JPH03267314A - Production of hot rolled high tensile strength steel plate excellent in workability - Google Patents

Production of hot rolled high tensile strength steel plate excellent in workability

Info

Publication number
JPH03267314A
JPH03267314A JP6576590A JP6576590A JPH03267314A JP H03267314 A JPH03267314 A JP H03267314A JP 6576590 A JP6576590 A JP 6576590A JP 6576590 A JP6576590 A JP 6576590A JP H03267314 A JPH03267314 A JP H03267314A
Authority
JP
Japan
Prior art keywords
rolling
temperature range
steel
hot
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6576590A
Other languages
Japanese (ja)
Other versions
JPH0772298B2 (en
Inventor
Tokiaki Nagamichi
常昭 長道
Kazutoshi Kunishige
国重 和俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2065765A priority Critical patent/JPH0772298B2/en
Publication of JPH03267314A publication Critical patent/JPH03267314A/en
Publication of JPH0772298B2 publication Critical patent/JPH0772298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To stably obtain the steel plate having a uniform superfine structure by using a steel with a specific composition as a steel stock for a hot rolled steel plate, carrying out temp. regulation to form a specific structure at the time of hot rolling, and then exerting rolling at a specific reduction of area. CONSTITUTION:A Continuously cast slab or an ingot of a steel which has a composition containing, by weight, 0.03-0.25% C, 0.01-2.00% Si, 0.40-2.00% Mn, and 0.01-0.10% Al or further containing one or more kinds among 0.01-0.10% each of Nb, V, and Ti and <=0.01% Ca and having the balance Fe is cooled from a hot cast slab or a hot ingot. This continuously cast slab or ingot is rolled at a temp. not higher than the Ar3 point at >=30% total reduction of area and successively subjected to temp. rise up to a temp. in the region between the Ac3 point and (Ac3 point +100 deg.C) at >=10 deg.C/sec heating rate, by which the structure is inversely transformed from ferrite to austenite. Then, rolling at >=10% total reduction of area is carried out in the above austenitic phase temp. region.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、均一超微細な組織を有する加工性に優れた
熱延高張力鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a hot-rolled high-strength steel plate having a uniform ultra-fine structure and excellent workability.

〈従来技術とその課題〉 一般に、鋼材の強度や延性等の緒特性はその組織が微細
になるほど向上するとされており、従来から鋼材組織を
より微細化する技術の開発にしのぎが削られてきた。
<Prior art and its challenges> It is generally believed that the strength, ductility, and other properties of steel improve as the structure becomes finer, and there has been a fierce competition to develop technologies to further refine the structure of steel. .

そして、長年に亘って続けられてきたこれら研究の成果
として a)制御圧延。
The results of these researches that have been continued for many years are a) controlled rolling.

b)制御圧延・加速冷却。b) Controlled rolling/accelerated cooling.

C)大圧下圧延(例えば特開昭62−253733号、
特開昭63−145720号等)。
C) Large reduction rolling (for example, JP-A No. 62-253733,
JP-A-63-145720, etc.).

などの新しい組織微細化技術が生み出されるに至った。This led to the creation of new microstructure techniques such as

しかしながら、これらの各技術にも次のような問題が指
摘されている。
However, the following problems have been pointed out with each of these techniques.

即ち、制御圧延技術では、“制御圧延と言う熱間加工に
よって作り出されるオーステナイ)(r)粒”は成る程
度まで微細になると実際上もはやそれ以上に微細化する
ことができず、そのため制御圧延のみでは、フェライト
(α)粒径が10!m程度の均一な微細組織を得ること
さえ困難である。
In other words, in controlled rolling technology, once the austenite (r) grains produced by hot working called controlled rolling become as fine as possible, it is practically impossible to make them any finer. So, the ferrite (α) grain size is 10! It is difficult to even obtain a uniform microstructure on the order of m.

そして、上記制御圧延に加速冷却を組み合わせた技術で
もってしても、上述したように制御圧延により十分なT
組織の微細化が達成されないことから、その後の加速冷
却によって無理やり微細なαを変態生成させようとして
も限界があり、従ってやはりα粒径が10鴻を下回る程
に微細化された均一組織を得るのは極めて困難なことで
あった。
Even if a technology that combines controlled rolling and accelerated cooling is used, as mentioned above, controlled rolling can achieve sufficient T.
Since the refinement of the structure is not achieved, there is a limit to the attempt to forcibly transform and generate fine α by subsequent accelerated cooling, and therefore it is still possible to obtain a uniform structure in which the α grain size is so fine as to be less than 10 mm. It was extremely difficult.

