JPS6142767B2 - - Google Patents

Info

Publication number
JPS6142767B2
JPS6142767B2 JP54171593A JP17159379A JPS6142767B2 JP S6142767 B2 JPS6142767 B2 JP S6142767B2 JP 54171593 A JP54171593 A JP 54171593A JP 17159379 A JP17159379 A JP 17159379A JP S6142767 B2 JPS6142767 B2 JP S6142767B2
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
hot rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54171593A
Other languages
Japanese (ja)
Other versions
JPS5696019A (en
Inventor
Takaaki Yuzutori
Rikuro Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17159379A priority Critical patent/JPS5696019A/en
Publication of JPS5696019A publication Critical patent/JPS5696019A/en
Publication of JPS6142767B2 publication Critical patent/JPS6142767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高強度冷延鋼板の製造法に関し、特
に、熱間圧延工程での圧延制御と冷間圧延後の連
続焼鈍により、低降伏比、高延性を有する複合組
織型の高強度冷延鋼板を製造する方法に関する。 従来、高強度冷延鋼板の強化法として、析出強
化、細粒強化、置換型元素の固溶強化等が適用さ
れてきたが、これらの高強度鋼板は、冷間加工割
を生じ易く、形状凍結性に劣るほか、工具摩耗が
大きく、型かじりを生じ易い等、冷間加工性の面
で問題があつた。 これに対処するため近年複合組織型高強度冷延
鋼板が実用化されつつある。この鋼板は、降伏強
度を低くすることにより形状凍結性や型かじりを
改善するとともに、均一伸びを高めることによつ
て張出し成形性を向上させたものである。この複
合組織型低降伏比鋼板は、熱間圧延後の冷間圧延
につづいて、フエライト(α)相およびオーステ
ナイト(γ)相の2相域温度にて連続焼鈍するこ
とによつて得られる。すなわち、冷間圧延後、
(α+γ)域に急速加熱し、同温度域での短時間
保持によつて結晶粒の回復・再結晶、並びに部分
オーステナイト化を生起させ、その後に急速冷却
することによつて、ベイナイト相およびマルテン
サイト相等の低温変態生成物相の共存する複合組
織となすものである。従つて、複合組織の形成
は、該焼鈍後の冷却速度を速くするほど容易とな
る。 しかしながら、該冷却速度を速くすると、得ら
れる鋼板の延性が著しく損われ、とりわけ、前記
従来の強化鋼板にくらべ、局所伸びや絞り等の不
均一伸びが低く、全伸び、強度―延性バランス等
に劣るため、これら諸特性の要求が厳しい用途に
対し適用を制限されることも少なくない。一方、
このような弊害を避けるために、比較的低い冷却
速度にて複合組織を得ようとすれば、極めて多量
の合金元素の添加を要することとなり、経済的負
担の増大のみならず、鋼板の溶接性、表面性状あ
るいは延性等の材質特性面で多くの問題が生ずる
ことになる。 本発明者等は、複合組織型高強度鋼板の上記材
質特性並びに製造コスト面の問題を解決すべく、
その製造工程での各条件について詳細な検討を重
ねた結果、熱間圧延工程において、γ相の再結晶
が著しく遅滞する温度域(以下、「末再結晶オー
ステナイト域」という)での累積圧下率を、鋼の
合金成分組成に応じて一定の値に調節する圧延制
御を行なうとともに、冷間圧延後に(α+γ)域
での連続焼鈍を行なうことにより、比較的少量の
合金元素で、延性を高め、強度―延性バランスを
改善するとともに低降伏比を具備せしめ得ること
を見出し本発明を完成するに到つた。 すなわち、本発明は、熱間圧延、冷間圧延およ
び該冷間圧延につぐ連続焼鈍処理の各工程を経て
複合組織型高強度冷延鋼板を製造する方法であつ
て、C、MnおよびSiを基本成分とし、所望によ
り、Nb、V、TiおよびZrより成る群(以下、「A
群元素」という)から選らばれる1種もしくは2
種以上の元素、あるいはCr、Ni、Mo、Cu、P、
Caおよび希土類元素よりなる群(以下、「B群元
素」という」から選らばれる1種もしくは2種以
上の元素を含む成分組成の鋼を用い、その熱間圧
延工程において、(a)上記A群元素を含まない鋼の
場合には、温度約950℃以下での累積圧下率が約
50%以上の圧下、(b)A群元素を含む鋼では、同圧
下率約30%以上の圧下、を含む熱間圧延を行な
い、得られた熱延鋼板を冷間加工したのち、(α
+γ)の2相域温度にて連続焼鈍を施こすように
した新規製造法を提供するものであり、かかる処
理により、(i)フエライト地に、第2相としてベイ
ナイト相、マルテンサイト相、または残留オース
テナイト相等の共存する2相組織となし、その低
降伏比化により、均一伸びを増大させるととも
に、(ii)フエライト基地の極微細化と純化の促進、
およびフエライト基地と第2相の強度比の調整効
果により不均一伸びを増大させ、これにより、多
量の合金元素を要することなく、約40〜100Kg/
mm2の引張強度、約0.7以下の低降伏比を与え、か
つ後記実施例にも示されるごとく卓越した延性を
具備せしめたものである。 本発明によれば、オーステナイト域での熱間圧
延工程において、未再結晶オーステナイト域での
累積圧下率を高めることにより、変態前のオース
テナイトに強加工が加えられる。この未再結晶オ
ーステナイトの強加工は、その後の変態過程にお
いて、高純度の微細フエライトの強制析出を促進
するために不可欠である。また、このような熱延
鋼板におけるフエライト基地の純化、微細粒化
は、冷間圧延―連続焼鈍後のフエライト基地の極
微細化および複合組織の形成を容易にする効果を
もたらす。 このための上記強加工は、未再結晶オーステナ
イト域での累積圧下率が約30%以上の圧下を含む
熱間圧延を行なうことにより導入される。すなわ
ち、前記A群元素の1種または2種以上を含む鋼
に対しては、温度約950℃以下での累積圧下率が
約30%以上、好ましくは約50%以上となるように
熱間圧延を行なうことにより、また該A群元素を
含まない鋼では、温度約950℃以下での累積圧下
率が約50%以上、好ましくは約60%以上となるよ
うに熱間圧延することによつて、それぞれ前記効
果を達成することができる。なお、A群元素を含
む場合の所要の圧下率が、該元素を含まない場合
より低くてよいのは、該元素によりオーステナイ
ト再結晶が抑制され、未再結晶オーステナイト温
度域が高温域に広がることによる。 上記熱間圧延に際しての鋼片加熱温度は、パス
スケジユールに応じ、上記温度域で所定の圧下率
が得られるように適宜調節すればよいが、A群元
素を含まない鋼では、約1000℃以上とし、A群元
素を含む鋼では約1050℃以上としてよい。また、
熱間圧延に用いられる鋼片は、通常の造塊・分塊
工程によるもの、あるいは連続鋳造にて製造さ
れ、該鋼片の圧延前の加熱は、通常の鋼片加熱炉
を用いるか、または分塊圧延後直送圧延を行なう
かいずれであつてもよい。 熱間圧延の仕上温度はAr3変態点温度以上と
し、オーステナイト単相で圧延を終了することが
必要である。未再結晶オーステナイトの加工度が
増大する程α変態が活発化し、その変態開始の温
度と時間は高温短時間側に移行する結果(α+
γ)2相域の圧延となりやすい。2相域での圧延
はα相の温間圧延に相当し、最終鋼板に{001}
集合組織を顕著に発達させることになる。このよ
うな鋼板は冷間加工性、特に深絞り加工性が悪
い。また、未再結晶オーステナイト域圧延後の
(α+γ)域圧延は熱延板のバンド組織(フエラ
イト相と第2相)の形成を助長し、最終鋼板の強
度―延性バランスを悪くする。 熱間圧延により得られる熱延鋼板の巻取りは、
通常の温度域(一般に約560〜710℃)で行なつて
よい。巻取温度を550℃以下とすることにより、
パーライト変態を抑制して、フエライトとベイナ
イト組織、またはフエライトとマルテンサイト組
織またはそれらの混合した組織とすることを目的
としており、これらの冷延前組織は最終鋼板の組
織を効果的に微細化せしめる。また最終焼鈍短時
間に効率化できる。2次的現象として残留オース
テナイト等の量も増大することから低降伏比で強
度―延性バランスに優れている。 上記熱間圧延にて得られた熱延鋼板は、ついで
常法に従い、酸洗い等の前処理のうち、通常の冷
間圧延を行い、ついで(α+γ)の2相域での連
続焼鈍処理に付される。 前記低温圧延(制御圧延)、950℃以下における
50%以上の加工、あるいはNb、V、Ti、Zr等を
含有する鋼においては950℃以下において30%以
上の加工を施すことによつて、熱延鋼板の組織を
微細化することができ、冷延・焼鈍後の冷延板製
品の組織を大幅に微細することができることから
も強度、延性バランスの優れた冷延板製品を得る
ことが可能となる。 他方、上記低温圧延が(α+γ)2相域で強加
工したのちに終了する時は、α+γ2相共存状態
でのα相の加工に伴ない熱延板の{200}集合組
織が発達する。この熱延板を冷延・焼鈍すると、
複合組織を得ることができるが、{200}集合組織
が強く残存するために深絞り加工性を損なうこと
がある。したがつて、深絞り加工性を重視する製
品では圧延終了温度をAr3以上とすることが望ま
しい。 通常、熱間圧延後の巻取りは、低温巻取、普通
巻取、高温巻取を含めて、560℃〜710℃の温度範
囲で行なわれることから、熱延板の組織は、フエ
ライト、パーライト(セメンタイト)となる。
550℃以下の従来よりも低い温度で巻取ると、上
記の組織はフエライトとベイナイトやマルテンサ
イト(一部残留オーステナイトを含む)の低温変
態生成相の複合組織もしくは低温変態生成相主体
