JPH10340806A - Rare earth-iron magnetic material and manufacture thereof - Google Patents

Rare earth-iron magnetic material and manufacture thereof

Info

Publication number
JPH10340806A
JPH10340806A JP10014690A JP1469098A JPH10340806A JP H10340806 A JPH10340806 A JP H10340806A JP 10014690 A JP10014690 A JP 10014690A JP 1469098 A JP1469098 A JP 1469098A JP H10340806 A JPH10340806 A JP H10340806A
Authority
JP
Japan
Prior art keywords
magnetic phase
atomic
rare earth
phase
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10014690A
Other languages
Japanese (ja)
Inventor
Mikio Shindo
幹夫 新藤
Akimasa Sakuma
昭正 佐久間
Masahiro Tobiyo
飛世  正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10014690A priority Critical patent/JPH10340806A/en
Publication of JPH10340806A publication Critical patent/JPH10340806A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Abstract

PROBLEM TO BE SOLVED: To provide a nanocomposite magnet, whose practical use is expected and the manufacture by providing a hard magnetic phase composed of R(TM,M)12 Nx phase (x)=0.5-2.0} and an extremely fine soft magnetic phase composed of Fe and/or FeCo. SOLUTION: This material is constituted of a hard magnetic phase provided with a composition of R (R is one or two or more kinds of rare earth elements including Y) for 2-10 atomic %, M (M is one or two or more kinds of V, Ti and Mo) for 1-18 atomic % and RM (TM is Fe or Fe and Co) and unavoidable impurities for a remaining part indicated by R(TM,M)12 Nx (x)=0.5-2.0} and the soft magnetic phase composed of Fe and/or Fe and Co, for which an average crystal grain size is 0.1-70 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばボンド磁石
として有用な希土類−鉄系磁石材料およびその製造方法
に関する。
The present invention relates to a rare earth-iron magnet material useful as, for example, a bonded magnet and a method for producing the same.

【0002】[0002]

【従来の技術】エレクトロニクス機器の小型・軽量化に
対応して、ボンド磁石材料の高性能化が求められてい
る。現在、ボンド磁石に配合される磁石粉末の高性能材
としてハード磁性相とソフト磁性相を複合したナノコン
ポジット磁石が期待されている。ナノコンポジット磁石
の保磁力は、ハード磁性相の磁化が交換結合によりソフ
ト磁性相の磁化を固定し、ソフト磁性相の磁化反転を妨
げることによって発現する。このメカニズムを有効に作
用させ、磁石材料として十分な保磁力を得るためには、
磁石特性を担うそれぞれの相の大きさ(粒径)がナノレ
ベルサイズであることが必要と考えられる。ハード磁性
相がNd2Fe14B系のタイプでは特開平8-162312、J.Appl.P
hys. 73,6488 (1993)、J.Appl.Phys. 76, 7065 (1
994)等がある。Sm2Fe17Nx系では特開平6-251918、SmFe7
Nx系では特開平8-316018、特開平6-342706がある。
2. Description of the Related Art In order to reduce the size and weight of electronic devices, there is a demand for higher performance of bonded magnet materials. At present, nanocomposite magnets that combine a hard magnetic phase and a soft magnetic phase are expected as high-performance materials of magnet powder to be mixed with a bonded magnet. The coercive force of the nanocomposite magnet is generated by the magnetization of the hard magnetic phase fixing the magnetization of the soft magnetic phase by exchange coupling and preventing the magnetization reversal of the soft magnetic phase. In order to make this mechanism work effectively and obtain sufficient coercive force as a magnet material,
It is considered necessary that the size (particle size) of each phase that plays a role in magnet properties is a nano-level size. For the hard magnetic phase of the Nd 2 Fe 14 B type, see JP-A-8-162312, J. Appl.
hys. 73,6488 (1993), J. Appl. Phys. 76, 7065 (1
994). For Sm 2 Fe 17 N x system, JP-A-6-251918, SmFe 7
The N x system Hei 8-316018, there is JP-A-6-342706.

【0003】[0003]