ましてや、α粒径が5悶以下(Grain 5ize 
No、で12以上)の均一超微細組織を得ることなど到
底不可能であった。
What's more, if the α grain size is 5 or less (Grain 5ize)
It was absolutely impossible to obtain a uniform ultrafine structure with a diameter of 12 or more.

一方、大圧下圧延による組織微細化技術は、T未再結晶
温度域で圧下率30χ/パス以上の大圧下を加えてγ粒
を“変形帯を粒内に含む加工硬化T”とし、その後γ−
α変態を生じさせて組織の微細化を図るものであるが、
この方法ではT−α変態前のγ粒は大圧下圧延により単
に伸長しているだけで等方的な微細粒となっていないこ
とがら、やはり組m微細化に限界があり、そのため変態
後のα粒径が5悶を下回る程の均一超微細組織の実現は
叶わなかった。
On the other hand, the microstructure refinement technology by large reduction rolling applies a large reduction with a reduction rate of 30χ/pass or more in the T non-recrystallization temperature range to make the γ grains "work-hardened T containing deformation bands inside the grains", and then −
It aims to refine the structure by causing α transformation,
In this method, the γ grains before the T-α transformation are simply elongated by large reduction rolling and do not become isotropically fine grains, so there is still a limit to the grain size reduction after the transformation. It has not been possible to achieve a uniform ultrafine structure with an α grain size of less than 5 mm.

このようなことから、本発明が目的としたのは、鋼板に
従来法では実現が困難だった“超微細でしかも等方的な
均一組織”を安定して現出させることができる工業的手
段を見出し、それによって、“優れた加工性を示す熱延
高張力鋼板″を格別に特殊で高価な合金元素の添加等に
頼ることなく高能率生産し得る方法を提供することであ
った。
Therefore, the purpose of the present invention is to provide an industrial means that can stably produce an "ultra-fine, isotropic, uniform structure" in steel sheets, which has been difficult to achieve using conventional methods. The purpose of the present invention was to provide a method that enables high-efficiency production of "hot-rolled high-strength steel sheets exhibiting excellent workability" without relying on the addition of particularly special and expensive alloying elements.

〈課題を解決するための手段〉 本発明者等は、上記目的を達成すべく様々な観点に立っ
て鋭意研究を重ねた結果、「熱延鋼板の素材鋼(連続鋳
造鋳片又はインゴット等)として特定組成のものを用い
ると共に、それの熱間圧延に際し温度調整を行ってフェ
ライトを含む組織を前辺て現出しておき、該組織に所定
圧下率の圧延を施してから急速昇温して上記フェライト
をオーステナイトへと逆変態させるが、或いは、上記素
材鋼のオーステナイト粒径が200悶以上である場合に
は、フェライト組織を現出させる前の素材鋼にオーステ
ナイト再結晶温度域で一旦所定圧下率の圧延を実施し、
それがら上記工程の加工熱処理を施してフェライトをオ
ーステナイトへと逆変態させると、現われるオーステナ
イト組織は従来の制御圧延等では到底得られないような
超微細Mi織となる。そこで、この超微細オーステナイ
ト組織に更に圧延加工を施してから冷却すると、変態生
成するフェライトは超微細オーステナイト組織を几にし
ているためやはり極めて微細なものとなり、従来は実現
が極めて困難であったフェライト粒径10rrmを遥か
に下回る等方的な均一超微細組織を有した鋼板が安定し
て得られる。しかも、この超微細組織鋼板は、強度や延
性等の特性面でこれまでの鋼板よりも一段と優れた値を
示し、非常に望ましい加工用熱延鋼張力鋼板となり得る
」との知見を得るに至ったのである。
<Means for Solving the Problems> As a result of intensive research from various viewpoints in order to achieve the above object, the inventors of the present invention have developed the following method: In addition to using a material with a specific composition as a material, the temperature is adjusted during hot rolling to expose the structure containing ferrite at the front, the structure is rolled at a predetermined reduction rate, and then heated rapidly. In order to reversely transform the ferrite into austenite, or if the austenite grain size of the raw material steel is 200 mm or more, the raw steel is once subjected to a predetermined reduction in the austenite recrystallization temperature range before the ferrite structure appears. Carrying out rate rolling,
When the ferrite is reversely transformed into austenite by carrying out the processing heat treatment in the above step, the austenite structure that appears becomes an ultra-fine Mi texture that cannot be obtained by conventional controlled rolling or the like. Therefore, when this ultra-fine austenite structure is further subjected to rolling processing and then cooled, the ferrite that is transformed and produced is extremely fine because it is based on the ultra-fine austenite structure, which was previously extremely difficult to achieve. A steel plate having an isotropic and uniform ultrafine structure with a grain size far below 10 rrm can be stably obtained. Moreover, this ultra-fine-structured steel sheet exhibits properties such as strength and ductility that are far superior to conventional steel sheets, and has the potential to become a highly desirable hot-rolled tensile steel sheet for processing. It was.