の組織へと変化する。このような組織を有する熱
延板を冷延・焼鈍することにより極めて均一で微
細な複合組織を有する冷延板を得ることができ、
強度、延性バヤランスを一層向上させ得る。 次に、本発明に用いられる鋼の成分組成につい
て説明する。 本発明の適用される鋼は、C、MnおよびSiを
基本成分とし、所望により、該基本成分に、
(イ)A群元素、すなわちNb、V、TiおよびZrの
群から選らばれる1種または2種以上の元素、ま
たは(ロ)B群元素、すなわちCr、Ni、Mo、
Cu、P、Caおよび希土類元素の群から選らばれ
る1種または22種以上の元素を含む。A群元素と
B群元素は複合して添加してもよい。 Cは、強度を高める効果を有する。添加量が約
0.01%に満たないと強度が不足する。一方、約
0.18%を越えると溶接性が悪化する。従つて、約
0.01〜0.18%とする。 Mnは、複合組織の形成に寄与する。このため
に約0.8%以上の添加を必要とする。但し、多量
に加えると、効果の割に経済的負担が増し、また
溶接性の悪化を伴なうので、約2.2%を上限とす
る。 Siは、熱間圧延工程でのフエライト変態を促進
し、フエライト粒内を純化する働きを有する。ま
た、未再結晶オーステナイトの強加工と相まつ
て、強度―延性バランスの改善に寄与する。たゞ
し、多量に加えると延性を阻害することになるの
で、約1.0%を上限とする。 A群元素であるNb、V、TiおよびZrの各元素
はそれぞれ熱間圧延工程におけるオーステナイト
ね回復・再結晶を抑制するとともに、未再結晶オ
ーステナイト温度域を高温側に拡張する効果を有
する。これにより未再結晶オーステナイト域での
熱間圧延による強加工が容易になる。これら各元
素の効果は、添加量の増加とともに増大するが、
一定量に達すると飽和するのでその量を上限とす
る。すなわち、Nbは約0.1%以下、Vは約0.15%
以下、Tiは約0.2%以下、Zrは約0.3%以下の各範
囲で加えられる。これらの元素は、該各範囲内で
任意の1種を単独で、または2種以上を複合して
添加してよい。 B群元素のうち、Cr、MoおよびNiはいづれも
焼入れ性向上元素および強化元素とし働く。 各元素の添加量は、その効果と経済性とを考慮
し、Crは約1.0%、Niは約1.0%、Moは約0.5%を
それぞれ上限とし、各範囲内で単独もしくは複合
的に添加してよい。 Cuは、耐候性改善の効果を有する。但し、多
量に加えると、熱間割れが生じ易くなるので、約
0.5%を上限とする。 Pは、強化元素として有用である。但し、多量
に加えると脆化を伴なうので、約0.2%以下の範
囲で加えられる。 Caおよび希土類元素は、いづれも材質特性上
有害な非金属介在物(特に硫化物系介在物)の形
状を制御し、これを無害なものにする働きを有す
る。たゞし、各元素とも約0.02%を越えると効果
が飽和するので、それぞれ約0.02%を上限とし、
各範囲内で1種もしくは2種以上を添加する。 上記組成の鋼の溶製には特別の制限はなく、Si
キルド、Alキルド、あるいはSi―Alキルドのい
づれであつてもよい。また、必要に応じ、溶製過
程で、RH方式、DH方式等の脱ガス処理を施して
よい。 次に実施例を挙げて本発明について具体的に説
明する。 実施例 第1表に示す成分組成の供試材(成分組成はい
づれも本発明の前記規定を満す)を用い、熱間圧
延し、酸洗い後圧下率70%の冷間加工にて板厚
0.8mmの冷延鋼板を得た。ついで温度800℃で2分
間保持する焼鈍を行ない、冷却速度約10℃/秒に
て冷却し製品鋼板を得た。第2表に、熱間圧延条
件および熱延鋼板巻取温度、並びに機械的諸性質
測定結果を示す。なお、供試材No.1〜9および11
〜17は、熱間圧延工程で、温度950℃以下での累
積圧下率60〜78%の圧下を含む制御圧延(表中
「熱間圧延条件」欄に「CR」で表示)を施こした
もの、No.10は比較のため温度950℃以下での累積
圧下率が25%の通常の熱間圧延(表中、「HR」に
て表示)を行なつたものである。また、熱延後の
巻取りは温度570〜710℃での普通巻取り(表中、
「巻取温度」の欄に「普通」と表示)、または温度
550℃以下での低温巻取り(表中、「低温」と表
示)にて行なつた。
The present invention relates to a method for manufacturing high-strength cold-rolled steel sheets, and in particular, to high-strength cold-rolled steel sheets with a composite structure having a low yield ratio and high ductility by rolling control in the hot rolling process and continuous annealing after cold rolling. The present invention relates to a method of manufacturing a steel plate. Conventionally, precipitation strengthening, fine-grain strengthening, solid solution strengthening with substitutional elements, etc. have been applied to strengthen high-strength cold-rolled steel sheets, but these high-strength steel sheets are prone to cold-work cracking and are difficult to shape. In addition to poor freezing performance, there were problems in terms of cold workability, such as large tool wear and mold galling. To address this problem, composite structure type high-strength cold-rolled steel sheets are being put into practical use in recent years. This steel plate has improved shape fixability and mold galling by lowering the yield strength, and improved stretch formability by increasing uniform elongation. This composite structure type low yield ratio steel sheet is obtained by hot rolling, cold rolling, and continuous annealing at a temperature in the two-phase region of ferrite (α) phase and austenite (γ) phase. That is, after cold rolling,
By rapidly heating to the (α+γ) region and holding in the same temperature range for a short time to cause crystal grain recovery, recrystallization, and partial austenitization, and then rapid cooling, the bainite phase and marten It has a composite structure in which low-temperature transformation product phases such as site phases coexist. Therefore, the formation of a composite structure becomes easier as the cooling rate after annealing is increased. However, when the cooling rate is increased, the ductility of the obtained steel sheet is significantly impaired, and in particular, compared to the conventional reinforced steel sheet, uneven elongation such as local elongation and reduction of area is lower, and overall elongation, strength-ductility balance, etc. Because of their inferiority, their application is often restricted to applications with strict requirements for these properties. on the other hand,
If we attempt to obtain a composite structure at a relatively low cooling rate in order to avoid such adverse effects, it will be necessary to add extremely large amounts of alloying elements, which not only increases the economic burden but also reduces the weldability of the steel plate. , many problems arise in terms of material properties such as surface properties and ductility. The present inventors, in order to solve the above-mentioned problems in terms of material properties and manufacturing cost of a composite structure type high strength steel sheet,
