JPH06184645A - Production of cold rolled steel sheet reduced in inplane ansotropy and having high r-value - Google Patents

Production of cold rolled steel sheet reduced in inplane ansotropy and having high r-value

Info

Publication number
JPH06184645A
JPH06184645A JP35617592A JP35617592A JPH06184645A JP H06184645 A JPH06184645 A JP H06184645A JP 35617592 A JP35617592 A JP 35617592A JP 35617592 A JP35617592 A JP 35617592A JP H06184645 A JPH06184645 A JP H06184645A
Authority
JP
Japan
Prior art keywords
less
point
temperature range
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35617592A
Other languages
Japanese (ja)
Inventor
Tokiaki Nagamichi
常昭 長道
Kazutoshi Kunishige
和俊 国重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35617592A priority Critical patent/JPH06184645A/en
Publication of JPH06184645A publication Critical patent/JPH06184645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To stably produce a cold rolled steel sheet excellent in workability, reduced in inplane anisotropy, and having high r-value on an industrial scale. CONSTITUTION:A hot steel slab which has a composition containing <=0.08% C, <=0.3% Si, 0.01-0.4% Mn, <=0.02% S, 0.01-0.08% sol.Al, and <=0.01% N or further containing specific amounts of B or containing, besides the above, one or more kinds among specific amounts of Ti, Nb, Zr, V, and Mo in the percentages satisfying inequality [C equivalent]-[Ti equivalent/4[<=0.0020 is successively subjected to working and heat treatment by means of a process including at least the following treatments as shown in a figure: (a) cooling down to a temp. in the region lower than the A3 point; (b) precipitation treatment consisting of holding at a temp. in the above region lower than the A3 point for 1-60min; (c) temp. rise up to a region between the A3 point and [A3 point +200 deg.C] to cause inverse transformation from alpha to gamma; (d) cooling from the gamma-phase temp. region; (e) cold rolling at 50-97% total draft; and (f) recrystallization treatment at 550-900 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、面内異方性が小さ
く、かつ高ランクフォ−ド値(r値)を示す深絞り性に
優れた冷延鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel sheet having a small in-plane anisotropy and a high rank-order value (r value) and an excellent deep drawability.

【0002】[0002]

【従来技術とその課題】冷延鋼板は、一般に熱間圧延に
よって得られた熱延鋼板を素材とし、これに冷間圧延及
び再結晶焼鈍を施して製造されており、例えば自動車や
家電製品等の外装材といった“加工性が強く求められる
分野”で多用されている。
2. Description of the Related Art Cold rolled steel sheets are generally made of hot rolled steel sheets obtained by hot rolling, and are manufactured by cold rolling and recrystallization annealing. It is widely used in "fields where strong workability is required" such as the exterior materials of.

【0003】ところで、この冷延鋼板の加工性は、素材
である熱延鋼板の特性に大きく依存している。このた
め、近年、深絞り性に優れた冷延鋼板を得るために、熱
延段階での製造条件に関する検討が盛んに行われるよう
になってきた。
By the way, the workability of this cold-rolled steel sheet largely depends on the characteristics of the hot-rolled steel sheet as a raw material. For this reason, in recent years, in order to obtain a cold-rolled steel sheet having excellent deep drawability, studies on manufacturing conditions in the hot rolling stage have been actively conducted.

【0004】例えば、特開昭58−133325号公報
には、C含有量が0.0045%以下(以降、 成分割合を表す
%は重量%とする)の極低炭素鋼を素材とし、その熱間
圧延条件を規定することで深絞り性に優れた冷延鋼板を
製造する方法が開示されている。
For example, in Japanese Patent Laid-Open No. 58-133325, an ultra-low carbon steel having a C content of 0.0045% or less (hereinafter,% representing a component ratio is% by weight) is used as a raw material, and hot rolling thereof is performed. A method for manufacturing a cold-rolled steel sheet having excellent deep drawability by defining the conditions is disclosed.

【0005】しかし、この提案では、鋼板の加工性を左
右する析出物や組織についての検討がなされておらず、
そのためか、該方法に従って得られる冷延鋼板の特性値
は意図するほどのものとは言い難かった。即ち、特開昭
58−133325号公報で提案された上記方法は、加
熱から仕上げ圧延までの間における炭窒化物や硫化物の
析出状況、及びオ−ステナイト(以降“γ”と略称す
る)からフェライト(以降“α”と略称する)への変態
挙動、更には仕上げ圧延から巻取り間での加工αの変化
等に着目した検討の上に立って完成されたものとは言え
ず、これが十分に満足できる結果につながらない原因で
あると考えられた。
However, in this proposal, no study has been made on precipitates and microstructures that affect the workability of steel sheets,
Probably because of this, it was difficult to say that the characteristic values of the cold-rolled steel sheet obtained according to this method were as intended. That is, the above-mentioned method proposed in Japanese Patent Laid-Open No. 58-133325 is based on the state of precipitation of carbonitrides and sulfides from heating to finish rolling and austenite (hereinafter abbreviated as “γ”). It cannot be said that it was completed based on an examination focusing on the transformation behavior to ferrite (hereinafter abbreviated as “α”) and the change in processing α between finish rolling and winding. It was thought that this was the cause that did not lead to satisfactory results.

【0006】また、一方、面内異方性が小さくて高r値
を示す“加工性が良好な冷延鋼板”を得るためには、再
結晶処理後のαにおいて{111}集合組織を発達させ
ることが望ましいとされている。ここで、前記{11
1}集合組織はα粒界の近傍から生じるため、{11
1}集合組織を円滑に安定して発達させるためには熱延
時の変態により生じるα粒径を小さくしてα粒界面積を
大きくすることが必要であった。
On the other hand, in order to obtain a "cold rolled steel sheet with good workability" having a small in-plane anisotropy and a high r value, a {111} texture is developed in α after recrystallization treatment. It is said that it is desirable to let them do. Where the {11
Since the 1} texture occurs near the α grain boundary, {11
1} In order to smoothly and stably develop the texture, it was necessary to reduce the α grain size generated by the transformation during hot rolling and increase the α grain boundary area.

【0007】そこで、高加工性冷延鋼板の実現につなが
る“α粒径の小さな熱延鋼板”を製造するための試みと
して、鋼をγ域で仕上げ圧延した後に急冷し、これによ
りγ→α変態後のα粒を細粒化しようとした試験の結果
も報告されている{CAMP−ISIJ,Vol.3(199
0),第785〜786頁}。
Therefore, as an attempt to produce a "hot-rolled steel sheet having a small α grain size" which leads to the realization of a highly workable cold-rolled steel sheet, the steel is finish-rolled in the γ region and then rapidly cooled, whereby γ → α The results of a test for refining α-grains after transformation have also been reported {CAMP-ISIJ, Vol. 3 (199
0), pp. 785-786}.