本発明は、上記知見事項等に基づいてなされたもので、 rc:o、03〜0.25%(以降、成分割合を表わす
%は重量%とする)。
The present invention was made based on the above-mentioned findings, etc. rc:o, 03 to 0.25% (hereinafter, % representing the component ratio is expressed as weight %).

St : 0.01〜2.00%、    Mn : 
0.40〜2.00%。
St: 0.01-2.00%, Mn:
0.40-2.00%.

A1: 0.01〜0.10% を含有するか、或いは必要により更に Nb : 0.01〜0.10%、    V : 0
.01〜0.10%。
Contains A1: 0.01 to 0.10%, or further contains Nb: 0.01 to 0.10% if necessary, V: 0
.. 01-0.10%.

Ti : 0.01〜0.10%、   Ca : 0
.01%以下のうちの1種以上をも含み、残部がFe及
び不可避的不純物から成る連続鋳造鋳片(スラブ、ブル
ーム。
Ti: 0.01-0.10%, Ca: 0
.. Continuously cast slabs (slabs, blooms) containing one or more of the following: 0.1% or less, with the remainder consisting of Fe and unavoidable impurities.

ビレット)又はインゴット (以降“鋼片”と総称する
)を、第1図に示すように熱片状態からそのまま冷却す
るか、或いは第2図に示すように熱片のまま乃至は加熱
炉に装入してから再結晶温度域で一旦合計圧下率30%
以上の圧延を行った後に冷却し、その後間しく上記第1
図及び第2図に示したように (al  Ar、3点〜〔Ac3点板下の温度域で合計
圧下率30%以上の圧延を施す (b)  続いてAc3点〜〔Ac3点〜(Ac3点〜
〔Ac3点+100℃〕の温度域に10℃/sec以上
の加熱速度で昇温し、フェライトからオーステナイトへ
逆変態を生じさせる。
Billets) or ingots (hereinafter collectively referred to as "steel slabs") are cooled as they are from the hot slab state as shown in Figure 1, or as hot slabs or placed in a heating furnace as shown in Figure 2. Once the total reduction rate is 30% in the recrystallization temperature range.
After performing the above rolling, it is cooled, and then the above-mentioned first
As shown in Fig. 2 and Fig. 2, (al Ar, 3 points - [Ac 3 points - rolling with a total reduction of 30% or more in the temperature range below the plate (b). Then, Ac 3 points - [Ac 3 points - (Ac 3 point~
The temperature is raised to a temperature range of [Ac3 point + 100° C.] at a heating rate of 10° C./sec or more to cause reverse transformation from ferrite to austenite.

(C)  そして、該オーステナイト相温度域で合計圧
下率10%以上の圧延を施す なる工程で順次加工熱処理し冷却することにより、均一
超微細組織を有し優れた加工性を示す熱延高張力鋼板を
能率良く安定して製造し得るようにした点」 に特徴を有するものである。
(C) By sequentially heat-treating and cooling in the process of rolling at a total reduction rate of 10% or more in the austenite phase temperature range, hot-rolled high tensile strength with a uniform ultra-fine structure and excellent workability is obtained. It is characterized by the ability to efficiently and stably manufacture steel plates.

続いて、本発明に係る熱延高張力鋼板の製造条件(素材
鋼の化学組成、処理条件等)を前記の如くに限定した理
由を、その作用と共に詳述する。
Next, the reasons for limiting the manufacturing conditions (chemical composition of the raw material steel, processing conditions, etc.) of the hot-rolled high-strength steel sheet according to the present invention as described above will be explained in detail together with their effects.

く作用〉 A)素材鋼の化学組成 C含有量が0.03%未満であるとα、Tの粒成長傾向
が著しくなり、逆変態を生じさせて細粒化しでも直ぐに
粒成長によって粗大化してしまうと言う不都合を来たす
。一方、0.25%を超えてCを含有させると溶接性の
劣化を招く。従って、C含有量は0.03〜0.25%
と定めた。
A) Chemical composition of the material steel If the C content is less than 0.03%, the grain growth tendency of α and T becomes remarkable, and even if reverse transformation occurs and the grains become fine, they immediately become coarse due to grain growth. Putting it away causes inconvenience. On the other hand, when C is contained in an amount exceeding 0.25%, weldability deteriorates. Therefore, the C content is 0.03-0.25%
It was determined that