As a result of detailed examination of each condition in the manufacturing process, we found that the cumulative rolling reduction rate in the temperature range where recrystallization of the γ phase is significantly delayed (hereinafter referred to as the "late recrystallized austenite range") in the hot rolling process. By performing rolling control to adjust the value to a constant value according to the alloy composition of the steel, and performing continuous annealing in the (α+γ) region after cold rolling, ductility can be increased with a relatively small amount of alloying elements. The present inventors have discovered that the strength-ductility balance can be improved and a low yield ratio can be provided, and the present invention has been completed. That is, the present invention is a method for producing a composite structure type high-strength cold-rolled steel sheet through each step of hot rolling, cold rolling, and continuous annealing treatment following the cold rolling, in which C, Mn, and Si are The group consisting of Nb, V, Ti and Zr (hereinafter referred to as "A
1 or 2 selected from the group elements)
Elements more than species, or Cr, Ni, Mo, Cu, P,
Using steel with a composition containing one or more elements selected from the group consisting of Ca and rare earth elements (hereinafter referred to as "group B elements"), in the hot rolling process, (a) In the case of steel that does not contain elements, the cumulative reduction rate at temperatures below about 950°C is about
After hot rolling with a reduction of 50% or more, or (b) a reduction of about 30% or more in the case of steel containing group A elements, and cold working the obtained hot rolled steel sheet, (α
The present invention provides a new manufacturing method in which continuous annealing is performed at a temperature in the two-phase region of By creating a two-phase structure in which retained austenite phase etc. coexist, and by lowering the yield ratio, it increases uniform elongation, and (ii) promotes ultra-fine refinement and purification of the ferrite matrix.
And by adjusting the strength ratio of the ferrite base and the second phase, the non-uniform elongation can be increased.
It has a tensile strength of mm 2 , a low yield ratio of about 0.7 or less, and excellent ductility as shown in the examples below. According to the present invention, in the hot rolling step in the austenite region, strong working is applied to the austenite before transformation by increasing the cumulative reduction rate in the unrecrystallized austenite region. This strong working of unrecrystallized austenite is essential for promoting forced precipitation of high-purity fine ferrite in the subsequent transformation process. In addition, such purification and refinement of the ferrite base in the hot rolled steel sheet have the effect of facilitating ultra-fine refinement of the ferrite base and the formation of a composite structure after cold rolling and continuous annealing. The above-mentioned strong working for this purpose is introduced by hot rolling including a reduction in the unrecrystallized austenite region with a cumulative reduction of about 30% or more. In other words, steel containing one or more of the Group A elements is hot rolled so that the cumulative reduction at a temperature of about 950°C or less is about 30% or more, preferably about 50% or more. For steels that do not contain the group A elements, by hot rolling so that the cumulative reduction at a temperature of about 950°C or less is about 50% or more, preferably about 60% or more. , respectively, can achieve the above effects. The reason why the required rolling reduction rate when a group A element is included is lower than when the element is not included is that the element suppresses austenite recrystallization and expands the temperature range of unrecrystallized austenite to a high temperature range. by. The heating temperature of the steel billet during the above-mentioned hot rolling may be appropriately adjusted according to the pass schedule so as to obtain a predetermined rolling reduction in the above-mentioned temperature range, but in the case of steel that does not contain group A elements, the heating temperature is approximately 1000°C or higher. For steels containing group A elements, the temperature may be approximately 1050°C or higher. Also,