【発明が解決しようとする課題】ナノコンポジット磁石
は高価な希土類元素の含有量が少ない組成域で磁石化が
可能であり、従来の希土類−鉄系磁石よりも材料コスト
を低く抑えられる利点を有する。しかし、Nd2Fe14B系、
Sm2Fe17Nx系またはSmFe7Nx系よりも希土類元素の含有量
が少なく原材料コストをより低廉可能なThMn12型の希土
類窒化物相をハード磁性相とするナノコンポジット磁石
において実用に供し得る優れた磁石特性のものは見出さ
れていない。従って、本発明の課題は、R(TM,M)
12x(x=0.5〜2.0)なるハード磁性相と、F
eおよび/またはFeCoからなる非常に微細なソフト
磁性相とを含むことにより、実用に供し得る優れた磁石
特性を有したナノコンポジット磁石およびその製造方法
を提供することである。
The nanocomposite magnet can be made into a magnet in a composition range in which the content of expensive rare earth elements is small, and has the advantage that the material cost can be kept lower than conventional rare earth-iron magnets. . However, Nd 2 Fe 14 B system,
Subjecting the Sm 2 Fe 17 N x system or SmFe 7 N x less expensive possible ThMn 12 type rare earth nitride phase to less raw material cost the content of the rare earth element than the system in practical use in the nanocomposite magnet according to a hard magnetic phase No excellent magnet properties have been found to be obtained. Therefore, an object of the present invention is to provide an image processing apparatus comprising:
A hard magnetic phase of 12 N x (x = 0.5 to 2.0);
An object of the present invention is to provide a nanocomposite magnet having excellent magnet properties that can be put to practical use by including a very fine soft magnetic phase made of e and / or FeCo, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、希土類−
鉄系磁石材料の製作に際し、例えば生産性に優れた後述
の超急冷法を採用するとともに、特長あるミクロ組織と
した場合に上記課題を達成できることを知見した。以下
にその詳細を記す。本発明の希土類−鉄系磁石材料は例
えば下記のようにして得られる。R(RはYを含めた希
土類元素のうちの1種または2種以上)が2〜10原子
%、M(MはTi、V、Moのうちの1種または2種以
上)が1〜18原子%(望ましくは2〜14原子%)、
残部がTM(TMはFeまたはFeとCo)および不可
避不純物からなる配合組成としたものを例えばアーク溶
解等により溶解する。次いで、液体急冷法により超急冷
し、得られた薄帯を数十μmの粉末に機械粉砕後、結晶
化のための熱処理を行い、続いて窒化処理を経て本発明
の希土類−鉄系磁石材料粉末が得られる。超急冷手段は
限定されないが、生産性、安定性の面で単ロール法が好
ましい。ロール周速度は後工程の窒化処理後において微
細結晶相を得るために30m/sec以上とするのが望まし
い。本発明において、アーク溶解で母合金のインゴット
を作製後、母合金インゴットをArガス雰囲気中または
真空中において1000〜1200℃×0.5〜50時
間保持する均質化処理を行い、続いて均質化した母合金
をの溶湯を超急冷後、機械粉砕、結晶化のための熱処
理、窒化処理を順次行うことが好ましい。この製造条件
により、目標組成の磁石粉末が精度良く得られるととも
に、既存の溶解設備と超急冷設備とを用いることができ
実用性に富んでいる。薄帯粉末の熱処理をArガス、真
空等の非酸化性雰囲気において600℃から1100℃
の温度で行うことにより、ThMn12構造の微細結晶粒の集
合体が得られる。熱処理温度を600℃未満にするとTh
Mn12型結晶相が生成されないため、その後窒化処理を施
しても保磁力が発現しない。1100℃を越えると、後
工程の窒化処理後において結晶粒の粗大化が原因と推定
される減磁曲線上の角形性の劣化と保磁力の低下が顕著
になる。上記熱処理後、300℃〜650℃の温度範囲
で例えばN2またはNH3+H2の混合気体中で窒化処理する
ことによりThMn12構造の窒化物相を得る。この窒化物相
がハード磁性相となる。Feおよび/またはFeCo等のソフ
ト磁性相が混在している状態で高い保磁力を得るにはFe
および/またはFeCo相からなるソフト磁性相の平均結晶
粒径を0.1〜70nm、望ましくは0.1〜30nm
とするのがよい。平均結晶粒径が70nmを越えると角
形性、保磁力が顕著に低下する。平均結晶粒径が0.1
nm未満の場合は、上記熱処理や窒化処理後に実質的に
ソフト磁性相が消失してしまう場合が発生する。なお、
窒化処理後に、場合によってはアモルファス相が混在す
る場合があるが、本発明に含まれる。結晶粒径の制御は
超急冷速度(ロール周速度)の他に組成、結晶化のため
の熱処理条件等を適宜調整することにより対応できる。
窒化温度が300℃未満では窒素が熱処理後の合金粒子
中にほとんど拡散しないため窒化物相の形成が不十分で
あり高い保磁力を発現しない。650℃を越えると保磁
力が顕著に減少する。本発明の希土類−鉄系合金磁石粉
末の磁化挙動はハード磁性相単相型であり、いわゆるナ
ノコンポジット磁石である。
Means for Solving the Problems The present inventors have proposed a rare earth element.
In producing an iron-based magnet material, for example, it has been found that the above-described subject can be achieved when a super-quenching method described later, which is excellent in productivity, is employed and a characteristic microstructure is obtained. The details are described below. The rare earth-iron magnet material of the present invention can be obtained, for example, as follows. R (R is one or more of rare earth elements including Y) is 2 to 10 atomic%, and M (M is one or more of Ti, V, and Mo) is 1 to 18 atomic%. Atomic% (preferably 2 to 14 atomic%),
The remainder having a composition of TM (TM is Fe or Fe and Co) and inevitable impurities is melted by, for example, arc melting. Then, ultra-quenched by a liquid quenching method, the obtained ribbon is mechanically pulverized into a powder of several tens of μm, heat treatment for crystallization is performed, and then the rare earth-iron magnet material of the present invention is subjected to nitriding treatment. A powder is obtained. The super-quenching means is not limited, but the single-roll method is preferable in terms of productivity and stability. The roll peripheral speed is desirably 30 m / sec or more in order to obtain a fine crystalline phase after the subsequent nitriding treatment. In the present invention, after preparing a master alloy ingot by arc melting, a homogenization treatment is performed in which the master alloy ingot is kept in an Ar gas atmosphere or in a vacuum at 1000 to 1200 ° C. for 0.5 to 50 hours, followed by homogenization. It is preferable to perform a mechanical pulverization, a heat treatment for crystallization, and a nitriding treatment in this order after ultra-quenching the melt of the master alloy thus formed. Under these manufacturing conditions, a magnet powder having a target composition can be obtained with high accuracy, and existing melting equipment and ultra-quenching equipment can be used, which is highly practical. Heat treatment of the ribbon powder in a non-oxidizing atmosphere such as Ar gas or vacuum from 600 ° C to 1100 ° C
By performing at temperature, a collection of fine crystal grains of ThMn 12 structure. When the heat treatment temperature is less than 600 ° C, Th
Since no Mn 12- type crystal phase is generated, no coercive force is exerted even after nitriding. If the temperature exceeds 1100 ° C., the deterioration of the squareness on the demagnetization curve and the decrease of the coercive force, which are presumed to be due to the coarsening of crystal grains, after the nitriding treatment in the later step become remarkable. After the heat treatment, a nitride phase having a ThMn 12 structure is obtained by performing a nitriding treatment in a temperature range of 300 ° C. to 650 ° C., for example, in a mixed gas of N 2 or NH 3 + H 2 . This nitride phase becomes a hard magnetic phase. To obtain a high coercive force in a state where soft magnetic phases such as Fe and / or FeCo are mixed, Fe
And / or the average crystal grain size of the soft magnetic phase composed of the FeCo phase is 0.1 to 70 nm, preferably 0.1 to 30 nm.
It is good to do. If the average crystal grain size exceeds 70 nm, the squareness and coercive force are significantly reduced. Average grain size is 0.1
If it is less than nm, the soft magnetic phase may substantially disappear after the heat treatment or nitriding treatment. In addition,
After the nitriding treatment, an amorphous phase may be mixed in some cases, but this is included in the present invention. The crystal grain size can be controlled by appropriately adjusting the composition, heat treatment conditions for crystallization, and the like, in addition to the super-quenching speed (roll peripheral speed).
If the nitriding temperature is lower than 300 ° C., nitrogen hardly diffuses into the alloy particles after the heat treatment, so that the formation of a nitride phase is insufficient and a high coercive force is not exhibited. If the temperature exceeds 650 ° C., the coercive force decreases significantly. The magnetizing behavior of the rare earth-iron based alloy magnet powder of the present invention is a hard magnetic phase single phase type, and is a so-called nanocomposite magnet.