i 固溶Siは強度上昇や延性向上に大きく寄与する他、S
i添加によって残留オーステナイトが増大するので、こ
の点からも延性向上に好ましい元素であると言える。そ
して、この作用は熱間圧延で低温巻取り(約400℃以
下)を行う場合に特に好ましものである。ただ、Si含
有量が0.01%未満では前記作用による所望の効果が
確保できず、一方、2.00%を超えて含有させると逆
に延性低下や溶接性の劣化を招くことから、Si含有量
は0.01〜2.00%と定めた。
i Solid solution Si contributes greatly to increased strength and ductility, and S
Since the addition of i increases retained austenite, it can be said that it is a preferable element for improving ductility from this point of view as well. This effect is particularly preferable when low-temperature winding (approximately 400° C. or less) is performed during hot rolling. However, if the Si content is less than 0.01%, the desired effect of the above action cannot be secured, while if the Si content exceeds 2.00%, it will conversely cause a decrease in ductility and deterioration of weldability. The content was determined to be 0.01 to 2.00%.

Mn Mnは、鋼の熱間加工性を改善する効果の他、焼入れ性
の向上等により強度を上昇せしめる作用を有する好まし
い元素であるが、2.00%を超えて含有させると溶製
上並びにコスト面での不利を招くようになる。一方、M
n含有量が0.40%未満であるとα粒の成長が顕著と
なって超微細組織針の製造に悪影響を及ぼす。このため
、Mn含有量は0.40〜2.00%と定めた。
Mn Mn is a preferable element that has the effect of improving hot workability of steel as well as increasing strength by improving hardenability, etc. However, if it is contained in an amount exceeding 2.00%, it will cause problems in melting and This will lead to a cost disadvantage. On the other hand, M
If the n content is less than 0.40%, the growth of α grains becomes significant, which adversely affects the production of ultrafine textured needles. For this reason, the Mn content was determined to be 0.40 to 2.00%.

R Alは鋼の良好な脱酸剤として作用する他、炭窒化物の
形成によって綱の強度を改善する作用をも有しているが
、その含有量が0.01%未満では前記作用による所望
の効果が得られない。なお、前記炭窒化物は原則として
フェライト(α)中で形成されるため、少量添加の場合
にはAlは加工によるTからαの形成に大きな障害とな
らないが、0.10%を超える多量に添加すると鋼中に
粗大析出物の形で残留し、特性劣化の原因となる。従っ
て、Al含有量は0.01〜0.10%と定めた。
In addition to acting as a good deoxidizing agent for steel, Al also has the effect of improving the strength of the steel by forming carbonitrides, but if its content is less than 0.01%, the desired effect due to the above effect is not achieved. effect cannot be obtained. In addition, since the carbonitrides mentioned above are basically formed in ferrite (α), when added in a small amount, Al does not pose a major hindrance to the formation of α from T by processing, but when added in a large amount exceeding 0.10%, When added, it remains in the form of coarse precipitates in the steel, causing property deterioration. Therefore, the Al content was determined to be 0.01 to 0.10%.

Nb、  V、 Ti、及びCa これらの元素は鋼の強化或いは加工性の向上に有効であ
るので、必要により1種又は2種以上添加される成分で
あるが、その含有量を数値限定したのは次の理由による
Nb, V, Ti, and Ca These elements are effective in strengthening steel or improving workability, so one or more of these elements are added as necessary, but the content is numerically limited. is due to the following reason.

a) Nb、  V及びTi これらは何れも炭窒化物を形成して鋼の強度を向上させ
る作用を有しているが、その含有量が0.01%未満で
は上記作用による所望の効果が得られず、一方、0.1
0%を超えて含有させるとα変態を遅らせるためにAr
3変態点が低くなり、二次圧延時の加工応力が高(なっ
て圧延が困難となる。従って、Nb、  V或いはTi
を含有せしめる場合には、その含有量を各々0.01〜
0.10%とするように定めた。
a) Nb, V and Ti All of these have the effect of forming carbonitrides and improving the strength of steel, but if their content is less than 0.01%, the desired effect due to the above effect cannot be obtained. On the other hand, 0.1
If the content exceeds 0%, Ar is added to retard α transformation.
3 The transformation point becomes low and the processing stress during secondary rolling becomes high (making rolling difficult. Therefore, Nb, V or Ti
When containing, the content is 0.01~
It was determined to be 0.10%.

b) Ca Caは圧延後の介在物の形状を変化(球状化)させ、鋼
の加工性を向上する作用を有しているが、0.01%を
超えて含有させると介在物が増加して逆に特性を損なう
こととなる。従って、Caを含有させる場合には、その
含有量を0.01%以下とするように定めた。
b) Ca Ca has the effect of changing the shape of inclusions after rolling (spheroidization) and improving the workability of steel, but if it is contained in an amount exceeding 0.01%, the number of inclusions increases. On the contrary, the characteristics will be impaired. Therefore, when Ca is contained, the content is set to be 0.01% or less.