The steel billet used for hot rolling is produced by the usual ingot making/blanking process or by continuous casting, and the billet is heated before rolling by using a normal billet heating furnace or Either direct rolling may be performed after blooming. The finishing temperature of hot rolling must be higher than the Ar 3 transformation point temperature, and it is necessary to finish rolling with a single austenite phase. As the degree of working of unrecrystallized austenite increases, the α transformation becomes more active, and the temperature and time at which the transformation starts shifts to the high temperature and short time side (α +
γ) Rolling tends to occur in the two-phase region. Rolling in the two-phase region corresponds to α-phase warm rolling, and the final steel plate has {001}
This results in a remarkable development of collective tissue. Such steel sheets have poor cold workability, particularly poor deep drawing workability. In addition, rolling in the (α+γ) region after rolling in the unrecrystallized austenite region promotes the formation of a band structure (ferrite phase and second phase) in the hot rolled sheet, worsening the strength-ductility balance of the final steel sheet. Winding of hot rolled steel sheet obtained by hot rolling is
It may be carried out at a normal temperature range (generally about 560-710°C). By keeping the winding temperature below 550℃,
The purpose is to suppress pearlite transformation and create a ferrite and bainite structure, a ferrite and martensitic structure, or a mixed structure thereof, and these structures before cold rolling effectively refine the structure of the final steel sheet. . In addition, final annealing can be done more efficiently in a shorter time. As a secondary phenomenon, the amount of retained austenite increases, resulting in a low yield ratio and excellent strength-ductility balance. The hot-rolled steel sheet obtained by the above-mentioned hot rolling is then subjected to conventional cold rolling, including pretreatment such as pickling, and then continuous annealing in the (α+γ) two-phase region. will be attached. The above-mentioned low temperature rolling (controlled rolling) at 950℃ or less
The structure of a hot rolled steel sheet can be refined by processing it by 50% or more, or by processing it by 30% or more at a temperature below 950℃ for steels containing Nb, V, Ti, Zr, etc. Since the structure of the cold-rolled sheet product after cold rolling and annealing can be made significantly finer, it is also possible to obtain a cold-rolled sheet product with an excellent balance of strength and ductility. On the other hand, when the low-temperature rolling ends after intense working in the (α+γ) two-phase region, the {200} texture of the hot-rolled sheet develops due to the working of the α phase in the coexistence of α+γ two phases. When this hot rolled sheet is cold rolled and annealed,
Although a composite structure can be obtained, deep drawing workability may be impaired because the {200} texture remains strongly. Therefore, for products where deep drawability is important, it is desirable to set the rolling end temperature to Ar 3 or higher. Normally, winding after hot rolling is carried out in the temperature range of 560°C to 710°C, including low-temperature winding, normal winding, and high-temperature winding, so the structure of hot rolled sheets is ferrite, pearlite, etc. (cementite).
When coiled at a lower temperature than conventional methods, such as 550℃ or less, the above structure changes to a composite structure of ferrite, bainite, and martensite (including some residual austenite), or a structure consisting mainly of low-temperature transformation phases. Change. By cold rolling and annealing a hot rolled sheet having such a structure, a cold rolled sheet having an extremely uniform and fine composite structure can be obtained.
Strength and ductility balance can be further improved. Next, the composition of the steel used in the present invention will be explained. The steel to which the present invention is applied has C, Mn, and Si as basic components, and if desired, in the basic components,
(a) Group A elements, i.e., one or more elements selected from the group of Nb, V, Ti, and Zr, or (b) Group B elements, i.e., Cr, Ni, Mo,
Contains one or 22 or more elements selected from the group of Cu, P, Ca, and rare earth elements. Group A elements and group B elements may be added in combination. C has the effect of increasing strength. The amount added is approx.