【0008】確かに、上記方法によると比較的微細なα
粒組織を有した熱延鋼板を得ることができるが、それで
もα粒の細粒化には限界があった。そのため、例えばα
粒径が10μmを下回るほどに微細化された均一組織を
得ることは困難であった。従って、これを素材とした冷
延鋼板に対し、全体の面内異方性(0°,45°,90°の
各方向のr値r0,r45, r90のうちの最大値であるrmax
と最小値であるrminとの差)を小さくして、十分に高
くて均一なr値を安定して付与するまでには至っていな
かった。
Certainly, according to the above method, a relatively fine α
Although a hot-rolled steel sheet having a grain structure can be obtained, there was still a limit to the refinement of α grains. Therefore, for example, α
It has been difficult to obtain a uniform structure finely divided to have a particle size of less than 10 μm. Therefore, for a cold-rolled steel sheet made of this material, it is the maximum value of the in-plane anisotropy (r value r 0 , r 45, r 90 in each direction of 0 °, 45 °, 90 °). r max
And the minimum value r min ) has been made small, and a sufficiently high and uniform r value has not been stably provided.

【0009】これは、α粒の粒径は結局は変態前のγ粒
の大きさに大きく影響されることによるものと考えら
れ、最近では、α粒の更なる微細化のためには変態前の
γ粒の微細化も欠かせないとされるようになってきた。
It is considered that this is because the grain size of α-grains is ultimately greatly influenced by the size of γ-grains before transformation, and recently, in order to further refine the α-grains, the grain size before transformation has been increased. It has come to be said that the miniaturization of γ grains is essential.

【0010】現在、長年にわたって研究され築かれてき
た“γ粒の微細化手段”として、 I) 制御圧延, II) 大圧下圧延(例えば特開昭62−253733号公
報,特開昭63−145720号公報を参照) 等の組織微細化技術が知られている。しかしながら、こ
れら各技術にも次のような問題が指摘された。
At present, as a "means for refining γ grains" which have been studied and built up over many years, I) controlled rolling, II) large reduction rolling (for example, JP-A-62-253733, JP-A-63-145720). (Refer to Japanese Patent Publication No.) and the like are known. However, the following problems have been pointed out for each of these technologies.

【0011】即ち、制御圧延技術の場合は、“制御圧
延”という熱間加工によって作り出されるγ粒はある程
度まで微細になると実際上もはやそれ以上に微細化する
ことができず、そのため制御圧延のみでは、やはり“前
記γ粒から変態するαの粒径が20μm程度の均一な微
細組織”を得ることさえ困難であった。
That is, in the case of the controlled rolling technique, the γ grains produced by the hot working called "controlled rolling" cannot actually be further refined when it becomes fine to a certain extent. However, it is still difficult to obtain "a uniform fine structure in which the grain size of α transformed from the γ grains is about 20 μm".

【0012】一方、大圧下圧延による組織微細化技術
は、γ未再結晶温度域で1パス当りの圧下率30%以上
の大圧下を加えてγ粒を“変形帯を粒内に含む加工硬化
γ”とし、その後γ→α変態を生じさせて組織の微細化
を図るものである。しかしながら、この方法での“γ→
α変態前のγ粒”は大圧下圧延により単に伸長している
だけで微細粒となっていないことから、微細α組織実現
の前提としてのγ組織の微細化に限界があり、そのため
変態後のα粒径が例えば20μmを下回るほどの均一微
細組織を実現することは叶わなかった。
On the other hand, in the structure refining technique by large reduction rolling, a large reduction with a reduction rate of 30% or more per pass in the γ non-recrystallization temperature range is applied to work hardening the γ grains “including a deformation zone within the grains”. γ ″, and then γ → α transformation is caused to achieve the refinement of the structure. However, in this method "γ →
The γ grain before α transformation ”is simply elongated by large reduction rolling and does not become a fine grain, so there is a limit to the refinement of the γ structure as a prerequisite for realizing a fine α structure. It has not been possible to realize a uniform fine structure having an α grain size of less than 20 μm, for example.

【0013】上述のように、冷延鋼板の深絞り性を向上
させるのに必要な{111}集合組織を発達させるべ
く、熱延時の変態によって生じるα粒径を小さくしよう
にも従来技術では限界があり、従ってこれが面内異方性
の小さい高r値冷延鋼板を製造する上での大きな障害に
なっていると考えられた。
As described above, in order to develop the {111} texture necessary for improving the deep drawability of the cold rolled steel sheet, it is difficult to reduce the α grain size caused by the transformation during hot rolling in the prior art. Therefore, it is considered that this is a major obstacle in producing a high r-value cold-rolled steel sheet having a small in-plane anisotropy.

【0014】このようなことから、本発明が目的とした
のは、従来法では実現が困難であった熱延段階での“超
微細均一組織”を安定して現出させ、これを基に優れた
加工性を示す面内異方性の小さい高r値冷延鋼板を工業
規模で安定製造し得る手段を確立することであった。
Therefore, the object of the present invention is to stably reveal the "ultrafine uniform structure" in the hot rolling stage, which was difficult to realize by the conventional method, and based on this, It was to establish means for stably manufacturing a high r-value cold-rolled steel sheet exhibiting excellent workability and having a small in-plane anisotropy on an industrial scale.

【0015】[0015]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく様々な観点に立って鋭意研究を重ねた結
果、次のような知見を得ることができた。
Means for Solving the Problems The inventors of the present invention have obtained the following findings as a result of earnest studies from various viewpoints in order to achieve the above object.

【0016】A) まず、C含有量が0.08%以下でN含有
量が0.01%以下の低炭素アルミキルド鋼、又はこれに更
にTi,Nb,Zr,V及びMoの1種以上を添加した低炭素ア
ルミキルド鋼の連続鋳造鋳片又はインゴット等(以降
“熱鋼片”と総称する)を素材とし、これらを用いて、
その熱間圧延に際して温度調整によりα組織を前もって
現出しておき、析出処理を施して炭窒化物や硫化物を迅
速に析出させマトリックスを純化させる。そして、これ
に続いて該組織を昇温してα相をγ相へ逆変態させる
か、或いは所定圧下率の圧延を施してから昇温してα相
をγ相へ逆変態させるか、或いは素材鋼のγ粒径が20
0μm以上となる場合には“αを現出させる前の素材
鋼”にγ温度域で一旦所定圧下率の圧延を施してから上
記工程の加工熱処理を施してαをγへ逆変態させると、
現れるγ組織は従来の制御圧延等では到底得られないよ
うな超微細組織となる。
A) First, a low carbon aluminum killed steel having a C content of 0.08% or less and an N content of 0.01% or less, or a low carbon containing one or more of Ti, Nb, Zr, V and Mo added thereto. Using continuous cast slabs or ingots of aluminum-killed steel (hereinafter collectively referred to as "hot steel slabs") as materials,
During the hot rolling, the α structure is exposed in advance by temperature adjustment, and a precipitation treatment is performed to rapidly precipitate carbonitrides and sulfides to purify the matrix. Then, subsequently, the structure is heated to reverse transform the α phase to the γ phase, or after rolling at a predetermined reduction rate, the temperature is raised to reverse transform the α phase to the γ phase, or Γ grain size of raw steel is 20
When it becomes 0 μm or more, if “raw steel before α is revealed” is once rolled in the γ temperature range to a predetermined reduction ratio and then subjected to thermomechanical treatment in the above process to reverse transform α into γ,
The γ structure that appears is an ultrafine structure that cannot be obtained by conventional controlled rolling.