熱鋼片を一旦Ar=点以下に冷却して圧延を施すのは、
本発明の方法が“フェライトを含む組織に塑性加工を加
えてからフェライト相をオーステナイト相に逆変態させ
ること”を主要な要件としているためであり、そのため
にはフェライト相の生成を必要とするからである。この
際の冷却温度については、Ar+点以下であれば格別に
制限されるものではないが、現実的な操業性の面からす
るとAr3点未満近傍のなるべく高温の領域(Ar3点
〜(Ar:+点−100℃))にすることが好ましいと
言える。しかしながら、フェライトを含む組織に塑性加
工を加えてからフェライト相をオーステナイト相に逆変
態させるに当って、塑性加工時におけるフェライト(α
)の体積率が多いほど逆変態後のT粒が微細になること
から、製品性能面からすれば、フェライトの体積率を増
大させるべく前記冷却温度はAr3点〜〔Ac3点板下
とするのが望ましい。
Rolling is performed after cooling a hot steel piece to below the Ar= point.
This is because the main requirement of the method of the present invention is "to apply plastic working to a structure containing ferrite and then reversely transform the ferrite phase into an austenite phase", and for this purpose, it is necessary to generate a ferrite phase. It is. The cooling temperature at this time is not particularly limited as long as it is below the Ar+ point, but from the viewpoint of practical operability, it is in the high temperature range below the Ar3 point (from the Ar3 point to (Ar:+ It can be said that it is preferable to set the temperature to -100°C). However, when plastic working is applied to a structure containing ferrite and the ferrite phase is reversely transformed into an austenite phase, the ferrite (α
) The higher the volume fraction of ferrite, the finer the T grains after reverse transformation, so from the standpoint of product performance, in order to increase the volume fraction of ferrite, the cooling temperature should be between 3 points Ar and 3 points below [ac 3 points]. is desirable.

そして、Ar+点以下の温度域で施す圧延加工の合計圧
下率を30%以上としたのは、この際の圧下率が合計で
30%以上となった場合に始めて逆変態による微細T粒
の安定形成が達成できるからである。
The reason for setting the total rolling reduction rate of 30% or more in the rolling process performed in the temperature range below the Ar+ point is that the fine T grains are stabilized by reverse transformation only when the total rolling reduction rate at this time is 30% or more. This is because formation can be achieved.

即ち、Ar3点以下の温度域で圧延加工を施すと、この
圧延によってフェライト(α)が加工硬化しオステナイ
ト(T)への逆変態核が増加する。そして、この逆変態
核の数が極度に多ければその後のオーステナイト域への
急速昇温で極めて微細なT粒が生成する訳である。しか
るに、上記逆変態核数は圧下率が合計で30%以上とな
った時に始めて顕著な急増傾向を示し、所望の超微細γ
粒の安定生成が叶うことから、Ar1点以下での合計圧
下率を30%以上と定めたが、望ましくは50%以上と
するのが良い。
That is, when rolling is performed in a temperature range of Ar3 or lower, ferrite (α) is work-hardened by this rolling, and the number of reverse transformation nuclei to austenite (T) increases. If the number of these reverse transformation nuclei is extremely large, extremely fine T grains will be generated by the subsequent rapid temperature rise to the austenite region. However, the number of reverse-transformed nuclei shows a remarkable tendency to rapidly increase only when the total rolling reduction rate reaches 30% or more, and the desired ultrafine γ
In order to achieve stable grain formation, the total rolling reduction ratio at the Ar point of 1 or less was set at 30% or more, but it is preferably 50% or more.

ところで、連続鋳造成いはインゴ・7ト鋳造した銅片(
素材鋼)の1粒径が200p以上となっているような場
合には、その熱鋼片をそのままAr3点以下に冷却して
圧延後、逆変態を起こさせても所望の均一超微細組織が
得られない恐れがある。しかし、このような場合でも、
上記熱綱片を冷却する前に、そのまま乃至は加熱炉へ装
入後に一旦オステナイトの再結晶温度域で加工して再結
晶による細粒化(γ粒径:200Q+未満)を図ってお
けば上記問題は払拭される。
By the way, continuous casting is an ingot cast copper piece (
If the single grain size of the raw material steel is 200p or more, the desired uniform ultrafine structure cannot be obtained even if the hot steel piece is cooled to below the Ar3 point and reverse transformation is caused after rolling. There is a possibility that you may not get it. However, even in such cases,
Before cooling the hot wire piece, either as it is or after charging it into the heating furnace, it can be processed in the austenite recrystallization temperature range to make the grain finer (γ grain size: less than 200Q+) by recrystallization. The problem will be eliminated.