If it is less than 0.01%, the strength will be insufficient. On the other hand, about
If it exceeds 0.18%, weldability will deteriorate. Therefore, about
Set to 0.01-0.18%. Mn contributes to the formation of complex tissues. For this purpose, addition of about 0.8% or more is required. However, if added in a large amount, the economic burden will increase despite the effect, and it will also cause deterioration of weldability, so the upper limit is set at about 2.2%. Si has the function of promoting ferrite transformation during the hot rolling process and purifying the inside of the ferrite grains. In addition, together with the strong working of unrecrystallized austenite, this contributes to improving the strength-ductility balance. However, if added in a large amount, ductility will be inhibited, so the upper limit is set at about 1.0%. Each of the group A elements Nb, V, Ti, and Zr has the effect of suppressing austenite recovery and recrystallization during the hot rolling process and extending the temperature range of unrecrystallized austenite to the high temperature side. This facilitates strong working by hot rolling in the unrecrystallized austenite region. The effects of each of these elements increase as the amount added increases, but
Since saturation occurs when a certain amount is reached, this amount is set as the upper limit. That is, Nb is about 0.1% or less, V is about 0.15%
Below, Ti is added in a range of about 0.2% or less, and Zr is added in a range of about 0.3% or less. These elements may be added singly or in combination of two or more within the respective ranges. Among group B elements, Cr, Mo, and Ni all work as hardenability improving elements and reinforcing elements. The amount of each element to be added is set at the upper limit of approximately 1.0% for Cr, approximately 1.0% for Ni, and approximately 0.5% for Mo, taking into account its effect and economic efficiency, and may be added singly or in combination within each range. It's fine. Cu has the effect of improving weather resistance. However, if too much is added, hot cracking is likely to occur, so add approximately
The upper limit is 0.5%. P is useful as a reinforcing element. However, since adding a large amount causes embrittlement, it should be added within a range of about 0.2% or less. Both Ca and rare earth elements have the function of controlling the shape of nonmetallic inclusions (particularly sulfide inclusions) that are harmful to material properties and rendering them harmless. However, the effect is saturated when each element exceeds about 0.02%, so the upper limit for each element is about 0.02%.
One or more types may be added within each range. There are no special restrictions on the melting of steel with the above composition, and Si
It may be killed, Al killed, or Si-Al killed. Further, if necessary, degassing treatment such as RH method or DH method may be performed during the melting process. Next, the present invention will be specifically explained with reference to Examples. Example A test material having the component composition shown in Table 1 (all component compositions satisfying the above-mentioned provisions of the present invention) was hot rolled, pickled, and then cold worked at a rolling reduction of 70% to form a plate. thickness
A 0.8 mm cold rolled steel plate was obtained. Next, annealing was carried out at a temperature of 800°C for 2 minutes, followed by cooling at a cooling rate of about 10°C/second to obtain a product steel plate. Table 2 shows the hot rolling conditions, hot rolled steel sheet coiling temperature, and measurement results of various mechanical properties. In addition, sample materials No. 1 to 9 and 11
~17 is a hot rolling process in which controlled rolling (indicated by "CR" in the "Hot rolling conditions" column in the table) including rolling with a cumulative reduction rate of 60 to 78% at a temperature of 950 ° C or less was performed. For comparison, No. 10 was subjected to normal hot rolling (indicated by "HR" in the table) at a temperature of 950° C. or less and a cumulative reduction of 25%. In addition, winding after hot rolling is normal winding at a temperature of 570 to 710°C (in the table,
"Normal" is displayed in the "Coiling temperature" column), or the temperature
The winding was carried out at a low temperature of 550°C or less (indicated as "low temperature" in the table).