【0017】B) そこで、この超微細均一γ組織をその
まま冷却するか、或いはこれを更に圧延してから冷却す
ると、変態生成するαは超微細γ組織を基にしているた
めに極めて微細なものとなり、従来は実現が極めて困難
であった“α粒径20μmを遥かに下回る等方的な均一
微細組織”が得られる,
B) Therefore, if this ultrafine uniform γ structure is cooled as it is, or if it is further rolled and then cooled, the α produced by transformation is extremely fine because it is based on the ultrafine γ structure. Thus, it is possible to obtain an “isotropic uniform fine structure far below the α grain size of 20 μm” which was extremely difficult to realize in the past.

【0018】C) この“析出物が粗大化しかつα粒組織
が微細化した鋼板”を冷間圧延した後に再結晶処理する
と{111}集合組織が十分に発達し、面内異方性が小
さくr値の高い冷延鋼板を安定して得ることができる。
C) When this "steel plate in which precipitates are coarse and α grain structure is refined" is cold-rolled and then recrystallized, {111} texture is sufficiently developed and in-plane anisotropy is small. A cold rolled steel sheet having a high r value can be stably obtained.

【0019】本発明は、上記知見事項等を基にして完成
されたものであり、「C:0.08%以下, Si: 0.3%
以下, Mn:0.01〜 0.4%,S:0.02%以下, so
l.Al:0.01〜0.08%, N:0.01%以下を含むか、 又は
更にB:0.0001〜0.0050%をも含有するか、 或いはこれ
らに加えてTi,Nb,Zr,V及びMoの1種以上:合計で
0.015〜 0.350%も式 〔C当量〕−〔Ti当量/4〕≦ 0.0020 を満たす割合で含むと共に残部がFe及び不可避的不純物
から成る熱鋼片を、 少なくとも a) A3 点(即ちAe3点)を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、αからγへの逆変態を生じさせる, d) 該γ相温度域から冷却する, e) 合計圧下率が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶処理を行う, なる処理を含む工程で順次加工・熱処理することによ
り、 面内異方性の小さい高r値冷延鋼板を安定して製造
し得るようにした点」に大きな特徴を有している。
The present invention has been completed on the basis of the above findings and the like. "C: 0.08% or less, Si: 0.3%
Below, Mn: 0.01 to 0.4%, S: below 0.02%, so
l.Al: 0.01 to 0.08%, N: 0.01% or less, or B: 0.0001 to 0.0050%, or one or more of Ti, Nb, Zr, V and Mo. : In total
0.015 to 0.350% is also the formula [C equivalent]-[Ti equivalent / 4] ≤ 0.0020 A hot steel slab that contains Fe and unavoidable impurities with the balance satisfying the following conditions is cooled to at least a) below the A 3 point (ie Ae 3 point), b) above the A 3 point performing deposition by keeping 1-60 minutes, c) the temperature to a temperature range of a 3 point - [a 3-point + 200 ° C.] was raised, effect reverse transformation from α to gamma, d) the gamma phase temperature By cooling from the zone, e) cold rolling with a total reduction of 50 to 97%, f) recrystallization at a temperature of 550 to 900 ° C, and sequentially processing and heat treating in steps including , Which enables stable production of a high r-value cold-rolled steel sheet having a small in-plane anisotropy ”.

【0020】なお、図1は、本発明に係る冷延鋼板製造
工程の一例を示した模式図である。以下、本発明におい
て素材鋼の成分組成及び加工・熱処理条件を前記の如く
に限定した理由を、その作用効果と共に具体的に説明す
る。
FIG. 1 is a schematic view showing an example of the cold-rolled steel sheet manufacturing process according to the present invention. Hereinafter, the reason why the component composition of the material steel and the working / heat treatment conditions are limited as described above in the present invention will be specifically described together with the action and effect.

【0021】[0021]

【作用】[Action]

〈素材鋼の成分組成〉 Cは鋼板の深絞り性に悪影響を及ぼす元素であるため、
その含有量は少ない方が望ましい。そして、特にC含有
量が0.08%を超えると深絞り性の劣化が著しくなること
から、その含有量は0.08%以下と限定した。
<Ingredient composition of raw steel> C C is an element that adversely affects the deep drawability of the steel sheet,
The smaller the content, the better. In particular, when the C content exceeds 0.08%, the deep drawability deteriorates remarkably, so the content was limited to 0.08% or less.

【0022】Si Siも鋼板の深絞り性に悪影響を及ぼす元素であるため可
及的に少ない方が好ましい。特に、Si含有量が 0.3%を
超えると深絞り性の劣化が著しくなるのみならず、スケ
−ル性状も劣化して製品品質を損なうようになることか
ら、その含有量は 0.3%以下と限定した。
Si Since Si is also an element that adversely affects the deep drawability of the steel sheet, it is preferable that the content of Si is as small as possible. In particular, if the Si content exceeds 0.3%, not only the deep drawability will deteriorate significantly, but also the scale properties will deteriorate and the product quality will be impaired, so the content is limited to 0.3% or less. did.

【0023】Mn Mnには鋼板の靭性を改善する作用があるが、その含有量
が0.01%未満では前記作用による効果が十分でなくて熱
間脆性が発生するようになり、一方、 0.4%を超えて含
有させると深絞り性が著しく劣化することから、Mn含有
量は0.01〜 0.4%と定めた。
Mn Mn has an effect of improving the toughness of the steel sheet, but if the content is less than 0.01%, the effect due to the above effect is not sufficient and hot brittleness occurs, while 0.4% Since the deep drawability deteriorates remarkably if it is contained in excess, Mn content was set to 0.01 to 0.4%.

【0024】 Sは低ければ低いほど鋼板の深絞り性が向上するが、0.
02%程度にまで低減されるとその悪影響はそれほど顕著
ではなくなることから、S含有量は0.02%以下と定め
た。
The lower S S is, the more the deep drawability of the steel sheet is improved.
Since the adverse effect is not so remarkable when it is reduced to about 02%, the S content is set to 0.02% or less.

