method, and the like. The effects of the above have been confirmed, and the present invention is not limited to the above-described embodiments, and the scope of the present invention is limited only by the claims.

【0036】[0036]

【発明の効果】以上述べたように本発明によれば、基本
組成がRおよびTMからなり、組成が金属間化合物の化
学量論組成もしくは希土類金属がそれよりも少なく、か
つNを含んだ組成であり、結晶粒子径が50nm以下で
あることにより、実質的に等方性であるにもかかわらず
残留磁化が高く、保磁力も容易に得られ、高価な希土類
金属が少ないために低コストで、角形性がよいことから
熱安定性など信頼性の高い希土類磁性体および希土類ボ
ンド磁石が得られ、応用するモータやデバイスのさらな
る高性能化,小型化,高信頼性を実現できるなど応用面
にも多大の効果を有するものである。
As described above, according to the present invention, the basic composition is composed of R and TM, the composition is a stoichiometric composition of an intermetallic compound or a composition containing less N than rare earth metal and containing N. Since the crystal grain size is 50 nm or less, the remanent magnetization is high even though it is substantially isotropic, the coercive force is easily obtained, and the amount of expensive rare earth metal is small, so that the cost is low. In addition, due to its good squareness, it is possible to obtain rare earth magnetic materials and rare earth bonded magnets with high reliability such as thermal stability, and to achieve higher performance, smaller size, and higher reliability of applied motors and devices. Also has a great effect.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基本組成が希土類金属(Yを含む希土類
元素のうち1種または2種以上:以下Rと略す)および
遷移金属(主としてFeからなりCo,Ni,Zr,T
i,V,Mo,Al,Siなどを含む:以下TMと略
す)からなり、組成が金属間化合物の化学量論組成もし
くは希土類金属がそれよりも少なく、かつNを含んだ組
成であり、結晶粒子径が50nm以下であることを特徴
とする希土類磁性体。
1. A basic composition of rare earth metal (one or more kinds of rare earth elements including Y: hereinafter abbreviated as R) and transition metal (mainly composed of Fe, Co, Ni, Zr, T).
i, V, Mo, Al, Si, etc .: hereinafter abbreviated as TM), and the composition is a stoichiometric composition of an intermetallic compound or a composition in which the rare earth metal is less than that and N is contained. A rare earth magnetic material having a particle diameter of 50 nm or less.
【請求項2】 上記RとTMからなる金属間化合物がR
2TM17系(以下2−17系と略す)であり、Rが11
原子%以下であることを特徴とする請求項1記載の希土
類磁性体。
2. The intermetallic compound consisting of R and TM is R
2 TM 17 system (hereinafter abbreviated as 2-17 system), and R is 11
The rare earth magnetic material according to claim 1, which is at most atomic%.
【請求項3】 上記RとTMからなる金属間化合物がR
TM12系(以下1−12系と略す)であり、Rが8原子
%以下であることを特徴とする請求項1記載の希土類磁
性体。
3. The intermetallic compound consisting of R and TM is R
The rare earth magnetic material according to claim 1, which is a TM 12 system (hereinafter abbreviated as 1-12 system) and R is 8 atomic% or less.
【請求項4】 上記希土類磁性体が磁気的に実質等方性
であり、残留磁束密度が8kG以上,保磁力が7kOe
以上であることを特徴とする請求項1記載の希土類磁性
体。
4. The rare earth magnetic material is magnetically substantially isotropic, has a residual magnetic flux density of 8 kG or more and a coercive force of 7 kOe.
The rare earth magnetic material according to claim 1, which is the above.
【請求項5】 上記希土類磁性体が、主相および主相よ
りもFeが多い組成を有する粒界相が存在する微細構造
を有することを特徴とする請求項1記載の希土類磁性
体。
5. The rare earth magnetic material according to claim 1, wherein the rare earth magnetic material has a fine structure in which a main phase and a grain boundary phase having a composition containing more Fe than the main phase are present.
【請求項6】 基本組成がRとTMからなり、金属間化
合物の化学量論組成もしくは希土類金属がそれよりも少
ない組成を有し、結晶粒子径が50nm以下である合金
に、Nを含むガス中で熱処理を施し、合金中に窒素を侵
入させることを特徴とする希土類磁性体の製造方法。
6. A gas containing N in an alloy having a basic composition of R and TM, a stoichiometric composition of an intermetallic compound or a composition of less rare earth metal, and a crystal grain size of 50 nm or less. A method for producing a rare earth magnetic material, which comprises subjecting an alloy to heat treatment to allow nitrogen to penetrate into the alloy.
【請求項7】 上記結晶粒子径が50nm以下の合金を
得るのに、メルトスパン法,メカニカルアロイング法,
水素処理法,ガスアトマイズ法を用いることを特徴とす
る請求項6記載の希土類磁性体の製造方法。
7. A melt-span method, a mechanical alloying method, to obtain the alloy having a crystal grain size of 50 nm or less,
The method for producing a rare earth magnetic material according to claim 6, wherein a hydrogen treatment method or a gas atomization method is used.
【請求項8】 上記希土類磁性体をバインダーで結合し
たことを特徴とする希土類ボンド磁石。
8. A rare earth bonded magnet, wherein the rare earth magnetic material is bound with a binder.
JP5001932A 1993-01-08 1993-01-08 Rare earth magnetic body, produciton thereof and rare earth bonded magnet Pending JPH06208911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001932A JPH06208911A (en) 1993-01-08 1993-01-08 Rare earth magnetic body, produciton thereof and rare earth bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001932A JPH06208911A (en) 1993-01-08 1993-01-08 Rare earth magnetic body, produciton thereof and rare earth bonded magnet