【表】【table】

【表】【table】

【表】【table】

【表】 第2表に示されるように、本発明方法による供
試材No.1〜9および11〜17は、一定の降伏強度お
よび引張強さを備え、かつ従来法によるNo.10材に
くらべ、降伏比(YR)が低く、全伸びにすぐれ
ることが判る。 第1図は上記結果にもとづいて各供試材の降伏
強度(YP)と引張強さ(TS)の関係を示すグラ
フである。図中、「〇」および「●」は本発明に
より制御圧延を行なつたNo.1〜9材(但し、
「〇」は低温巻取り材、「●」は普通巻取り材)、
「△」および「▲」は従来法によるNo.10材(但
し、「△」は低温巻取り材、「▲」は普通巻取り
材)である。各マークに付した番号は供試材No.で
ある。なお、直線(i)は降伏比(YP/TS)0.4、
(ii)は0.5、(iii)は0.6、(iv)は0.7、(v)0.8の各ライン

示す。図から、従来法によるNo.10材の降伏比は
0.7を越えるのに対し、本発明によるNo.1〜9材
は、約0.6以下と低く、特に低温巻取りによつて
更に低降伏比となることが判る。 第2図は、各供試材の引張強さ(TS)と全伸
び(El)の関係を示したグラフである。図中の
各マークは前記第1図のそれと同じである。曲線
(a)は、本発明による供試材No.1〜9の強度―延性
バランス(TS×El=1800)、(b)は従来法による供
試材No.10の強度―延性バランス(TS×El=
1550)をそれぞれ示す。図から、本発明による強
度―延性バランスは、従来法に比し、著しくすぐ
れ、低温巻取りによつて更に改善可能なことが判
る。 以上のように、本発明のよれば、高強度ととも
に、延性および強度―延性バランスにすぐれ、低
降伏比を有する複合組織型冷延鋼板が得られ、苛
酷な成形加工が施される用途に対して好適な材料
として供することができる。しかも、かかる材質
特性を満たすのに特別の合金元素の新たな添加も
しくは増量を必要とせず、経済的にも非常に有利
である。
[Table] As shown in Table 2, sample materials Nos. 1 to 9 and 11 to 17 produced by the method of the present invention have a certain yield strength and tensile strength, and are higher than material No. 10 produced by the conventional method. In comparison, it can be seen that the yield ratio (YR) is low and the total elongation is excellent. FIG. 1 is a graph showing the relationship between yield strength (YP) and tensile strength (TS) of each sample material based on the above results. In the figure, "〇" and "●" indicate No. 1 to 9 materials subjected to controlled rolling according to the present invention (however,
"〇" is low-temperature winding material, "●" is normal winding material),
"△" and "▲" are No. 10 materials made by the conventional method (however, "△" is a low-temperature rolled material, and "▲" is a normal rolled material). The number attached to each mark is the sample material number. In addition, the straight line (i) has a yield ratio (YP/TS) of 0.4,
(ii) shows 0.5, (iii) shows 0.6, (iv) shows 0.7, and (v) shows 0.8. From the figure, the yield ratio of No. 10 material using the conventional method is
While the yield ratio exceeds 0.7, the yield ratios of materials No. 1 to 9 according to the present invention are as low as about 0.6 or less, and it can be seen that the yield ratio can be further lowered especially by low-temperature winding. FIG. 2 is a graph showing the relationship between tensile strength (TS) and total elongation (El) of each sample material. Each mark in the figure is the same as that in FIG. 1 above. curve
(a) shows the strength-ductility balance (TS El=
1550) respectively. From the figure, it can be seen that the strength-ductility balance according to the present invention is significantly better than that of the conventional method, and can be further improved by low-temperature winding. As described above, according to the present invention, a cold-rolled steel sheet with a composite structure having high strength, excellent ductility and strength-ductility balance, and a low yield ratio can be obtained, and is suitable for applications where severe forming processing is performed. It can be used as a suitable material. Furthermore, in order to satisfy such material characteristics, it is not necessary to newly add or increase the amount of special alloying elements, which is very advantageous economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は引張強さと降伏強度の関係を示すグラ
フ、および第2図は引張強さと全伸びの関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between tensile strength and yield strength, and FIG. 2 is a graph showing the relationship between tensile strength and total elongation.