ただ、熱鋼片をオーステナイトの再結晶温度域で再結晶
させて1粒径を200鴻未満とするには、該再結晶温度
域で圧下率30%以上の加工を加える必要がある。
However, in order to recrystallize a hot steel slab in the austenite recrystallization temperature range and make the grain size less than 200 mm, it is necessary to apply processing at a reduction rate of 30% or more in the recrystallization temperature range.

Ac=点以上に昇温するのは「加工硬化したフェライト
(α)から逆変態により非常に微細なγ粒が生成する」
と言う本発明に係る方法での特徴的な作用・効果を十分
に発揮させるためである。この場合、昇温温度の上限を
[Ac3点+100°C〕としたのは、この温度を超え
て昇温するとγが粒成長してしまって最終的に所望の均
一超微細組織鋼板が得られず、従って所望の強度及び加
工性を確保することができなくなることによる。
Raising the temperature above the Ac= point is because "very fine γ grains are generated from work-hardened ferrite (α) through reverse transformation."
This is to fully exhibit the characteristic actions and effects of the method according to the present invention. In this case, the upper limit of the heating temperature was set to [Ac3 point + 100°C] because if the temperature was raised above this temperature, γ grains would grow and the desired uniform ultra-fine structure steel sheet would ultimately be obtained. First, it becomes impossible to secure the desired strength and workability.

そして、Ac=点〜(AC,点+100℃〕の温度域ま
で昇温する際の加熱速度が10℃/sec未満であると
逆変態核導入の原因となる加工による歪がα−丁逆変態
に先立って開放されてしまい、所望の微細T粒組織を実
現できなくなる。従って、上記加熱速度を10℃/se
c以上と定めた。
If the heating rate is less than 10°C/sec when increasing the temperature to the temperature range from Ac = point to (AC, point +100°C), the strain caused by processing that causes the introduction of reverse transformation nuclei will cause α-ding reverse transformation. As a result, the desired fine T-grain structure cannot be achieved.Therefore, the above heating rate is set to 10°C/sec.
It was set as C or higher.

なお、昇温の手段としては“加工熱の利用”又は“外部
からの積極的加熱”、或いは両者の併用等、何れの方法
を採用しても良い。
In addition, as a means for raising the temperature, any method such as "utilization of processing heat", "active heating from the outside", or a combination of both may be adopted.

逆変態により生じる1粒を更に微細とし、その後の冷却
によって生成するフェライト(α)含有組織を所望の超
微細組織とし優れた特性を確保するためには、前記オー
ステナイト相温度域にまで急速昇温した鋼に圧下率の合
計が10%以上(好ましくは30%以上)の圧延加工を
加える必要があり、この時の合計圧下率が10%未満で
あると所望の均一超微細組織を安定して実現することが
できない。
In order to make each grain produced by reverse transformation even finer and to make the ferrite (α)-containing structure produced by subsequent cooling into the desired ultra-fine structure and to secure excellent properties, the temperature must be rapidly raised to the austenite phase temperature range. It is necessary to apply rolling to the steel with a total rolling reduction of 10% or more (preferably 30% or more), and if the total rolling reduction at this time is less than 10%, the desired uniform ultrafine structure cannot be stably formed. It cannot be realized.

そして、上述した加工熱処理を施して板材とされた鋼を
任意手段によって冷却することにより、α粒径が10悶
以下、更には5R1以下の等方的な均一超微細組織を有
し優れた強度及び加工性を発揮する鋼板を工業的に安定
して製造することが可能となる。
By cooling the steel made into a plate material through the above-mentioned processing heat treatment, it has an isotropic uniform ultrafine structure with an α grain size of 10 or less, and furthermore, 5R1 or less, and has excellent strength. It becomes possible to industrially and stably manufacture a steel plate that exhibits good workability.

以下、本発明を実施例により更に具体的に説明する。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例〉 まず、第1表に示した化学組成の各鋼を50kg真空溶
解炉で溶製し、鋳造して2011m厚と600厚の熱鋳
片とした。
(Example) First, each steel having the chemical composition shown in Table 1 was melted in a 50 kg vacuum melting furnace and cast into hot slabs of 2011 m thick and 600 mm thick.

次に、これら熱鋳片を第2表に示す条件にて圧延・熱処
理してから急冷し、その後更に680℃X1hrの焼鈍
処理を施して熱延鋼板を製造した。
Next, these hot slabs were rolled and heat treated under the conditions shown in Table 2, then rapidly cooled, and then further annealed at 680° C. for 1 hr to produce hot rolled steel sheets.

そして、このようにして得られた鋼板から試験片を採取
し、結晶粒度番号、降伏強さ、伸び、n値(加工硬化係
数)及び耐たて割れ遷移温度を調べた。
A test piece was taken from the steel plate thus obtained, and the grain size number, yield strength, elongation, n value (work hardening coefficient), and warp cracking transition temperature were examined.