【0005】次に、本発明における平均結晶粒径の算出
法について説明する。透過型電子顕微鏡による本発明の
磁石材料の組織の断面像において、任意選択領域に含ま
れる結晶粒の数(n)をn>40個とするとともに、その
任意選択領域に含まれる各結晶粒の断面積の合計をAと
したとき、結晶粒1個当たりの平均断面積(A/n)に相当
する断面積を有した円の直径を平均結晶粒径Dとする。
すなわち、π(D/2)2=A/nから、D=2(A/(nπ))1/2で定義
される。
Next, a method of calculating the average crystal grain size in the present invention will be described. In a cross-sectional image of the structure of the magnet material of the present invention obtained by a transmission electron microscope, the number (n) of crystal grains included in an optional region is set to n> 40, and the number of crystal grains included in the optional region is n> 40. When the total cross-sectional area is A, the diameter of a circle having a cross-sectional area corresponding to the average cross-sectional area per crystal grain (A / n) is defined as the average crystal grain size D.
That is, from π (D / 2) 2 = A / n, it is defined as D = 2 (A / (nπ)) 1/2 .

【0006】次に組成限定理由を説明する。Rが2〜1
0原子%の場合、ハード磁性相と非常に微細なFeおよび
/またはFeCoからなるソフト磁性相が混在した微細複合
組織が安定して得られるので好ましい。Rが2原子%未
満ではハード磁性相の体積比率が著しく少なくなり、十
分な角形と保磁力を得られない。Rが10原子%を越え
るとソフト磁性相が生成しない場合があり、本発明を確
実に実現することが困難である。希土類元素Rとして、
Y、La,Ce、Pr,Nd,Sm,Gd,Tb,D
y,Ho,Er,Tm,Luが包含される。さらに、P
rおよび/またはNdをRの50原子%以上含有するこ
とがより好ましく、Rの全てがPrおよび/またはNd
の場合が特に好ましい。Rの50原子%以上をNdおよ
び/またはPrとするのは、Ndおよび/またはPrが
50原子%未満では十分な残留磁化が得られないととも
に、Prおよび/またはNdの使用によりSmに比べて
原料コストを低減できるからである。実用に耐える残留
磁束密度(Br)、角形、保磁力(Hc)を具備するた
めにM(V、Ti、Moのうちの1種または2種以上)
の含有量は1〜18原子%とするのがよい。18原子%
を越えると飽和磁化、Brが顕著に低下する。Mが1原
子%未満では本発明の磁石構造が不安定となる。なお、
ハード磁性相とソフト磁性相とが混在する本発明磁石材
料の組成において、主にFeとM元素とからなるソフト
磁性相、および/または、主にFeとCoとM元素とか
らなるソフト磁性相が上記ハード磁性相、Feおよび/
またはFeCoからなるソフト磁性相とともに混在する
場合があるが、本発明に含まれることは勿論である。ま
た、本発明のハード磁性相の平均結晶粒径は2〜500
nmになっており、等方性磁石粉末として高い保磁力を
得るために好ましい。
Next, the reasons for limiting the composition will be described. R is 2-1
The content of 0 atomic% is preferable because a fine composite structure in which a hard magnetic phase and a very fine soft magnetic phase composed of Fe and / or FeCo are mixed can be stably obtained. If R is less than 2 atomic%, the volume ratio of the hard magnetic phase becomes extremely small, and a sufficient square shape and coercive force cannot be obtained. If R exceeds 10 atomic%, a soft magnetic phase may not be generated, and it is difficult to reliably realize the present invention. As the rare earth element R,
Y, La, Ce, Pr, Nd, Sm, Gd, Tb, D
y, Ho, Er, Tm, and Lu are included. Furthermore, P
It is more preferred that r and / or Nd contain at least 50 atomic% of R, and all of R is Pr and / or Nd
Is particularly preferred. The reason that 50 atomic% or more of R is Nd and / or Pr is that when Nd and / or Pr is less than 50 atomic%, sufficient remanent magnetization cannot be obtained, and the use of Pr and / or Nd causes This is because raw material costs can be reduced. M (one or more of V, Ti, and Mo) in order to provide a practically usable residual magnetic flux density (Br), square shape, and coercive force (Hc)
Is preferably 1 to 18 atomic%. 18 atomic%
Is exceeded, the saturation magnetization and Br decrease significantly. When M is less than 1 atomic%, the magnet structure of the present invention becomes unstable. In addition,
In the composition of the magnet material of the present invention in which a hard magnetic phase and a soft magnetic phase are mixed, a soft magnetic phase mainly composed of Fe and M elements and / or a soft magnetic phase mainly composed of Fe, Co and M elements Is the hard magnetic phase, Fe and / or
Alternatively, it may be mixed with a soft magnetic phase made of FeCo, but is of course included in the present invention. The hard magnetic phase of the present invention has an average crystal grain size of 2 to 500.
nm, which is preferable for obtaining a high coercive force as isotropic magnet powder.

【0007】[0007]

【発明の実施の形態】以下、実施例により本発明を説明