Claims (1)

【特許請求の範囲】 1 C0.01〜0.18%、Mn0.8〜2.2%、Si1.0%以
下、残部鉄および不可避の不純物から成る鋼の熱
間圧延工程において、温度950℃以下での累積圧
下率50%以上の圧下を含み、圧延仕上温度Ar3
以上の熱間圧延を行ない、得られた熱延板を冷間
圧延したのち、フエライト相およびオーステナイ
ト相の2相域にて連続焼鈍処理を施すことを特徴
とする低降伏比高延性高強度冷延鋼板の製造方
法。 2 熱間圧延における熱延鋼板巻取温度を550℃
以下に調節することを特徴とする上記第1項に記
載の製造方法。 3 C0.01〜0.18%、Mn0.8〜2.2%、Si1.0%以
下、およびCr1.0%以下、Ni1.0%以下、Mo0.5%
以下、Cu0.5%以下、P0.2%以下、Ca0.02%以
下、もしくは希土類元素0.02%以下の群から選ば
れる1種または2種以上の元素を含み、残部鉄お
よび不可避の不純物から成る鋼の熱間圧延工程に
おいて、温度950℃以下での累積圧下率50%以上
の圧下を含み、圧延仕上温度Ar3点以上の熱間圧
延を行ない、得られた熱延鋼板を冷間圧延したの
ち、フエライト相およびオーステナイト相の2相
域にて連続焼鈍処理を施すことを特徴とする低降
伏比高延性高強度冷延鋼板の製造方法。 4 熱間圧延における熱延鋼板巻取温度を55℃以
下に調節することを特徴とする上記第3項に記載
の製造方法。 5 C0.01〜0.18%、Mn0.8〜2.2%、Si1.0%以
下、およびNb0.1%以下、V0.15%以下、Ti0.2%
以下、もしくはZr0.3%以下の群から選ばれる1
種または2種以上の元素を含み、残部鉄および不
可避の不純物から成る鋼の熱間圧延工程におい
て、温度95℃以下での累積圧下率30%以上の圧下
を含み、圧延仕上温度Ar3点以上の熱間圧延を行
ない、得られた熱延板を冷間圧延したのち、フエ
ライト相およびオーステナイト相の2相域にて連
続焼鈍処理を施すことを特徴とする低降伏比高延
性高強度冷延鋼板の製造方法。 6 熱間圧延における熱延鋼板巻取温度を55℃以
下に調節することを特徴とする上記第5項に記載
の製造方法。 7 C0.01〜0.18%、Mn0.8〜2.2%、Si1.0%以
下、および(i)Cr1.0%以下、Ni1.0%以下、Mo0.5
%以下、Cu0.5%以下、P0.2%以下、Ca0.02%以
下、もしくは希土類元素0.02%以下の群から選ば
れる1種または2種以上の元素、並びに(ii)Nb0.1
%以下、V0.15%以下、Ti0.2%以下、もしくは
Zr0.3%以下の群から選ばれる1種または2種以
上の元素を含み、残部鉄および不可避の不純物か
ら成る鋼の熱間圧延工程において、温度950℃以
下での累積圧下率30%以上の圧下を含み、圧延仕
上温度Ar3点以上の熱間圧延を行ない、得られた
熱延板を冷間圧延したのち、フエライト相および
オーステナイト相の2相域にて連続焼鈍処理を施
すことを特徴とする低降伏比高延性高強度冷延鋼
板の製造方法。 8 熱間圧延における熱延鋼板巻取温度を55℃以
下に調節することを特徴とする上記第7項に記載
の製造方法。
[Claims] 1 Accumulation at a temperature of 950°C or less in the hot rolling process of steel consisting of 0.01 to 0.18% C, 0.8 to 2.2% Mn, 1.0% or less Si, the balance iron and unavoidable impurities. After performing hot rolling at a rolling finish temperature of 3 points or more including rolling reduction of 50% or more and cold rolling the obtained hot-rolled sheet, it is continuously annealed in the two-phase region of ferrite phase and austenite phase. 1. A method for producing a low yield ratio, high ductility, high strength cold rolled steel sheet, characterized by subjecting it to a treatment. 2. The coiling temperature of hot rolled steel sheet during hot rolling is 550℃.
The manufacturing method according to item 1 above, which is characterized by adjusting the following: 3 C0.01~0.18%, Mn0.8~2.2%, Si1.0% or less, and Cr1.0% or less, Ni1.0% or less, Mo0.5%
Contains one or more elements selected from the group of Cu 0.5% or less, P 0.2% or less, Ca 0.02% or less, or rare earth elements 0.02% or less, with the balance consisting of iron and unavoidable impurities. In the hot rolling process of steel, hot rolling is carried out at a temperature of 950°C or less with a cumulative reduction rate of 50% or more, and the finishing temperature of Ar is 3 or more points, and the obtained hot rolled steel sheet is cold rolled. A method for producing a low yield ratio, high ductility, and high strength cold rolled steel sheet, the method comprising subsequently performing continuous annealing treatment in a two-phase region of a ferrite phase and an austenite phase. 4. The manufacturing method according to item 3 above, characterized in that the coiling temperature of the hot rolled steel sheet during hot rolling is adjusted to 55°C or less. 5 C0.01~0.18%, Mn0.8~2.2%, Si1.0% or less, and Nb0.1% or less, V0.15% or less, Ti0.2%
1 selected from the group below or below Zr0.3%
In the hot rolling process of steel containing one or more elements, the balance being iron and unavoidable impurities, the rolling process involves rolling with a cumulative reduction rate of 30% or more at a temperature of 95°C or less, and a finishing temperature of Ar of 3 points or more. A low yield ratio, high ductility, and high strength cold rolled sheet characterized by hot rolling, cold rolling the obtained hot rolled sheet, and then subjecting it to continuous annealing treatment in a two-phase region of ferrite phase and austenite phase. Method of manufacturing steel plates. 6. The manufacturing method according to item 5 above, characterized in that the coiling temperature of the hot rolled steel sheet during hot rolling is adjusted to 55°C or less. 7 C0.01~0.18%, Mn0.8~2.2%, Si1.0% or less, and (i) Cr1.0% or less, Ni1.0% or less, Mo0.5
% or less, Cu0.5% or less, P0.2% or less, Ca0.02% or less, or one or more elements selected from the group of rare earth elements 0.02% or less, and (ii) Nb0.1
% or less, V0.15% or less, Ti0.2% or less, or
In the hot rolling process of steel containing one or more elements selected from the group Zr0.3% or less, and the balance consisting of iron and unavoidable impurities, the cumulative rolling reduction rate is 30% or more at a temperature of 950℃ or less. It is characterized by performing hot rolling including reduction at a finishing temperature of Ar at 3 points or more, cold rolling the obtained hot rolled sheet, and then subjecting it to continuous annealing treatment in the two-phase region of ferrite phase and austenite phase. A method for producing a low yield ratio, high ductility, and high strength cold rolled steel sheet. 8. The manufacturing method according to item 7 above, characterized in that the winding temperature of the hot rolled steel sheet during hot rolling is adjusted to 55°C or less.
JP17159379A 1979-12-28 1979-12-28 Production of cold-rolled sheet steel having low yield ratio, high ductility, high strength Granted JPS5696019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17159379A JPS5696019A (en) 1979-12-28 1979-12-28 Production of cold-rolled sheet steel having low yield ratio, high ductility, high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17159379A JPS5696019A (en) 1979-12-28 1979-12-28 Production of cold-rolled sheet steel having low yield ratio, high ductility, high strength