ここで、「たて割れ遷移温度」とは絞り比:2.0で絞
ったカップの脆性割れ停止温度を意味する。
Here, the "vertical crack transition temperature" means the brittle crack stop temperature of a cup drawn at a drawing ratio of 2.0.

この結果を第2表に併せて示す。The results are also shown in Table 2.

第2表に示される結果からも明らかなように、本発明で
規定する条件に従って製造された鋼板は安定して超微細
均一組織となり、優れた強度及び加工性(伸び、n値、
耐たて割れ遷移温度)を示すのに対して、製造条件が本
発明の規定を満たしていない場合には十分な微細組織が
達成できず、得られる鋼板の特性が本発明法によるもの
よりも劣る結果となることが分かる。
As is clear from the results shown in Table 2, the steel sheets manufactured according to the conditions specified in the present invention have a stable ultra-fine uniform structure, and have excellent strength and workability (elongation, n-value,
On the other hand, if the manufacturing conditions do not meet the provisions of the present invention, a sufficient microstructure cannot be achieved, and the properties of the obtained steel sheet will be worse than those produced by the method of the present invention. It can be seen that the result is inferior.

〈効果の総括〉 以上に説明した如く、本発明によれば、従来技術では実
際上実現できなかった程に超微細な均一組織を有し優れ
た強度と加工性を示す熱延高張力鋼板を安定して製造す
ることができ、強靭性に優れた安価な加工用熱延高張力
鋼板の安定供給が可能となるなど、産業上極めて有用な
効果かもたらされる。
<Summary of Effects> As explained above, according to the present invention, it is possible to produce hot-rolled high-strength steel sheets that have an ultra-fine uniform structure and exhibit excellent strength and workability, which was practically impossible to achieve using conventional techniques. It brings about extremely useful effects industrially, such as making it possible to stably supply hot-rolled high-strength steel sheets for processing that can be stably manufactured, have excellent toughness, and are inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ本発明超微細組織調板の
製造法に係るヒートパターンを示す線図である。
FIGS. 1 and 2 are diagrams each showing a heat pattern according to the method of manufacturing the ultrafine structure control plate of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.03〜0.25%、Si:0.01〜2.00
%、Mn:0.40〜2.00%、Al:0.01〜0
.10%を含有するか、或いは更に Nb:0.01〜0.10%、V:0.01〜0.10
%、Ti:0.01〜0.10%、Ca:0.01%以
下のうちの1種以上をも含み、残部がFe及び不可避的
不純物から成る連続鋳造鋳片又はインゴットを熱片又は
熱塊状態から冷却し、 (a)Ar_3点以下の温度域で合計圧下率30%以上
の圧延を施す、 (b)続いてAc_3点〜〔Ac_3点+100℃〕の
温度域に10℃/sec以上の加熱速度で昇温し、フェ
ライトからオーステナイトへ逆変態を生じさせる、 (c)そして、該オーステナイト相温度域で合計圧下率
10%以上の圧延を施す、 なる工程で順次加工熱処理し冷却することを特徴とする
、加工性に優れた熱延高張力鋼板の製造方法。
(1) Weight percentage: C: 0.03-0.25%, Si: 0.01-2.00
%, Mn: 0.40-2.00%, Al: 0.01-0
.. 10% or further Nb: 0.01-0.10%, V: 0.01-0.10
%, Ti: 0.01 to 0.10%, Ca: 0.01% or less, and the balance is Fe and unavoidable impurities. Cool from the block state, (a) Roll at a total reduction rate of 30% or more in a temperature range of Ar_3 points or less, (b) Then apply rolling at a temperature of 10°C/sec or more in a temperature range of Ac_3 points to [Ac_3 points + 100°C]. (c) Then, in the austenite phase temperature range, rolling is performed at a total reduction rate of 10% or more, followed by sequential heat treatment and cooling. A method for manufacturing hot-rolled high-strength steel sheets with excellent workability.
(2)重量割合にて C:0.03〜0.25%、Si:0.01〜2.00
%、Mn:0.40〜2.00%、Al:0.01〜0
.10%を含有するか、或いは更に Nb:0.01〜0.10%、V:0.01〜0.10
%、Ti:0.01〜0.10%、Ca:0.01%以
下のうちの1種以上をも含み、残部がFe及び不可避的
不純物から成る連続鋳造鋳片又はインゴットを、熱片又
は熱塊状態のまま乃至は加熱炉に装入してから再結晶温
度域で合計圧下率30%以上の圧延を行った後、これを
冷却し、 (a)Ar_3点以下の温度域で合計圧下率30%以上
の圧延を施す、 (b)続いてAc_3点〜〔Ac_3点+100℃〕の
温度域に10℃/sec以上の加熱速度で昇温し、フェ
ライトからオーステナイトへ逆変態を生じさせる、 (c)そして、該オーステナイト相温度域で合計圧下率
10%以上の圧延を施す、 なる工程で順次加工熱処理し冷却することを特徴とする
、超微細組織鋼板の製造方法。
(2) C: 0.03-0.25%, Si: 0.01-2.00 in weight percentage
%, Mn: 0.40-2.00%, Al: 0.01-0
.. 10% or further Nb: 0.01-0.10%, V: 0.01-0.10
%, Ti: 0.01 to 0.10%, Ca: 0.01% or less, and the balance is Fe and unavoidable impurities. After rolling in a hot lump state or charging it into a heating furnace at a total reduction rate of 30% or more in a recrystallization temperature range, it is cooled and (a) Total reduction in a temperature range of Ar_3 points or less. rolling at a rate of 30% or more; (b) then increasing the temperature to a temperature range of Ac_3 point to [Ac_3 point + 100°C] at a heating rate of 10°C/sec or more to cause reverse transformation from ferrite to austenite; (c) A method for producing an ultra-fine-structured steel sheet, comprising the steps of: rolling at a total reduction rate of 10% or more in the austenite phase temperature range; and sequential heat treatment and cooling.
JP2065765A 1990-03-16 1990-03-16 Method for manufacturing hot rolled high strength steel sheet with excellent workability Expired - Lifetime JPH0772298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2065765A JPH0772298B2 (en) 1990-03-16 1990-03-16 Method for manufacturing hot rolled high strength steel sheet with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2065765A JPH0772298B2 (en) 1990-03-16 1990-03-16 Method for manufacturing hot rolled high strength steel sheet with excellent workability