するが、下記により本発明が限定されるものではない。 (実施例1〜5、比較例1〜4)アーク溶解法により、
原子%表示でNdyFebalV11.0なる組成の母合金インゴッ
ト(表1の実施例1〜5、比較例1〜4に対応)を作製
した後、均質化処理のためにArガス雰囲気中で105
0℃×5時間保持し冷却した。次に、液体急冷単ロール
法によりロール周速度50m/secの条件で超急冷し、超急
冷薄帯を作製した。得られた各薄帯の組成は用いた母合
金と同様であった。次に、各薄帯を75μm以下の粉末
に機械粉砕した後、Arガス雰囲気中で850℃×10
分間保持する熱処理を行い、微細な結晶体の粉末を得
た。この後、1気圧の窒素ガス中で500℃×5時間の
窒化処理を行った。得られた各磁石粉末の結晶相、ソフ
ト磁性相(Fe)の平均結晶粒径(DFe)、磁気特性の
代表例を表1に示す。磁気特性は、各磁石粉末を適量銅
製カプセルに入れ、その上から固形パラフィンワックス
をかぶせた後、加熱することにより密封した。この試料
をB−Hトレーサーのポールピース間に置いて25kO
eの磁場を印加することにより着磁した。これらをVS
M(東英工業(株)製の振動試料型磁力計:VSM−3
型)にセットし、20℃で14kOeの磁場を印加する
ことにより減磁曲線を描き、得られたBrに対応するデ
ータ(emu/g)から、そのデータ(emu/g)×(4π/1
4)×(理論密度7.7g/cm3)=Br(T)を求
め、また保磁力(Hc)、最大エネルギー積((BH)ma
x)を評価した。表1および関連した検討結果等より、希
土類−鉄系磁石粉末において、Nd含有量(y)がy=
2〜10原子%のときに、実質的に原子比率でNd(F
e,V)12x(x=1.0〜1.5)なる組成のハー
ド磁性相と、平均結晶粒径(DFe)で0.1〜70nm
のFe(ソフト磁性相)とからなる磁石粉末が形成され
て、実用に供し得ることを示唆している。表1におい
て、ソフト磁性相のみの比較例1の磁気特性は非常に低
い。また、本発明の磁石粉末は、ハード磁性相のみの比
較例2〜4に比べて同等以上の磁気特性を有しており、
各磁化曲線はハード磁性相単相型であった。従って、本
発明の磁石粉末は、Nd(Fe、V)12NX(X=1.0〜1.5)とFeと
が交換結合し、ナノコンポジット磁石となっていること
を示唆した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to examples, but the present invention is not limited by the following. (Examples 1 to 5, Comparative Examples 1 to 4)
After preparing a mother alloy ingot (corresponding to Examples 1 to 5 and Comparative Examples 1 to 4 in Table 1) having a composition of Nd y Fe bal V 11.0 in atomic%, in a Ar gas atmosphere for homogenization treatment. 105
It was kept at 0 ° C. × 5 hours and cooled. Next, the liquid was rapidly quenched by a liquid quenching single roll method at a roll peripheral speed of 50 m / sec to produce a super quenched ribbon. The composition of each of the obtained ribbons was the same as that of the mother alloy used. Next, each of the ribbons was mechanically pulverized into a powder having a size of 75 μm or less.
Heat treatment was performed for a period of one minute to obtain fine crystalline powder. Thereafter, a nitriding treatment was performed at 500 ° C. for 5 hours in a nitrogen gas at 1 atm. Table 1 shows typical examples of the average crystal grain size (D Fe ) of the crystal phase and the soft magnetic phase (Fe) of each of the obtained magnet powders, and the magnetic properties. The magnetic characteristics were as follows. An appropriate amount of each magnet powder was put in a copper capsule, and solid paraffin wax was covered thereon, followed by heating and sealing. Place this sample between the pole pieces of the BH tracer and
It was magnetized by applying the magnetic field e. These are VS
M (Vibration sample type magnetometer manufactured by Toei Industry Co., Ltd .: VSM-3
And applying a magnetic field of 14 kOe at 20 ° C. to draw a demagnetization curve. From the obtained data (emu / g) corresponding to Br, the data (emu / g) × (4π / 1
0 4 ) × (theoretical density 7.7 g / cm 3 ) = Br (T), and the coercive force (Hc) and the maximum energy product ((BH) ma
x) was evaluated. From Table 1 and the related examination results, the Nd content (y) of the rare-earth-iron-based magnet powder is y =
When the content is 2 to 10 atomic%, Nd (F
e, V) A hard magnetic phase having a composition of 12 N x (x = 1.0 to 1.5) and an average crystal grain size (D Fe ) of 0.1 to 70 nm.
It is suggested that a magnet powder composed of Fe (soft magnetic phase) is formed and can be put to practical use. In Table 1, the magnetic properties of Comparative Example 1 including only the soft magnetic phase are very low. Further, the magnet powder of the present invention has magnetic properties equal to or higher than those of Comparative Examples 2 to 4 including only the hard magnetic phase,
Each magnetization curve was a hard magnetic phase single phase type. Therefore, the magnet powder of the present invention suggested that Nd (Fe, V) 12 N X (X = 1.0 to 1.5) and Fe were exchange-coupled to form a nanocomposite magnet.