【0025】sol.Al Alは脱酸及び炭窒化物や硫化物の形成元素の歩留向上の
ために添加されるが、その含有量がsol.Al量で0.01%よ
りも低いと前記作用効果が十分に得られず、一方、0.08
%を超えて含有させても効果が飽和して不経済となるこ
とから、Al含有量はsol.Al量で0.01〜0.08%と定めた。
Sol.Al Al is added for deoxidation and improving the yield of carbonitride and sulfide forming elements, but if the content is less than 0.01% in sol.Al, the above-mentioned effects are obtained. Is not obtained sufficiently, while 0.08
%, The effect becomes saturated and it becomes uneconomical, so the Al content was defined as 0.01 to 0.08% in terms of sol.Al content.

【0026】 N含有量は低ければ低いほど炭窒化物形成元素の添加量
が少なくて済むので好ましい。特に、その含有量が0.01
%を超えた場合には炭窒化物形成元素を添加しても鋼板
のr値低下が避けられないことから、N含有量は0.01%
以下と定めた。
The lower the N 2 N content is, the smaller the amount of carbonitride forming element added is, which is preferable. In particular, its content is 0.01
%, The addition of carbonitride-forming elements inevitably reduces the r-value of the steel sheet, so the N content is 0.01%.
The following was set.

【0027】Ti,Nb,Zr,V及びMo これらの成分には、炭窒化物或いは硫化物を形成し固溶
C,N,Sを減少させると共に、その析出物により結晶
粒を適度に微細化する作用があるので、必要により単独
又は複合で添加される。しかし、これらの合計含有量が
0.015%よりも少ないと前記作用による所望の効果が得
られず、一方、その合計含有量が 0.350%よりも多いと
強度が上昇し過ぎて加工用の鋼板として適さなくなると
共に、経済的にも不利となる。従って、これら成分の含
有量は合計で 0.015〜 0.350%と定めた。
Ti, Nb, Zr, V and Mo These components form carbonitrides or sulfides to reduce the solid solution C, N and S, and the precipitates make the crystal grains finer appropriately. If necessary, they are added individually or in combination. However, the total content of these
If it is less than 0.015%, the desired effect due to the above-mentioned action cannot be obtained. On the other hand, if the total content is more than 0.350%, the strength becomes too high and it becomes unsuitable as a steel sheet for working, and it is economically disadvantageous. Becomes Therefore, the total content of these components was set to 0.015 to 0.350%.

【0028】また、式「〔C当量〕−〔Ti当量/4〕≦
0.0020 」は、固溶C,N及びSを0.0020%以下とし、
残りのC,N,Sを炭窒化物や硫化物として析出させる
ための関係を示したものであって、「〔C当量〕−〔Ti
当量/4〕」の値が0.0020を超えると固溶C,N,Sが
多くなるため{111}再結晶集合組織が発達せず、鋼
板の深絞り性が劣化するようになる。
The formula "[C equivalent]-[Ti equivalent / 4] ≤
0.0020 "means that solid solution C, N and S are 0.0020% or less,
It shows the relationship for precipitating the remaining C, N, and S as carbonitrides and sulfides.
When the value of "equivalent / 4]" exceeds 0.0020, the amount of solid solution C, N and S increases, so that the {111} recrystallization texture does not develop and the deep drawability of the steel sheet deteriorates.

【0029】 Bは、絞り加工部品で問題となる“縦割れ”を防止する
作用を有しているので必要により添加されるが、その含
有量が0.0001%未満では前記作用による所望の効果が得
られず、一方、0.0050%を超えて含有させてもその効果
は飽和してしまい経済的に不利となることから、B含有
量は0.0001〜0.0050%と定めた。
[0029] B B is added as necessary so has the effect of preventing to become "vertical cracks" problem drawing part, the desired effect due to the content of the working is less than 0.0001% On the other hand, if the content exceeds 0.0050%, the effect is saturated and it is economically disadvantageous. Therefore, the B content is set to 0.0001 to 0.0050%.

【0030】〈加工・熱処理条件〉熱間圧延に供される
上記成分組成の素材鋼片は、連続鋳造により製造された
もの(通常厚スラブや薄スラブ)であっても良く、或い
はインゴットから分塊圧延により製造されたものであっ
ても良い。また、素材鋼片は連続鋳造又は分塊圧延後の
冷鋼片を所定温度に加熱してから熱間圧延に供しても良
く、“直送圧延”と称される「連続鋳造又は分塊圧延の
ラインから高温のまま送られてくる鋼片をそのまま、 或
いは多少の補助加熱を施して熱間圧延に供する方法」を
採用しても良い。なお、図2は、再加熱圧延又は直送圧
延を採用した場合での“本発明に係る冷延鋼板製造工
程”の別例を示す模式図である。
<Working / Heat Treatment Conditions> The raw material billet having the above-mentioned composition used for hot rolling may be one produced by continuous casting (usually thick slab or thin slab) or separated from an ingot. It may be manufactured by ingot rolling. Further, the raw steel billet may be subjected to hot rolling after heating the cold billet after continuous casting or slabbing to a predetermined temperature. It is also possible to employ a method in which a steel slab sent from the line at a high temperature is used as it is, or is subjected to hot rolling with some auxiliary heating. Note that FIG. 2 is a schematic view showing another example of the “cold rolled steel sheet manufacturing process according to the present invention” when the reheating rolling or the direct feeding rolling is adopted.

【0031】本発明では、このような熱鋼片は前述した
条件で順次加工・熱処理されるが、この際の処理条件は
次の理由によって指定される。
In the present invention, such hot steel pieces are sequentially processed and heat-treated under the above-mentioned conditions, and the processing conditions at this time are specified for the following reasons.

【0032】(a) 熱鋼片をA3 点(Ae3点)を下回る温
度域まで冷却する理由 熱鋼片をA3 点を下回る温度域に冷却するのは、本発明
の方法が“α相からγ相に逆変態させること”を主要な
要件としているからであり、そのためにはα相の生成を
必要とするからである。なお、この際の冷却後の温度は
3 点未満の温度であれば格別に制限されるものではな
いが、現実的な操業性の面からすると、A3 点未満近傍
のなるべく高温の領域{A3 点〜〔A3 点−200
℃〕}にすることが好ましいと言える。
( A ) The temperature of the hot steel slab below A 3 points (Ae 3 points)
Reason for cooling to the temperature range The reason why the hot steel billet is cooled to a temperature range below the A 3 point is that the method of the present invention has “a reverse transformation from α phase to γ phase” as a main requirement. This is because it is necessary to generate the α phase. The temperature after cooling at this time is not particularly limited as long as it is a temperature of less than A 3 point, but in terms of practical operability, a region of a temperature as high as possible near less than A 3 point { A 3 points to [A 3 points-200
C]} is preferable.