Publications (2)

Publication Number Publication Date
JPS5696019A JPS5696019A (en) 1981-08-03
JPS6142767B2 true JPS6142767B2 (en) 1986-09-24

Family

ID=15926029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17159379A Granted JPS5696019A (en) 1979-12-28 1979-12-28 Production of cold-rolled sheet steel having low yield ratio, high ductility, high strength

Country Status (1)

Country Link
JP (1) JPS5696019A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193110C (en) * 2000-11-28 2005-03-16 川崎制铁株式会社 Composite structure type hipe tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
CN111621718B (en) * 2020-06-28 2021-12-14 马鞍山钢铁股份有限公司 Steel for high-ductility cold-rolled steel bar for welded mesh and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142012A (en) * 1974-10-09 1976-04-09 Nippon Steel Corp HIZUMIJIKOKOKANONOSUGUURETA KOKYO DOREIENKOHANNO SEIZOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142012A (en) * 1974-10-09 1976-04-09 Nippon Steel Corp HIZUMIJIKOKOKANONOSUGUURETA KOKYO DOREIENKOHANNO SEIZOHOHO

Also Published As

Publication number Publication date
JPS5696019A (en) 1981-08-03

Similar Documents

Publication Publication Date Title
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
EP2647730B1 (en) A method for manufacturing a high strength formable continuously annealed steel strip
RU2463359C1 (en) Method to produce thick-sheet low-alloyed strip
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
JP2007070661A (en) High strength thin steel sheet having excellent elongation and hole expandability, and method for producing the same
KR20230166081A (en) Low-carbon, low-alloy Q&P steel or hot-dip galvanized Q&P steel with a tensile strength of 1180 MPa or more and manufacturing method thereof
JPH0713257B2 (en) Method for manufacturing soft wire without as-rolled surface abnormal phase
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2652539B2 (en) Method for producing composite structure high strength cold rolled steel sheet with excellent stretch formability and fatigue properties
JPH01184226A (en) Production of steel sheet having high-ductility high-strength multiple structure
JP2005325393A (en) High strength cold rolled steel sheet and its manufacturing method
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
EP0535238A1 (en) High-strength steel sheet for forming and production thereof
JPS6111294B2 (en)
JPH06264183A (en) Hot rolled high tensile strength steel plate with high workability and its production
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JPS6142767B2 (en)
JPH0135052B2 (en)
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
JPS638164B2 (en)
JPS6142766B2 (en)
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
JPS6220820A (en) Cold working method
JPH06264181A (en) Hot rolled high tensile strength steel plate with high workability and its production