【0008】[0008]

【表1】 [Table 1]

【0009】(実施例6〜11、比較例5)アーク溶解
により原子%表示でNd5.5FebalV11.0の組成を有する母
合金インゴットを作製した後、均質化処理のためArガ
ス雰囲気中で1050℃×5時間保持する熱処理を行っ
た。次に、均質化した母合金を液体急冷単ロール法によ
りロール周速度50m/secの条件で超急冷し薄帯を得た。
得られた薄帯の組成は母合金組成と同様であった。次に
薄帯を75μm以下の粉末に機械粉砕した後、薄帯の結
晶化の程度と最終の磁石粉末の磁気特性との相関を見る
ために、Arガス雰囲気中で500〜1100℃×10
分間の熱処理を行った。この後、1気圧の窒素ガス雰囲
気中で500℃×5時間の条件で窒化処理を行った。得
られた各粉末の結晶相、DFeと、上記と同様にして評価
した磁気特性の代表例を表2に示す。表2等より、熱処
理温度が600〜1100℃において、Nd(Fe,V)12NX(X
=1.0〜1.5)なるハード磁性相と、平均結晶粒径が0.
1〜70nmにあるFeとが交換結合した高い磁気特性の
磁石粉末が得られることがわかる。しかし、比較例5の
場合は熱処理温度が低すぎてThMn12型結晶相がほとんど
生成しなかった。このため、その後窒化処理を施しても
保磁力が非常に小さかった。
(Examples 6 to 11 and Comparative Example 5) A master alloy ingot having a composition of Nd 5.5 Fe bal V 11.0 in atomic% was prepared by arc melting, and then 1050 in an Ar gas atmosphere for homogenization treatment. A heat treatment of keeping at 5 ° C. × 5 hours was performed. Next, the homogenized master alloy was ultra-quenched by a liquid quenching single roll method at a roll peripheral speed of 50 m / sec to obtain a ribbon.
The composition of the obtained ribbon was similar to that of the mother alloy. Next, after the ribbon was mechanically pulverized into powder having a size of 75 μm or less, 500 to 1100 ° C. × 10 4 in an Ar gas atmosphere to check the correlation between the degree of crystallization of the ribbon and the magnetic properties of the final magnet powder.
Heat treatment for a minute. Thereafter, a nitriding treatment was performed under a condition of 500 ° C. × 5 hours in a nitrogen gas atmosphere at 1 atm. Table 2 shows typical examples of the crystal phase, D Fe of each of the obtained powders, and the magnetic properties evaluated in the same manner as described above. From Table 2 and the like, when the heat treatment temperature is 600 to 1100 ° C., Nd (Fe, V) 12 N X (X
= 1.0-1.5) and an average crystal grain size of 0.1.
It can be seen that a magnetic powder having high magnetic properties in which Fe in the range of 1 to 70 nm is exchange-coupled can be obtained. However, in the case of Comparative Example 5, the heat treatment temperature was too low, and almost no ThMn 12 type crystal phase was generated. For this reason, the coercive force was very small even after the subsequent nitriding treatment.