【0033】ただ、連続鋳造或いはインゴット鋳造した
鋼片のγ粒径が200μm以上となっているような場合
には、その熱鋼片をそのままA3 点を下回る温度域に冷
却して圧延後にα→γ逆変態を起こさせても、所望の均
一超微細組織が得られない恐れがある。
However, when the γ grain size of the continuously cast or ingot cast steel slab is 200 μm or more, the hot steel slab is cooled as it is to a temperature range below the A 3 point, and α is obtained after rolling. → Even if the γ reverse transformation is caused, the desired uniform ultrafine structure may not be obtained.

【0034】しかし、このような場合でも、図2に示す
ように上記熱鋼片を冷却する前にそのまま或いは一旦加
熱炉へ挿入後、最終パスの圧延をA3 点以上の温度域で
かつ最終パスの圧下率を30%以上とする圧延を行うこ
とにより、γ粒を再結晶させて微細化(γ粒径:200μm
以下)し、更にγ粒に加工歪を導入することができるた
め、α粒の析出サイトを増加することができ、次の冷却
過程でα粒を微細化することができる。
However, even in such a case, as shown in FIG. 2, before the hot steel slab is cooled as it is or after it is once inserted into the heating furnace, the rolling of the final pass is performed in the temperature range of A 3 point or more and at the final stage. By rolling with a pass reduction of 30% or more, the γ grains are recrystallized and refined (γ grain size: 200 μm
Since the processing strain can be introduced into the γ grains, the precipitation sites of the α grains can be increased, and the α grains can be refined in the subsequent cooling process.

【0035】好ましくは、最終パスの圧下率を45%以
上とする。なお、最終パスの圧下率が30%未満である
とγ粒が再結晶微細化しないばかりか加工歪が小さいた
め、次の冷却工程でα粒が微細化しない。また、最終パ
スの圧延がA3 点より低い温度になるとα相が混在する
ようになり、加工歪が柔らかいα相に集中しγ相に加工
歪が蓄積されず、次の冷却工程でγ→α変態により生成
するα粒が微細化されない。この圧延は1パス以上実施
し、そのうちの最終パスを上記の条件で行うのが良い。
最終パス前の圧延は特に条件を限定する必要はなく、通
常の圧延でも構わない。
Preferably, the rolling reduction in the final pass is 45% or more. If the rolling reduction in the final pass is less than 30%, not only the γ grains will not be recrystallized into fine grains but also the processing strain will be small, so that the α grains will not be fined in the next cooling step. Further, when the temperature of the rolling in the final pass is lower than the A 3 point, the α phase is mixed and the working strain is concentrated in the soft α phase, and the working strain is not accumulated in the γ phase. The α grains generated by α transformation are not refined. It is preferable that this rolling is carried out for one or more passes, and the final pass is performed under the above conditions.
For the rolling before the final pass, it is not necessary to particularly limit the conditions, and ordinary rolling may be used.

【0036】(b) 3 点未満の温度域で1〜60分間保
持して析出処理を行う理由 析出処理の目的は、鋼中のC,N,Sを炭窒化物や硫化
物として析出させて深絞り性を向上させることにある。
そのためには、A3 点未満の温度域で保持すれば良い。
なぜなら、α相ではγ相に比べて溶解度が小さいため、
析出が迅速に進行するからである。この際の保持時間は
1〜60分間とすれば良い。なぜなら、保持時間が1分
未満では析出量が少なく、60分より長いと析出が飽和
し、製造コストの上昇を招くことになるからである。
(B) A 1 to 60 minutes in a temperature range of less than 3 points
Reason for carrying out the precipitation treatment by holding it The purpose of the precipitation treatment is to precipitate C, N and S in the steel as carbonitrides or sulfides to improve the deep drawability.
For that purpose, the temperature may be maintained in the temperature range of less than A 3 .
Because the α phase has a lower solubility than the γ phase,
This is because precipitation proceeds rapidly. The holding time at this time may be 1 to 60 minutes. This is because if the holding time is less than 1 minute, the amount of precipitation will be small, and if it is longer than 60 minutes, the precipitation will be saturated, resulting in an increase in manufacturing cost.

【0037】本発明において、前記“A3 点以下の温度
域に冷却した後の鋼板”を圧延ラインにおいて上記温度
域に保持する手段は特に限定されないが、例えば近年開
発された“コイルボックス”を使用することができる。
また、所定の析出処理温度とするため、鋼板を急冷して
も良い。急冷することにより製造時間の短縮が図られる
と共に、α粒を微細化することができて深絞り性を向上
することができる。
In the present invention, the means for holding the "steel plate after being cooled to a temperature range of A 3 point or less" in the rolling line in the above temperature range is not particularly limited, but, for example, a recently developed "coil box" is used. Can be used.
Further, the steel plate may be rapidly cooled in order to attain a predetermined precipitation treatment temperature. By quenching, the manufacturing time can be shortened, and the α grains can be made finer to improve the deep drawability.

【0038】(c) 3 点〜〔A3 点+200℃〕の温度
域まで昇温する理由 上述のように、熱鋼片を一旦A3 点を下回る温度域に冷
却してα相を生成させた後、再度A3 点以上に加熱する
と、α→γ逆変態によりγ粒を微細化することかでき
る。即ち、A3 点以上の温度域まで昇温する理由は、
「加工硬化したαから逆変態により非常に微細なγ粒を
生成させる」という本発明に係わる方法での特徴的な作
用・効果を十分に発揮させることにある。この場合、昇
温温度の上限を〔A3 点+200℃〕としたのは、この
温度を超えて昇温するとγが粒成長してしまい、最終的
に所望の均一超微細組織鋼板が得られなくなることによ
る。
(C) Temperature of A 3 point to [A 3 point + 200 ° C.]
Reason for heating up to the temperature range As described above, when the hot steel billet is once cooled to a temperature range below the A 3 point to generate the α phase and then heated to the A 3 point or higher, the α → γ reverse transformation causes It is possible to make the γ grains finer. That is, the reason why the temperature is raised to the temperature range of A 3 point or higher is
It is to sufficiently exert the characteristic action and effect of the method according to the present invention, that is, "very fine γ grains are generated by reverse transformation from work-hardened α". In this case, the upper limit of the temperature rise is [A 3 point + 200 ° C.] because the grain growth of γ occurs when the temperature rises above this temperature and finally the desired uniform ultrafine structure steel sheet is obtained. Due to disappearance.

【0039】なお、この昇温に先立ってA3 点未満の温
度域で圧延加工を施しておくと、この圧延によりαに歪
が蓄積されてγへの逆変態核が増加するため、無加工の
場合に比べより一層γ粒を微細化することができる。従
って、A3 点未満の温度域で圧延を施してから加熱を行
っても良い。
If rolling is performed in a temperature range of less than the A 3 point prior to this temperature rise, strain is accumulated in α and the reverse transformation nuclei to γ are increased by this rolling. It is possible to further reduce the size of the γ grains as compared with the case. Therefore, it may be heated after performing rolling in the temperature range of A less than 3 points.