Publications (2)

Publication Number Publication Date
JPH03267314A true JPH03267314A (en) 1991-11-28
JPH0772298B2 JPH0772298B2 (en) 1995-08-02

Family

ID=13296443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065765A Expired - Lifetime JPH0772298B2 (en) 1990-03-16 1990-03-16 Method for manufacturing hot rolled high strength steel sheet with excellent workability

Country Status (1)

Country Link
JP (1) JPH0772298B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183413A (en) * 2015-03-26 2016-10-20 Jfeスチール株式会社 Consecutive cast slab and manufacturing method therefor and manufacturing method of high tensile steel plate excellent in processability
CN115537658A (en) * 2022-09-29 2022-12-30 武汉科技大学 High manganese steel with good wear resistance and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260016A (en) * 1990-03-10 1991-11-20 Sumitomo Metal Ind Ltd Manufacture of superfine structure steel plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260016A (en) * 1990-03-10 1991-11-20 Sumitomo Metal Ind Ltd Manufacture of superfine structure steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183413A (en) * 2015-03-26 2016-10-20 Jfeスチール株式会社 Consecutive cast slab and manufacturing method therefor and manufacturing method of high tensile steel plate excellent in processability
CN115537658A (en) * 2022-09-29 2022-12-30 武汉科技大学 High manganese steel with good wear resistance and production method thereof
CN115537658B (en) * 2022-09-29 2023-11-24 武汉科技大学 High manganese steel with good wear resistance and production method thereof

Also Published As

Publication number Publication date
JPH0772298B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
JPH0635619B2 (en) Manufacturing method of high strength steel sheet with good ductility
JPS5959827A (en) Manufacture of hot-rolled steel plate with superior processability
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JPH03267314A (en) Production of hot rolled high tensile strength steel plate excellent in workability
JP2582894B2 (en) Hot-rolled steel sheet for deep drawing and its manufacturing method
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JP2669231B2 (en) Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy
JPH03260016A (en) Manufacture of superfine structure steel plate
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JPH04293731A (en) Production of high (r) value hot rolled steel sheet low in plane anisotropy
JPH06336619A (en) Production of high gamma value cold rolled steel sheet small in plane anisotropy
JP2669243B2 (en) Manufacturing method of high r-value cold rolled steel sheet with small in-plane anisotropy
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPS6142767B2 (en)
JPH0394021A (en) Production of cold rolled steel sheet excellent in deep drawability and resistance to secondary working brittleness
JPH01188627A (en) Manufacture of cold rolled steel sheet having superior burning hardenability and press formability
JPS6259166B2 (en)
JPH03253517A (en) Production of al killed cold rolled steel sheet having excellent workability and surface characteristic
JPS61157660A (en) Nonageable cold rolled steel sheet for deep drawing and its manufacture
JPS5934211B2 (en) Manufacturing method of composite structure type high tensile strength hot rolled steel sheet with high ductility
JPS62185834A (en) Manufacture of cold rolled steel sheet superior in press workability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 15