【0010】[0010]

【表2】 [Table 2]

【0011】(実施例12、13)アーク溶解により原
子%でNd5.5FebalM11.0(MはTiまたはMo)の組成とした
母合金インゴットをアーク溶解により作製した後、均質
化処理のため1050℃×5時間Arガス雰囲気中で熱
処理した。次に、均質化した各母合金を液体急冷単ロー
ル法によりロール周速度50m/secの条件で超急冷し薄帯
を作製した。得られた2種の薄帯の組成は母合金組成と
同様であった。次に各薄帯を75μm以下の粉末に粉砕
した後、Arガス雰囲気中で850℃×10分間熱処理
を行い結晶化した。この後、1気圧の窒素ガス中に50
0℃×5時間保持する窒化処理を行った。得られた2種
の窒化物磁石粉末の結晶相、DFeと、上記と同様にして
評価した磁気特性を表3に示す。表3に示すように、窒
化後の結晶相が、平均結晶粒径が0.1〜70nmにあ
るFeとNd(Fe,Ti)12NX(x=1.0〜1.5)とからなる場合、
または、FeとNd(Fe,Mo)12NX(x=1.0〜1.5)とからなる
場合に、本発明の磁石粉末を形成することができる。ま
た、M元素としてV、Ti、Moに代えてW,Zr,M
n,Ga,Cr,Nb,Hf,Ta,Alのうちの1種
または2種以上を用いた場合も、本発明の磁石材料を形
成できることが期待される。すなわち、窒化後の結晶相
が、FeとNd(Fe,W)12NX(x=0.5〜2.0)とからなる場合、
または、FeとNd(Fe,Zr)12NX(x=0.5〜2.0)とからなる
場合、または、FeとNd(Fe,Mn)12NX(x=0.5〜2.0)とか
らなる場合、または、FeとNd(Fe,Ga)12NX(x=0.5〜2.
0)とからなる場合、または、FeとNd(Fe,Cr)12NX(x=0.
5〜2.0)とからなる場合、または、FeとNd(Fe,Nb)12NX
(x=0.5〜2.0)とからなる場合、または、FeとNd(Fe,H
f)12NX(x=0.5〜2.0)とからなる場合、または、FeとNd
(Fe,Ta)12NX(x=0.5〜2.0)とからなる場合、または、F
eとNd(Fe,Al)12NX(x=0.5〜2.0)とからなる場合であ
る。
(Examples 12 and 13) A master alloy ingot having a composition of Nd 5.5 Fe bal M 11.0 (M is Ti or Mo) in atomic% by arc melting was produced by arc melting, and then 1050 for homogenization treatment. Heat treatment was performed in an Ar gas atmosphere at 5 ° C. for 5 hours. Next, each homogenized master alloy was ultra-quenched by a liquid quenching single roll method at a roll peripheral speed of 50 m / sec to produce a ribbon. The compositions of the two obtained ribbons were similar to the mother alloy composition. Next, each of the ribbons was pulverized into powder having a size of 75 μm or less, and then heat-treated at 850 ° C. for 10 minutes in an Ar gas atmosphere for crystallization. After that, 50 atmospheres in 1 atmosphere of nitrogen gas
A nitriding treatment was performed at 0 ° C. × 5 hours. Table 3 shows the crystal phases, D Fe, and magnetic properties of the two types of nitride magnet powders obtained, which were evaluated in the same manner as described above. As shown in Table 3, the case where the crystal phase after nitriding is composed of Fe and Nd (Fe, Ti) 12 N X (x = 1.0 to 1.5) having an average crystal grain size of 0.1 to 70 nm. ,
Or, if consisting of Fe and Nd (Fe, Mo) 12 N X and (x = 1.0 to 1.5), it is possible to form a magnetic powder of the present invention. Further, W, Zr, M are used instead of V, Ti, and Mo as M elements.
It is expected that the magnet material of the present invention can be formed also when one or more of n, Ga, Cr, Nb, Hf, Ta, and Al are used. That is, when the crystal phase after nitriding is composed of Fe and Nd (Fe, W) 12 N X (x = 0.5 to 2.0),
Or, Fe and Nd (Fe, Zr) 12 when consisting N X and (x = 0.5~2.0), or, Fe and Nd (Fe, Mn) if composed of a 12 N X (x = 0.5~2.0) , Alternatively, Fe and Nd (Fe, Ga) 12 N X (x = 0.5 to 2.
0) or Fe and Nd (Fe, Cr) 12 N X (x = 0.
5 to 2.0), or Fe and Nd (Fe, Nb) 12 N X
(X = 0.5-2.0), or Fe and Nd (Fe, H
f) 12 when consisting N X and (x = 0.5~2.0), or, Fe and Nd
(Fe, Ta) 12 N X (x = 0.5-2.0) or F
e and Nd (Fe, Al) 12 N X (x = 0.5 to 2.0).