【0040】また、A3 点を下回る温度域からA3 点〜
〔A3 点+200℃〕の温度域まで昇温する際の加熱速
度は 0.1℃/sec以上とすることが望ましい。これによっ
て、αから多数のγ核を生じさせ、逆変態後のγ粒成長
を抑制できると共に、A3 点以下の温度域での加工歪が
α→γ逆変態に先立って解放されることがないため、所
望の微細γ粒を実現することができる。昇温の手段とし
ては、“加工熱の利用”又は“外部からの積極的加熱
(通電加熱等)"、或いは両者の併用等、何れの方法を採
用しても良い。
From the temperature range below A 3 point, A 3 point ~
The heating rate when raising the temperature to the temperature range of [A 3 point + 200 ° C.] is preferably 0.1 ° C./sec or more. As a result, a large number of γ nuclei can be generated from α, the γ grain growth after the reverse transformation can be suppressed, and the processing strain in the temperature range of A 3 point or lower can be released prior to the α → γ reverse transformation. Therefore, it is possible to realize a desired fine γ grain. As a means for raising the temperature, any method such as "utilization of processing heat" or "active heating from the outside (electric heating)" or a combination of both may be adopted.

【0041】(d) γ相温度域から冷却する理由 γ相温度域に急速加熱して逆変態を起こさせた鋼は、そ
の後の冷却により等方的で均一超微細なα組織とされ、
更に冷間圧延が施されるが、好ましくは上記冷却に先立
ってγ相温度域で合計圧下率50%以下の圧延を行うの
が良い。なぜなら、γ相温度域にて圧延を施すと逆変態
により生じたγ粒に加工歪が蓄積され、その後の冷却に
よって生成するα含有組織も一層微細化されるので、そ
の特性が一段と向上するからである。この場合、γ相温
度域での圧延は、上述のように合計圧下率で50%以下
(好ましくは30%以下)の圧下に止めて置くのが望ま
しい。これは、合計圧下率が50%を超えるとγが再結
晶・粒成長してしまい、その後の冷却によって生成する
αが十分に微細化しないからである。そして、上述の加
工熱処理を施して板材とした鋼を任意手段によって冷却
することにより、ASTM粒度番号で8以上の微細なα
粒が得られる。
(D) Reason for cooling from the γ-phase temperature range The steel rapidly heated to the γ-phase temperature range to cause reverse transformation is made into an isotropic and uniform ultrafine α-structure by the subsequent cooling,
Further, although cold rolling is performed, it is preferable to perform rolling with a total reduction of 50% or less in the γ phase temperature region prior to the cooling. This is because when rolling is performed in the γ-phase temperature range, the processing strain is accumulated in the γ grains generated by the reverse transformation, and the α-containing structure generated by subsequent cooling is further refined, so that its characteristics are further improved. Is. In this case, it is desirable that the rolling in the γ phase temperature range is stopped at a total reduction of 50% or less (preferably 30% or less) as described above. This is because γ is recrystallized and grain-grown when the total rolling reduction exceeds 50%, and α generated by subsequent cooling is not sufficiently miniaturized. Then, the steel which has been subjected to the above-described thermomechanical treatment and cooled into a plate material is cooled by an arbitrary means to obtain a fine α of 8 or more in ASTM grain size number.
Grains are obtained.

【0042】なお、γ相温度域からの冷却は、A3 点〜
〔A3 点−100℃〕の温度域を5℃/s以上の冷却速度
で冷却することが望ましい。これにより、微細なγから
多数のα核を生じさせα粒の成長を抑制することができ
るため、微細なα粒を得ることができる。次工程の圧延
前にα粒を微細化することにより、α粒界の面積を増加
することができ、α粒界から生じ、r値の向上に好まし
い{111}再結晶集合組織を十分に発達させることが
できる。
The cooling from the γ phase temperature range is from A 3 point
It is desirable to cool the temperature range of [A 3 points-100 ° C] at a cooling rate of 5 ° C / s or more. This makes it possible to generate a large number of α nuclei from fine γ and suppress the growth of α grains, so that fine α grains can be obtained. By refining the α grains before rolling in the next step, the area of the α grain boundaries can be increased, and the {111} recrystallized texture that is generated from the α grain boundaries and is favorable for improving the r value is sufficiently developed. Can be made.

【0043】ところで、“前記 (a)項で説明した圧延"
並びに "前記 (c)及び (e)項で説明した圧延熱処理”を
熱間圧延ラインの何処で行うかについては制約はない
が、前者を粗圧延工程で実施し、後者を仕上げ圧延工程
で行うのが設備上有利である。その際、熱延巻取り温度
は問わない。
By the way, "rolling explained in the item (a)"
Also, there is no restriction on where in the hot rolling line the "rolling heat treatment described in (c) and (e) above" is performed, but the former is performed in the rough rolling process and the latter is performed in the finish rolling process. Is advantageous in terms of equipment. At that time, the hot rolling winding temperature does not matter.

【0044】(e) 冷間圧延を実施する理由 冷間圧延の目的は、圧延集合組織を発達させ、次の再結
晶焼鈍工程にてr値の向上と面内異方性の最小化に好ま
しい{111}集合組織を発達させることにある。その
ためには、50〜97%の総圧下率で最終板厚に加工す
れば良い。圧下率が50%を下回る場合或いは97%を
上回る場合には、再結晶焼鈍を行っても{111}集合
組織が発達しない。
(E) Reason for carrying out cold rolling The purpose of cold rolling is to develop a rolling texture and to improve the r value and minimize the in-plane anisotropy in the subsequent recrystallization annealing step. To develop a {111} texture. For that purpose, the final plate thickness may be processed at a total reduction ratio of 50 to 97%. When the rolling reduction is less than 50% or more than 97%, the {111} texture does not develop even if recrystallization annealing is performed.

【0045】(f) 再結晶焼鈍を施す理由 再結晶焼鈍は、αの集合組織を制御して深絞り性に優れ
た冷延鋼板を製造する上で不可欠な工程である。そのた
めには、550〜900℃の温度範囲で焼鈍を行い、α
を再結晶させるのが望ましい。550℃より低い温度で
は長時間の焼鈍であるバッチ焼鈍でも再結晶が十分に生
ぜず、900℃を超える温度ではγ化が著しく進行して
所定のαの再結晶集合組織制御が困難となる。再結晶焼
鈍の実施方法については特に制限はなく、例えば通常の
連続焼鈍プロセス,バッチ焼鈍プロセス等で実施するこ
とができる。なお、再結晶焼鈍後に行われるスキンパス
圧下時には、補助的に10%未満の圧下を加えても良
い。
(F) Reason for performing recrystallization annealing Recrystallization annealing is an essential step for controlling the texture of α and producing a cold-rolled steel sheet excellent in deep drawability. For that purpose, annealing is performed in the temperature range of 550 to 900 ° C., and α
It is desirable to recrystallize. At temperatures lower than 550 ° C., recrystallization does not sufficiently occur even in batch annealing, which is annealing for a long time, and at temperatures above 900 ° C., γ-formation remarkably progresses, making it difficult to control a predetermined recrystallization texture of α. The method for carrying out the recrystallization annealing is not particularly limited, and for example, it can be carried out by a normal continuous annealing process, a batch annealing process or the like. During the skin pass reduction performed after the recrystallization annealing, a reduction of less than 10% may be supplementarily added.