Publications (1)

Publication Number Publication Date
JPH06208911A true JPH06208911A (en) 1994-07-26

Family

ID=11515387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001932A Pending JPH06208911A (en) 1993-01-08 1993-01-08 Rare earth magnetic body, produciton thereof and rare earth bonded magnet

Country Status (1)

Country Link
JP (1) JPH06208911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005550A (en) * 2013-06-19 2015-01-08 株式会社村田製作所 Rare earth magnet powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005550A (en) * 2013-06-19 2015-01-08 株式会社村田製作所 Rare earth magnet powder

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
KR19990078142A (en) Permanent magnets and R-TM-B based permanent magnet
US20040163737A1 (en) Rare earth magnet and method for production thereof
USRE37666E1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
US6019859A (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JP2513994B2 (en) permanent magnet
JP3222482B2 (en) Manufacturing method of permanent magnet
Jakubowicz et al. Temperature dependence of magnetic properties for nanocomposite Nd2 (Fe, Co, M) 14B/α-Fe magnets
Omatsuzawa et al. Magnetic properties of TbCu7-type Sm-Fe-N melt-spun ribbons
JPH06208911A (en) Rare earth magnetic body, produciton thereof and rare earth bonded magnet
JPH0766021A (en) Permanent magnet
JP2001006911A (en) Manufacture of rare earth permanent magnet
JP3623564B2 (en) Anisotropic bonded magnet
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JPH08335506A (en) High coercive force iron base permanent magnet and bonded magnet
JPS62257703A (en) Resin-bonded magnetic material
JP3231000B2 (en) Manufacturing method of rare earth permanent magnet
JPH0869907A (en) Material for permanent magnet and material for bonded magnet using the same
JPH10340806A (en) Rare earth-iron magnetic material and manufacture thereof
JPS62257704A (en) Permanent magnet
JPH0533095A (en) Permanent magnet alloy and its production
JP2975333B2 (en) Raw material for sintered permanent magnet, raw material powder for sintered permanent magnet, and method for producing sintered permanent magnet
JP2005272924A (en) Material for anisotropic exchange spring magnet, and manufacturing method therefor