【0012】[0012]

【表3】 [Table 3]

【0013】(実施例14〜17)材料コストを抑える
ためにCoの置換量を20原子%以下とした実施例を説明
する。まず、アーク溶解により原子%表示でNd5.5Febal
CoZV11.0(Z=2.0〜8.0%)なる組成の計4種類の母合金
を作製した。次に、均質化処理のために1050℃×5
時間の条件でArガス雰囲気中に保持し冷却した。次
に、均質化処理した各母合金を液体急冷単ロール法によ
りロール周速度50m/secの条件で超急冷し薄帯化した。
得られた4種の各薄帯の組成は母合金組成と同様であっ
た。次に、得られた各薄帯を75μm以下の粉末に粉砕
した後、Arガス雰囲気中で850℃×10分間の熱処
理を行った。この後、1気圧の窒素ガス中で500℃×
5時間の窒化処理を行った。得られた各磁石粉末の結晶
相、FeCoソフト磁性相の平均結晶粒径(DFeCo)、
上記と同様にして評価した磁気特性を表4に示す。表4
等より、Co置換量が20原子%以下において、窒化後
の結晶相は平均結晶粒径が0.1〜70nmにあるソフ
ト磁性相のFeCo相と、ハード磁性相のNd(Fe,Co,V)12N
X(x=1.0〜1.5)とからなる磁石粉末が得られ、良好な磁
石特性を示した。
(Examples 14 to 17) Examples in which the substitution amount of Co is set to 20 atom% or less in order to suppress the material cost will be described. First, Nd 5.5 Fe bal in atomic% by arc melting
A total of four types of mother alloys having a composition of Co Z V 11.0 (Z = 2.0 to 8.0%) were produced. Next, 1050 ° C. × 5 for homogenization
It was kept in an Ar gas atmosphere under the condition of time and cooled. Next, each of the homogenized master alloys was ultra-quenched by the liquid quenching single roll method under the condition of a roll peripheral speed of 50 m / sec to be thinned.
The composition of each of the obtained four ribbons was the same as the composition of the mother alloy. Next, each of the obtained ribbons was pulverized into powder having a size of 75 μm or less, and then heat-treated at 850 ° C. for 10 minutes in an Ar gas atmosphere. After that, 500 ° C x 1 atmosphere of nitrogen gas
The nitriding treatment was performed for 5 hours. The crystal phase of each of the obtained magnet powders, the average crystal grain size (D FeCo ) of the FeCo soft magnetic phase,
Table 4 shows the magnetic properties evaluated in the same manner as above. Table 4
For example, when the Co substitution amount is 20 atomic% or less, the crystal phase after nitriding has a soft magnetic phase FeCo phase having an average crystal grain size of 0.1 to 70 nm and a hard magnetic phase Nd (Fe, Co, V). ) 12 N
A magnet powder consisting of X (x = 1.0 to 1.5) was obtained, showing good magnet properties.

【0014】[0014]

【表4】 [Table 4]

【0015】(実施例18)原子%表示でNd5.0FebalV
11.0なる組成とした以外は実施例1と同様にして75μ
m以下の超急冷薄帯の粉末を作製した。次に、Arガス
雰囲気中で850℃×10分間保持する熱処理を行い結
晶化した。続いて、0.1〜10気圧にされた窒素ガス
中またはアンモニアと水素の混合ガス中に500℃×5
時間保持する窒化処理を行い、Nd(Fe,V)12NX(x=0.1〜2.
4)のハード磁性相と、平均結晶粒径が0.1〜70nmにある
Fe相(ソフト磁性相)とからなる磁石粉末を得た。図1
に、得られた磁石粉末のxと、上記と同様にして評価し
たHcとの相関をプロットした。図1より、x=0.5〜2.0
において実用化が期待される高い保磁力(Hc)が得ら
れる。
(Example 18) Nd 5.0 Fe bal V in atomic%
75 μm in the same manner as in Example 1 except that the composition was 11.0.
m or less was prepared. Next, heat treatment was performed at 850 ° C. for 10 minutes in an Ar gas atmosphere to perform crystallization. Subsequently, 500 ° C. × 5 in nitrogen gas at 0.1 to 10 atm or a mixed gas of ammonia and hydrogen.
Perform nitriding treatment with holding for Nd (Fe, V) 12 N X (x = 0.1 ~ 2.
4) Hard magnetic phase and the average crystal grain size is in the range of 0.1-70nm
A magnet powder composed of an Fe phase (soft magnetic phase) was obtained. FIG.
The correlation between x of the obtained magnet powder and Hc evaluated in the same manner as above was plotted. From FIG. 1, x = 0.5 to 2.0
Thus, a high coercive force (Hc) expected to be put to practical use can be obtained.

【0016】[0016]