【0046】次いで、本発明を実施例により更に具体的
に説明する。
Next, the present invention will be described more specifically by way of examples.

【実施例】表1に示す化学組成のアルミキルド鋼を50
kg真空溶解炉で溶製し、鋳造して20mm厚と100mm厚
のスラブにした。続いて、これらのスラブを表2に示す
条件で熱間圧延し、冷却して巻取った。そして、巻取り
後の熱延鋼板を酸洗した後、冷間圧延を施してから、
「800℃×2min の連続焼鈍(処理イ)」 又は 「75
0℃×5hrのバッチ焼鈍(処理ロ)」により再結晶処理を
行った。
EXAMPLE 50 Aluminized steel having the chemical composition shown in Table 1 was used.
It was melted in a kg vacuum melting furnace and cast into slabs of 20 mm and 100 mm thickness. Subsequently, these slabs were hot-rolled under the conditions shown in Table 2, cooled and wound. Then, after pickling the hot rolled steel sheet after winding, after performing cold rolling,
"Continuous annealing at 800 ℃ x 2min (treatment a)" or "75
Recrystallization treatment was carried out by batch annealing (treatment B) at 0 ° C. × 5 hr.

【0047】このようにして得られた冷延鋼板から試験
片を採取し、“降伏強さ(YP)",“伸び(El)”並
びに“r値”を調査した。これらの結果を表3に示す。
Test pieces were taken from the cold-rolled steel sheet thus obtained, and the "yield strength (YP)", "elongation (El)" and "r value" were investigated. The results are shown in Table 3.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】表3に示される結果からも明らかなよう
に、本発明で規定する条件に従って製造された熱延鋼板
は優れたr値及び伸びを示しており、しかも面内異方性
が極めて小さいことが分かる。更に、本発明に係わる鋼
板は何れも降伏点が低目であり、加工性は非常に優れて
いることは明らかである。
As is clear from the results shown in Table 3, the hot-rolled steel sheet manufactured according to the conditions specified in the present invention exhibits excellent r value and elongation, and has extremely small in-plane anisotropy. I understand. Further, it is clear that all the steel sheets according to the present invention have a low yield point and are very excellent in workability.

【0052】これに対して、製造条件が本発明の規定に
従わない場合にはα組織が十分に微細化せず、得られる
鋼板の特性が劣る結果となることが分かる。
On the other hand, when the manufacturing conditions do not comply with the regulations of the present invention, the α structure is not sufficiently refined, resulting in poor properties of the obtained steel sheet.

【0053】[0053]

【効果の総括】以上に説明した如く、この発明によれ
ば、面内異方性が小さくr値の高い冷延鋼板を安定して
製造することができるなど、産業上極めて有用な効果が
もたらされる。
[Summary of Effects] As described above, according to the present invention, it is possible to stably manufacture a cold-rolled steel sheet having a small in-plane anisotropy and a high r value. Be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る冷延鋼板製造工程の一例を示す模
式図である。
FIG. 1 is a schematic view showing an example of a cold-rolled steel sheet manufacturing process according to the present invention.

【図2】本発明に係る冷延鋼板製造工程の別例を示す模
式図である。
FIG. 2 is a schematic view showing another example of the cold-rolled steel sheet manufacturing process according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて C:0.08%以下, Si: 0.3%以下, Mn:0.01〜
0.4%,S:0.02%以下, sol.Al:0.01〜0.08%,
N:0.01%以下を含み、残部がFe及び不可避的不純物
から成る熱鋼片を、少なくとも下記a)〜f)の処理を含む
工程で順次加工・熱処理することを特徴とする、面内異
方性の小さい高r値冷延鋼板の製造方法。 a) A3 点を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、フェライトからオ−ステナイトへの逆変態を生じさ
せる, d) 該オ−ステナイト相温度域から冷却する, e) 合計圧下率が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶処理を行う。
1. A weight ratio of C: 0.08% or less, Si: 0.3% or less, Mn: 0.01 to
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%,
N: In-plane anisotropic, characterized by sequentially processing and heat treating a hot steel slab containing 0.01% or less and the balance Fe and unavoidable impurities in a step including at least the treatments a) to f) below. A method for producing a high r-value cold-rolled steel sheet having low properties. cooled to a temperature range below a) A 3-point, b) performs the A precipitation treatment to hold 1-60 minutes at a temperature range of less than 3 points, c) the temperature of the A 3 point - [A 3 point + 200 ° C.] Temperature is raised to a temperature range to cause the reverse transformation of ferrite to austenite, d) cooling from the austenite phase temperature range, e) cold rolling with a total reduction of 50 to 97%, f ) A recrystallization treatment is performed at a temperature of 550 to 900 ° C.
【請求項2】 重量割合にて C:0.08%以下, Si: 0.3%以下, Mn:0.01〜
0.4%,S:0.02%以下, sol.Al:0.01〜0.08%,
N:0.01%以下 B:0.0001〜0.0050%を含み、残部がFe及び不可避的不
純物から成る熱鋼片を、少なくとも下記a)〜f)の処理を
含む工程で順次加工・熱処理することを特徴とする、面
内異方性の小さい高r値冷延鋼板の製造方法。 a) A3 点を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、フェライトからオ−ステナイトへの逆変態を生じさ
せる, d) 該オ−ステナイト相温度域から冷却する, e) 合計圧下率が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶処理を行う。
2. A weight ratio of C: 0.08% or less, Si: 0.3% or less, Mn: 0.01 to
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%,
N: 0.01% or less B: 0.0001 to 0.0050%, the balance being Fe and inevitable impurities, hot steel slabs are sequentially processed and heat treated in a process including at least the following a) to f). A method for producing a high r-value cold-rolled steel sheet having small in-plane anisotropy. cooled to a temperature range below a) A 3-point, b) performs the A precipitation treatment to hold 1-60 minutes at a temperature range of less than 3 points, c) the temperature of the A 3 point - [A 3 point + 200 ° C.] Temperature is raised to a temperature range to cause the reverse transformation of ferrite to austenite, d) cooling from the austenite phase temperature range, e) cold rolling with a total reduction of 50 to 97%, f ) A recrystallization treatment is performed at a temperature of 550 to 900 ° C.
【請求項3】 重量割合にて C:0.08%以下, Si: 0.3%以下, Mn:0.01〜
0.4%,S:0.02%以下, sol.Al:0.01〜0.08%,
N:0.01%以下を含有すると共に、更にTi,Nb,Zr,
V及びMoの1種以上:合計で 0.015〜 0.350%をも式 〔C当量〕−〔Ti当量/4〕≦ 0.0020 を満たす割合で含み、残部がFe及び不可避的不純物から
成る熱鋼片を、少なくとも下記a)〜f)の処理を含む工程
で順次加工・熱処理することを特徴とする、面内異方性
の小さい高r値冷延鋼板の製造方法。 a) A3 点を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、フェライトからオ−ステナイトへの逆変態を生じさ
せる, d) 該オ−ステナイト相温度域から冷却する, e) 合計圧下率が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶処理を行う。
3. By weight ratio, C: 0.08% or less, Si: 0.3% or less, Mn: 0.01 to
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%,
N: 0.01% or less is contained and Ti, Nb, Zr,
One or more types of V and Mo: 0.015 to 0.350% in total is also represented by the formula [C equivalent]-[Ti equivalent / 4] ≤ 0.0020. A hot steel slab that contains Fe and unavoidable impurities with the balance satisfying the following conditions, characterized by sequentially processing and heat treating in a step including at least the following treatments a) to f). A method for manufacturing a small high r-value cold rolled steel sheet. cooled to a temperature range below a) A 3-point, b) performs the A precipitation treatment to hold 1-60 minutes at a temperature range of less than 3 points, c) the temperature of the A 3 point - [A 3 point + 200 ° C.] Temperature is raised to a temperature range to cause the reverse transformation of ferrite to austenite, d) cooling from the austenite phase temperature range, e) cold rolling with a total reduction of 50 to 97%, f ) A recrystallization treatment is performed at a temperature of 550 to 900 ° C.
【請求項4】 重量割合にて C:0.08%以下, Si: 0.3%以下, Mn:0.01〜
0.4%,S:0.02%以下, sol.Al:0.01〜0.08%,
N:0.01%以下 B:0.0001〜0.0050%を含有すると共に、更にTi,Nb,
Zr,V及びMoの1種以上:合計で 0.015〜 0.350%をも
式 〔C当量〕−〔Ti当量/4〕≦ 0.0020 を満たす割合で含み、残部がFe及び不可避的不純物から
成る熱鋼片を、少なくとも下記a)〜f)の処理を含む工程
で順次加工・熱処理することを特徴とする、面内異方性
の小さい高r値冷延鋼板の製造方法。 a) A3 点を下回る温度域に冷却する, b) 上記A3 点未満の温度域に1〜60分間保持する析
出処理を行う, c) A3 点〜〔A3 点+200℃〕の温度域まで昇温
し、フェライトからオ−ステナイトへの逆変態を生じさ
せる, d) 該オ−ステナイト相温度域から冷却する, e) 合計圧下率が50〜97%の冷間圧延を行う, f) 550〜900℃の温度で再結晶処理を行う。
4. By weight ratio, C: 0.08% or less, Si: 0.3% or less, Mn: 0.01 to
0.4%, S: 0.02% or less, sol.Al: 0.01 to 0.08%,
N: 0.01% or less B: 0.0001 to 0.0050%, Ti, Nb,
One or more types of Zr, V and Mo: 0.015 to 0.350% in total is also represented by the formula [C equivalent]-[Ti equivalent / 4] ≤0.0020. A hot steel slab that contains Fe and unavoidable impurities with the balance satisfying the following conditions, characterized by sequentially processing and heat treating in a step including at least the following treatments a) to f). A method for manufacturing a small high r-value cold rolled steel sheet. cooled to a temperature range below a) A 3-point, b) performs the A precipitation treatment to hold 1-60 minutes at a temperature range of less than 3 points, c) the temperature of the A 3 point - [A 3 point + 200 ° C.] Temperature is raised to a temperature range to cause the reverse transformation of ferrite to austenite, d) cooling from the austenite phase temperature range, e) cold rolling with a total reduction of 50 to 97%, f ) A recrystallization treatment is performed at a temperature of 550 to 900 ° C.
JP35617592A 1992-12-18 1992-12-18 Production of cold rolled steel sheet reduced in inplane ansotropy and having high r-value Pending JPH06184645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35617592A JPH06184645A (en) 1992-12-18 1992-12-18 Production of cold rolled steel sheet reduced in inplane ansotropy and having high r-value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35617592A JPH06184645A (en) 1992-12-18 1992-12-18 Production of cold rolled steel sheet reduced in inplane ansotropy and having high r-value

Publications (1)

Publication Number Publication Date
JPH06184645A true JPH06184645A (en) 1994-07-05

Family

ID=18447715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35617592A Pending JPH06184645A (en) 1992-12-18 1992-12-18 Production of cold rolled steel sheet reduced in inplane ansotropy and having high r-value

Country Status (1)

Country Link
JP (1) JPH06184645A (en)

Similar Documents

Publication Publication Date Title
JPH0432514A (en) Production of soft wire rod free from surface abnormal phase in as-rolled state
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JPH10306315A (en) Production of non-heat treated high tensile-strength steel excellent in low temperature toughness
JP2776203B2 (en) Manufacturing method of cold rolled steel sheet excellent in non-aging at normal temperature
JPH02213416A (en) Production of steel bar with high ductility
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
JP2669231B2 (en) Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy
JP2669243B2 (en) Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy
JP2669172B2 (en) Method for producing high r-value hot rolled steel sheet with small in-plane anisotropy
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JPH06184645A (en) Production of cold rolled steel sheet reduced in inplane ansotropy and having high r-value
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JPS6227519A (en) Manufacture of ultrafine grain hot rolled high tensile steel plate
JP3362739B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability
JPS6367524B2 (en)
JPH0665647A (en) Effective production of cold rolled steel sheet extremely excellent in deep drawability
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JPH06184646A (en) Production of hot rolled steel plate reduced in inplane anisotropy and having high r-value
JPH05202424A (en) Production of hot rolled steel plate reduced in plane anisotropy and having high r-value
KR20000037759A (en) Method of fabricating 60kgf/mm2 molten steel
JPH06336619A (en) Production of high gamma value cold rolled steel sheet small in plane anisotropy
JPH03267314A (en) Production of hot rolled high tensile strength steel plate excellent in workability
JPH08109416A (en) Production of baking-hardened-type cold rolled steel sheet excellent in formability
JPH0768585B2 (en) Method for manufacturing cold rolled steel sheet with excellent deep drawability
JPH01177322A (en) Manufacture of cold rolled steel sheet extremely excellent in deep drawability