【発明の効果】本発明によれば、コストパーフォーマン
スに優れた希土類−鉄系磁石材料およびその製造方法を
提供することができる。例えば超急冷法を適用すれば大
量生産が可能であり、等方性希土類ボンド磁石の原料磁
粉としての有用性が大いに期待される。
According to the present invention, it is possible to provide a rare earth-iron based magnet material excellent in cost performance and a method for producing the same. For example, mass production is possible by applying a super-quenching method, and the usefulness as a raw material magnetic powder of an isotropic rare earth bonded magnet is greatly expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において、xとHcとの相関の一例を示
す図である。
FIG. 1 is a diagram showing an example of a correlation between x and Hc in the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 1/053 H01F 1/04 H Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 1/053 H01F 1/04 H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 R(RはYを含めた希土類元素のうちの
1種または2種以上)が2〜10原子%、M(MはV、
Ti、Moのうちの1種または2種以上)が1〜18原
子%、残部がTM(TMはFeまたはFeとCo)およ
び不可避不純物からなる組成を有し、 原子比率でR(TM,M)12x(x=0.5〜2.
0)で表されるハード磁性相と、平均結晶粒径が0.1
〜70nmのFeおよび/またはFeとCoからなるソ
フト磁性相とで実質的に構成されることを特徴とする希
土類−鉄系磁石材料。
1. R (R is one or more of rare earth elements including Y) is 2 to 10 atomic%, and M (M is V,
One or two or more of Ti and Mo) has a composition of 1 to 18 atomic%, and the balance is TM (TM is Fe or Fe and Co) and unavoidable impurities, and R (TM, M ) 12 N x (x = 0.5-2.
0) and an average crystal grain size of 0.1
A rare-earth-iron-based magnet material substantially constituted by Fe and / or a soft magnetic phase composed of Fe and Co of up to 70 nm.
【請求項2】 R(RはYを含めた希土類元素のうちの
1種または2種以上)が2〜10原子%、M(MはV、
Ti、Moのうちの1種または2種以上)が1〜18原
子%、残部がTM(TMはFeまたはFeとCo)およ
び不可避不純物からなる組成を有し、原子比率でR(T
M,M)12x(x=0.5〜2.0)で表されるハー
ド磁性相と、平均結晶粒径が0.1〜70nmのFeお
よび/またはFeとCoからなるソフト磁性相とで実質
的に構成される希土類−鉄系磁石材料の製造方法におい
て、 前記組成の超急冷合金薄帯を作製した後、粉砕、熱処
理、窒化処理を順次行うことを特徴とする希土類−鉄系
磁石材料の製造方法。
2. R (R is one or more of rare earth elements including Y) is 2 to 10 atomic%, and M (M is V,
One or two or more of Ti and Mo) have a composition of 1 to 18 atomic%, and the balance is TM (TM is Fe or Fe and Co) and unavoidable impurities.
(M, M) 12 N x (x = 0.5 to 2.0), a hard magnetic phase, and a soft magnetic phase composed of Fe and / or Fe and Co having an average crystal grain size of 0.1 to 70 nm. The method for producing a rare earth-iron magnet material substantially composed of: a rare earth-iron magnet material, comprising: after preparing a super-quenched alloy ribbon having the above composition, sequentially performing pulverization, heat treatment, and nitriding treatment. Manufacturing method of magnet material.
JP10014690A 1997-04-08 1998-01-27 Rare earth-iron magnetic material and manufacture thereof Pending JPH10340806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10014690A JPH10340806A (en) 1997-04-08 1998-01-27 Rare earth-iron magnetic material and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-89804 1997-04-08
JP8980497 1997-04-08
JP10014690A JPH10340806A (en) 1997-04-08 1998-01-27 Rare earth-iron magnetic material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10340806A true JPH10340806A (en) 1998-12-22

Family

ID=26350703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10014690A Pending JPH10340806A (en) 1997-04-08 1998-01-27 Rare earth-iron magnetic material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10340806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039215A1 (en) * 1999-11-25 2001-05-31 Seiko Epson Corporation Thin strip magnet material, magnet powder and rare earth bond magnet
JP2010074062A (en) * 2008-09-22 2010-04-02 Toyota Motor Corp NdFeB/FeCo NANO COMPOSITE MAGNET
JP2013069738A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Sintered magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039215A1 (en) * 1999-11-25 2001-05-31 Seiko Epson Corporation Thin strip magnet material, magnet powder and rare earth bond magnet
US6478891B1 (en) 1999-11-25 2002-11-12 Seiko Epson Corporation Ribbon shaped magnet material magnetic powder and rare earth bonded magnet
KR100462694B1 (en) * 1999-11-25 2004-12-20 세이코 엡슨 가부시키가이샤 Thin strip magnet material, magnetic powder and rare earth bond magnet
JP2010074062A (en) * 2008-09-22 2010-04-02 Toyota Motor Corp NdFeB/FeCo NANO COMPOSITE MAGNET
JP2013069738A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Sintered magnet

Similar Documents

Publication Publication Date Title
Hadjipanayis et al. Nanocomposite R/sub 2/Fe/sub 14/B//spl alpha/-Fe permanent magnets
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
US6475302B2 (en) Permanent magnet
US6413327B1 (en) Nitride type, rare earth magnet materials and bonded magnets formed therefrom
US20040025974A1 (en) Nanocrystalline and nanocomposite rare earth permanent magnet materials and method of making the same
JP3317646B2 (en) Manufacturing method of magnet
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
US5800728A (en) Permanent magnetic material made of iron-rare earth metal alloy
JP3470032B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JP3560387B2 (en) Magnetic material and its manufacturing method
JP2898229B2 (en) Magnet, manufacturing method thereof, and bonded magnet
JPH118109A (en) Rare earth permanent magnet material and its manufacture
JP2000003808A (en) Hard magnetic material
JPH10340806A (en) Rare earth-iron magnetic material and manufacture thereof
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH03170643A (en) Alloy for permanent magnet
JPH06231917A (en) Permanent magnet of rare earth-transition metal base and its manufacture
JPH10312918A (en) Magnet and bonded magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH06112019A (en) Nitride magnetic material
JP2000353612A (en) Anisotropic rare-earth permanent magnet and manufacture thereof
JP2001217109A (en) Magnet composition and bonded magnet using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061011